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Foreword 

This paper deals with a new variable metric algorithm for stochastic optimization problems. 
The essence of this is as follows: there exist two stochastic quasigradient algorithms working 
simultaneously - the first in the main space, the second with respect to  the matrices that modify 
the space variables. Almost sure convergence of the algorithm is proved for the case of the convex 
(possibly nonsmooth) objective function. 
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A Stochastic Quasigradient 
Algorithm 

with Variable Metric 

S. P. Uryas 'ev 

1 Introduction 

Stochastic quasigradient (or stochastic approximation) algorithms are used for the optimization 

of quite general stochastic systems with smooth, nonsmooth, and infinite-dimensional objective 

functions, for distributed systems and others (see, for example, [3], [4], [6]-[9], [ I  11-[13], [16], 

[20]). The structure of such algorithms is simple, and at  each iteration only few additional 

calculations are required. However, the simplest variants of these algorithms have a significant 

drawback - a slow practical convergence rate for ill-conditioned functions. This fact is connected 

not only with randomness, for the deterministic case the simple gradient algorithm is also quite 

inefficient for ill-conditioned functions. Variable metric algorithms are more complicated, but 

they have a considerably faster convergence rate. These algorithms are widely used for smooth 

deterministic optimization problems (see [2]). Several authors have generalized such algorithms 

for the stochastic case with a smooth objective function ([I], [5], [8], [lo], [14], [17], [18] and 

[21]). In this paper, the variable metric algorithm for stochastic programming problems with a 

nonsmooth objective function is presented. Such algorithms were already proposed in [19]. 

2 Basic Idea of the Algorithm 

Here we consider the problem of minimizing a convex (possibly nonsmooth) function f (x) 

f (x )  -t min 
zERn ' 

where Rn is an n-dimensional Euclidean space. In the class of problems considered here, instead 

of exact values of gradients or  generalized gradients of the function f (x) ,  vectors are known 

which are statistical estimates of these quantities. (The exact values of the function and its 

gradients are very difficult to  compute.) Such problems present themselves, for example, in the 

minimization of functions of the form 



Here and below we assume that  all random values are given on the probability space ( R , 3 ,  P). 

Considering that ,  under the general assumptions, the generalized differential of the convex func- 

tion f (x) is calculated by the formula (see [15]) 

then azcp(x,w) is a set of vectors being the statistical estimates of gradients of the  function 

f(x). We call these estimates stochastic quasigmdients [3]. To solve problem (1)) the following 

algorithm is used: 

where ps ,s  = 0 ,1 , .  . . is a sequence of positive random scalar stepsizes; A S ,  s = 0 ,1 , .  . . is a 

sequence of n x n random square matrices; tS, s = 0,1, . . . is a sequence of stochastic quasi- 

gradients, i.e. conditional mathematical expectation; E,tS is a generalized gradient: 

where E, is the conditional mathematical expectation with respect t o  the a-field defined by 

the random vector x3. How can the matrix H3 be chosen? There exists the natural criterion 

function Q3(H): 

which characterizes the quality of choice for matrix H a t  iteration s. The function @,(A) is the 

mathematical expectation of the  objective function f at  the point x3+l. The best matrix H a t  

iteration s is a solution t o  the problem 

Q3(H) + min . 
H € R n X n  

Problem (5) is somewhat more complicated than problem (1). However, the optimal matrix H 

is not needed a t  each iteration; i t  is enough to find some updating rule. Let us differentiate the 

function @,(A) a t  some point HoJ (see formula (2)): 

where tsT is the transposed vector p. We denote ,3 as some stochastic quasigradient a t  the 

point x; def x3 - p3HoJp, i.e. 

One can see that  



thus -p3t:t3T is a stochastic quasigradient of the function @,(H) at  the point H,J. We consider 

that the matrix Hi is known from the previous iteration s - 1. To modify matrix Hi, we use 

the stochastic quasigradient method (see [3]): 

Analogously, the next iteration can be done at the point H1J and so on. Let a t  s iteration with 

respect to  matrix H amount i(s) > 1 iterations is made. Write this as follows 

where t f ,  i = 0, .  . . , i (s)  are stochastic quasigradients, i.e. 

In formula (6), the matrix H is modified additively, but multiplicative variants of this algorithm 

also can be developed (see [19]). 

3 Formal Description of the Algorithm and Necessary 
Conditions for Convergence 

Define the optimal set x* for problem (1) as follows: 

X *  = {x* E Rn : f(x*) = min f (x))  . 

Algorithm (3), (6) can solve the optimization problem (1) without constraints. To simplify the 

convergence proof of the algorithm, we assume that some convex compact set X C Rn is known 

in advance such that  X *  c X .  This is not a serious restriction, since in practical situations 

such a set is usually known. This set could be very large. If x3 4 X ,  then we assume that  the 

approximation of x3 is very far from the extremal set X* and we restart the algorithm from the 

initial point z0 with new initial algorithm parameters. 

