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FOREWORD 

This paper follows Attouch and Wets [7] where the authors introduce a new distance 
function, namely the hausdorff epigraphical distance, which is specially fitted to the study 
of the quantitative stability of the solutions of optimization problems. They now focuss 
their attention on well conditioned minimization problems, which amounts to some con- 
trol of the "curvature' of the function around its local minimum, and obtain with the help 
of the above distance holderian and lipschitzian stabilty results, which are in some sense 
optimal. 
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QUANTITATIVE STABILITY OF VARIATIONAL 
SYSTEMS: 11. A FRAMEWORK FOR 

NONLINEAR CONDITIONING 

Hedy ~ t t o u c h *  and Roger J-B we ts**  
* * 

*~nivers i tk  de Perpignan - University of California-Davis 

Abstract It is shown that  for well-conditioned problems (local) optima are holderian 
with respect to  the epi-distance. 

1. INTRODUCTION 

During the last few years much effort has been devoted to the study of the stability 

of the solutions of optimization problems under various perturbations of the original prob- 

lem. Much has been said about the continuity properties of the optimal value and of the 

set of optimal solutions as a function of these perturbations. This is also the purpose of 

this paper, as well as its companion [8]. However, we make a break with the standard a p  

proach in a t  least two ways. First, we do not just consider a particular class of perturba- 

tions, but allow for perturbations of a global character. The reference to variational sys- 

tems in the title, cf. Rockafellar and Wets [42], is intended to stress this concern in our 

approach. Second, we are interested in quantitative results that could be used in estimat- 

ing the rate of convergence of an approximation scheme, or to obtain error estimates for 

the current solution in an algorithmic procedure. T o  measure the distance between optim- 

ization problems, we rely on the epi-distance. We deal mainly with the properties of local 

optima when the problems are appropriately conditioned, and derive holderian and 

lipschitzian inequalities in terms of the epi-distance. In [8], we obtain lipschitzian proper- 

ties for the €-approximate solutions of convex optimization problems. 



An overview of the stability results of topological nature could be gather from the 

work of Evans and Gould [21], Fiacco [22], Bank, Guddat, Klatte, Kummer and ~ a r n m e r  

[16], Dolecki [19], Gauvin [21], Hogan [26], Robinson [35], 1361, Rockafellar [38], and Zo- 

iezzi [Sl]. Recently, the introduction of the concept of epi-convergence, has allowed us to  

unify a large number of there results, cf., Mosco 1331, Wets [48], Attouch and Wets [4], 

Attouch [2], and Robinson [37]. And it is also in that  framework that  we place ourselves 

in this paper. 

Quantitative results, that  provide (computable) bounds on the sensitivity of the 

solution to  changes in the values of the parameters, are much more limited. An approach 

initiated by Aubin [9 1, Aubin and Frankowska [ l l ] ,  (see also Rockafellar [39], and Aubin 

and Wets [12]), relies on nonsmooth analysis and the Inverse Function Theorem for multi- 

functions. Locally, the optimal solution of an  optimization problem min, f(z)  is charac- 

terized by the optimality condition 

where 8 f is some generalized gradient of f .  Then, with a surjectivity assumption on the 

tangent cone to the graph of 8 f a t  (z ,  O), the solution set is proved to be pseudelipschitz 

with respect to  the data.  The counterpart of the great generality and flexibility attained 

here is the need to  calcualte second (generalized) derivatives of f and that  could be quite 

involved. 

In this article, we present a completely different approach that  does not use optimal- 

ity conditions. Recall tha t  a local minimizer zf of f is characterized by 

f(zf) 5 f (y)  for all y in X such that  1 1  y - zfl( 5 p, p > 0 . 

Since our aim is a nonlinear conditioning theory for optimization problems, we must be 

able to deal with all kind of perturbations of f and predict the worst possible effect on zf 

of some change or slight error in the coefficients of the objective function and/or the con- 



straints. We already know that  the good notion of topological deformation that  yields 

stability for minimization problems, is epi-continuity, we are thus naturally led to the 

study of metrics (for extended real valued functions) that  induce epi-convergence. In [5], 

and also [6], we exhibit such classes of metrics obtained via regularization by epigraphical 

sum (inf-convolution). Distances are defined in terms of (uniform) bounds on the 

differences of these so-regularized functions on bounded subsets of X. In [7], we define 

another metric, called the (hausdorff-) epi-distance, which also induces the topology of 

epi-convergence. It is this latter notion of distance that we shall use to  derive our results. 

(In view of [7, Theorems 3.4, 3.7 and 3.91, it is always possible to  re-express the results in 

terms of the metrics defined in [5], [6].) In [8],  where the attention is restricted to  convex 

functions, the epi-distance is also used to  prove that  the multifunction f ++ e a r g m i n  f is 

pseudo-lipschitzian. 