We also assume that  the sequences {e,), s = 0, s, . . . and {Asl), s = 0 ,1 , .  . ., I = 0,1, .  . . are 

given before starting the algorithm. This predetermination is not very good from the practical 

point of view, but this can be relaxed later. Some adaptive formulae also could be written for 

these sequences, but we do not want to  overload the convergence proof with them now. The 

positive value ea define i ( s )  in the algorithm, iterations with respect t o  matrix are stopped if 
;(a)-1 

pa El=-, Xal > en. To avoid misunderstandings, we present here a full formal description of the 

algorithm. 



Algorithm 1 

Step I Initialization 

s = 0,  i = -1, xO = xinit, H;' = I is the unit matrix; to is a stochastic 

quasigradient a t  the point xO. 

Step I1 Set H,J = HI;:. 

Step I11 Set i = 0. 

Step IV Compute the point xf 

X J  = xa - pSHfta.  

Step V Compute H&, = Hf + AS;& ., t ST , 
here t/ is a stochastic quasigradient a t  the point x J .  

Step VI If i 2 1  and p3 ~ f = :  A,, > c3 then i ( s )  = i;  go to  Step VIII. 

Step VII Set i = i + 1  and return to  Step IV. 

Step VIII If x:(,) E X ,  then x3+' = x3 C+' = t:(s); otherwise x3+' = xO, t3+' = ~(3) '  to. 
Step IX Set s  = s + 1  and return to  Step 11. 

Let us define d(x ,  X * )  as the distance between a point x  and the set X*  

d (x ,  X * )  = min 112 - x*ll . 
x * C X 9  

To prove the convergence of algorithm 1, we shall use the following necessary conditions (see 

[20]) for convergence of stochastic algorithms. (These conditions are similar t o  the conditions in 

[12] but are more general.) 

D l  There exists a compact set X  C Rn such that  

{ x S ( w ) )  c X  a.s. 

D2 W : X  -t R  is a continuous function. 

D3 If there exists an event B  C R such that  P ( B )  > 0  and for all w  E B  there exists a 

subsequence { X ' ~ ( ~ ) ( W ) )  convergent t o  a point xl(w)  with d(xl(w) ,  X * )  > 0,  then for any 

random value c(w) > 0  a.s. there exists a subsequence {uk(w))  such that  

W ( x T )  I W ( x l ( w ) )  + c(w) for lK (w)  5 T 5 uK(w),  

~ ( x " ~ ( ~ ) ( w ) )  = W(W) < W ( x l ( w ) )  . 
S+OO 

D4 ( W ( w ) ,  W(x l (w) ) ) \W(X*)  # 8 for almost all w  E B ,  i.e. the open interval 

( W ( w ) ,  W ( x l ( w ) ) )  does not belong t o  the set W ( X 8 )  %f { W ( x 8 )  : x* E X * )  for almost all 



D5 For almost all subsequences {xSK(" ) (w)}  such that  lim,,, xSn(")(w) = x*(w) ,  x*(w)  E X *  

the condition 

w xss(u)+l(w)) - w ( x s ~ ( ~ ) ( w ) ) ]  , o }  -+ o for n -+ m m a d [  ( 
is satisfied. 

Next is the theorem about these necessary conditions (see [20]).  

Theorem 1 Let the stochastic sequence { x b ( w ) }  satisfy conditions Dl-D5; then xb (w)  -+ X *  

a.s., i.e. d ( x b ( w ) , X * )  -+ 0 a.s. 

4 Convergence of the Algorithm 

Below we formulate the theorem on the convergence of algorithm 1. 

Theorem 2 Let f : Rn -+ R be a convex (possibly nonsmooth) function, X be a compact convex 

set such that X *  c X c Rn and 

0 inf llx - x*11 = C1 > min llx - x*ll ; 
x Q X , X * E X *  x * E X *  

let the sequences {A,,} and (6,) be given and let {p,}  be a random sequence such that p, depends 

upon the mndom vectors 

let the stochastic quasigmdients and algorithm parameters satisfy the conditions 

11(/11 5 C2 as . ,  i = 1 .  ( s ) ;  s = 0 ,  I , . .  . , 

p b H b 1 0  a.s. for s + m ,  



m 

< A = const, s = 0 ,1 ,  ... 
1=0 

Then almost surely all the accumulation points of the sequence { x S )  generated by algorithm 1 

belong to X * .  

Proof We use necessary conditions Dl-D5 to prove the convergence of the algorithm. Define 

W ( x )  = min ((z - yl12 = d 2 ( x , x * )  . 
V E X  

Condition D l  is valid due to the algorithm construction and the compactness of the set X .  

It is easy to  see that the function W ( x )  is continuous and consequently condition D2 holds. 

Let us prove condition D3. Denote 

. 
qs = ts - g ( x S ) ,  qf = t; - g ( z ; )  , 

u c ( x )  = {Y  E Rn : I ~ Y  - 211 L € 1  , 

f *  = ,*&f(~), C3 = max 112 - yll , 
z , Y € X  

x: = arg min )lxS - 911, 2:; = arg min llx; - yll . 
y € X *  y € X *  I 

Let the probability of the event B = {w E fl : 3 a subsequence x '~ ( " ) (u )  of the sequence x S ( w )  

such that x '~ ( " ) (u )  -, xl (w)  4 X * )  be greater than zero. We shall omit the latter for the 

simplicity of argument w. Steps IV ,  V and V I  of the algorithm and conditions (9) and (10)  of 

the theorem imply 

Applying this estimate the proper amount of times we obtain 



Estimate W(x6) as follows: 

Since the function f (x) is convex, then, with designations (20), we get 

Substituting the two previous estimates into estimate (21) and (19)-(20) yields 

If xTG!~) E X ,  then we have from the algorithm formulae 

Using this equality the proper amount of times we get 

If x 3 9  X;(S), ..., x?;:~) E X ,  m > s then again applying this formula for m - 1,. . . , s + 1 we obtain 



In view of conditions (9) and (10) of the theorem, step VI of the algorithm, and the last equality 

we can estimate 

It also follows from (23), (24) and (25) also that  

Let us consider the events w E B such that there exists a subsequence {x16) with 

xla + XI,  W(xl) 2 0, U6(x1) c X for K --t oo , (27) 

where 6 is some positive random value for almost all w E B. Denote r as some random value 

such that  0 < r < for w E B. We define the index subsequence {v, ) (this subsequence 

depends upon w) such that  

7=ln 

the existence of this subsequence follows from the theorem conditions (11)-(13). In view of 

conditions (15)-(19) and step VI of the algorithm 

Since p7llH;t7)1r;' + 0 a.s. for T + oo (see condition (14)), then (26) and (29) imply 

From (30) and zl% 4 x' for n + oo i t  follows that  the  approximations x i ,  I, < r 5 v, - 1, 

0 5 1 5 i ( r )  belong t o  the set u2,(z1) for sufficiently large numbers K (this n depends upon w). 

Since 

then 



It also follows from ( 2 7 )  tha t  

Since the points xT for I ,  < T < V ,  - 1, 0  5 1 5 i (r)  belong to  the set U29(x1 )  for sufficiently 

large K, then ( 3 1 )  implies the existence of a random value a > 0 a.s. such that  

f * -  f ( x ; )  < -a for 1 ,  ~ T S  U S -  1 , 0 5 1  5 i ( ~ )  ( 3 2 )  

for sufficiently large K .  Applying inequality ( 2 2 )  the necessary amount of times with ( 3 2 )  we 

have 

v,-1 
2 def + C , ~ A  C p, = W ( X ' S )  + T2 + T3 + T4 + Ts + Ts  . 

We estimate the lower limit of the terms in inequality ( 2 3 ) .  For the second term we have 

(see ( 1 4 )  and (28)) 

lim T2 = lim 2  C p7C311Hit711 = - - 
,+w lc--rw 

7=1* 

For term T3 



In view of algorithm step VI and the convexity of the function 1 1  . 1 1 2  for the fourth term in ( 3 3 )  

The martingale series CT=o c7q7 is convergent with conditions (11) - (13)  and thus 

For sufficiently large K ,  the points zr,  1, 5 r < v, - 1, 0  5 1 < i ( r )  belong to  the  convex set 

Uzq(xl )  and U Z ~ ( X ' )  n X *  = 8. Consequently, for properly small q there exists a positive random 

value y  > 0  a.s. such that  ( g ( x 7 ) , x *  - X I )  > y ( (x*  - xlll > 0 ,  x* E X * .  Further we get 

v,-1 
2 

1 1 ~ *  - x1/1-' C cr (g (x7 ) ,  x* - x') 
7=1, 

Combining the last inequality with (36 )  and (37 )  we obtain 

It follows from conditions ( 9 ) ,  ( 16 )  and ( 1 9 )  that  

consequently the martingale series 

is convergent. This fact implies 



We have from condition (16) also that 

Taking the lower limit for (33) and using (34), (35) and (38)-(40), 

2 2 c - 9  lim W(xY") 5 ~ ( x l " )  - 2ay2q~;9 < W(xf) - 2ay  q 2 . 
K+OO 6-OQ 

This last inequality proves the necessary condition D3 for the  subsequences, which satisfies 

condition (27). 

Now let us consider the case with 

where a X  is the boundary of the set X .  As in the previous case we define the index subsequence 

{v,} such that  

We consider the following two possibilities: 

1. There exists an infinite subsequence {dm} such that  1, < 8, < urn, zem E X ,  z : ~ ~ )  4 X ,  

xem+' = xo. In this case, condition (8) implies 

and subsequence {zem+'} satisfies the necessary condition D3. 

2. There exists a number K such that  x7 E X for I, 5 T 5 v,, K 2 K. For this case, the 

proof of condition D3 coincides with the proof where XI belongs t o  the  interior of the set 

X .  

This proves condition D3. 

Condition D4 is valid because the function W(x)  is constant on X*. 

Let us prove the last condition D5. We conside the subsequence xaR such that  xas - x*, 

z* E X*. It follows from estimate (25) that  

Since (see conditions (12), (14), (16) and (19)) 



then (41) implies 

for almost all o such that  xSn + X*,  x* E X*. The function W(x) is continuous, thus (42) 

proves condition D5. 

All conditions Dl-D5 are checked and the theorem is proved. 
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