T o  be able to  consider any possible perturbation of f and still obtain quantitative 

results, we need some geometric assumptions about f .  Clearly we have to  control the 

"curvature" of f a t  z,. This is done with the help of the radial regularization of f a t  z, (see 

Section 2),  i.e., the largest function cp > 0 such that  t, goes to 0 whenever cp(t,) goes to  0, 

and 

j(z)  j ( ~ , )  + p(IJ z - z,ll) for all z such that  1 1 %  - zfll I P, P > 0 . (1.1) 

A classical property of f tha t  provides this strong local minimization property is uniform 

convezity. Let us however stress the fact that  this assumption (existence of such a cp) is of 

local character, and in general we place no convexity restrictions on f. 

The main result is Theorem 4.1 where z, is proved to  be holder stable. For example 

in the normalized case (z, = 0 and f(zf) = 0), when f is quadratically "conditioned" a t  0,  

i.e., f (z)  > 1 1  z 1 1 2  = cp(z) for ( 1  z 1 1  5 1, and g is some approximation or perturbation of f ,  

with zg a corresponding minimizer, Theorem 4.1 asserts that  



provided that hausp(f, g), the epi-distance (of parameter p) between f and g, is 

sufficiently small. We show in Section 5 that this holderian stability result is optimal. In 

fact, this estimate is consistent with related, but more specialized, results that  have been 

obtained in various areas: Moreau [32] the sweeping problem (le problkme de rafle), At- 

touch and Wets [S] isometrics for the Legendre-Fenchel transform, Rabier and Thomas 

[34] approximations for the solutions of elliptic p.d.e., Dontchev [20] approximations and 

perturbations of optimal control problems, and Daniel [18] and Schultz [44] for specific 

perturbations in nonlinear mathematical programming. 

2. CONDITIONING FOR MINIMIZATION PROBLEMS 

Let X be a normed space and let ) (  1 1  denote the norm of X. Given z E X and p > 0, 

we denote by B(z ,  p) the closed ball of radius p centered a t  z. We also write pB for 

B(0, p). Given f :  z -, R, a real extended valued function, a point z E X satisfying 

for some p > 0, is called a local minimizer 

o f f .  

Our main objective is the study of the stability of the solution of such minimization 

problems with respect to da ta  perturbation (that is with respect to f ) .  T o  that  end, let us 

introduce the following class of well behaved minimization problems. 

DEFINITION 2.1 A function p: R+ -, TI+ is called admissible if p(t,) -, 0 implies 

t, -, 0. Let f :  X -, and z E X be such that 



for some p > 0 and some admissible function p. Then z is called a p -local minimizer off. 

This notion will play a key role in our development. Let us mention that  under as- 

sumption (2.2)) z is a unique minimizer of f on B(z, p) and that  every minimizing se- 

quence does converge strongly to z. That  is precisely the notion of well posed minimiza- 

tion problem in Tykhonov's sense, see 1461. 

Indeed as noticed by T .  Zolezzi (50, Corollary 11, to  say that  the local minimization 

is well posed in the above sense is equivalent to  the existence of an admissible function p 

for which (2.2) holds. The choice of the above terminology, "p-local minimizer", is 

motivated by the fact that  we are interested in quantitative stability, that  very much 

depends on the shape of p. Figures 1 and 2 illustrate two typical situations. 

epi F 

FIGURE 1 p ( r )  = 7lrl. FIGURE 2 p ( r )  = cr 2 . 

When p ( r )  = 71rl, for some 7 > 0, (see Figure 1 ) )  the function f is sharply pointed a t  z. 

In that  case, we shall be able t o  derive l i~schitz stability of the local minimizer z with 

respect o f f .  When p ( r )  = cr2, the function f may be smooth a t  z (see Figure 2). 



These examples illustrate the importance of a good understanding of what is the 

"best" admissible function cp for which (2.2) holds. As we shall see, the sharpest stability 

results are obtained by taking the largest admissible function cp for which (2.2) holds. We 

now characterize such functions 9. 

PROPOSITION 2.2 Let us assume that (2.2) holds. Then there ezists a largest admissi- 

ble function, which we denote by p f ,  such that the inequality (2.2) holds. It is given by the 

following formula 

It is called the radial regularization o f f  at z .  

The proof of Proposition 2.2 is quite elementary. Just notice that if is the 

family of admissible functions such that (2.2) holds, then ,v pi is still an admissible func- 
r E I  

tion and (2.2)  still holds. Then take 

9f  = .V 'Pi 
t E I  

The function y I+ c p f ( l ) y  - 211) is the largest radial function which 'minorizes 

y I+ f ( y )  - f ( z ) .  This justifies the terminology of radial regularization which plays an im- 

portant role in the theory of Orlicz spaces (see A. Fougkres [23]) .  It is an interesting ques- 

tion to characterize the properties of c p ,  from the properties of f .  

PROPOSITION 2.3 Assume that f is convez and that (2.2)  holds for some admissible 

function 9. Then the radial regularization c p f  of f at z is such that r I+ l / r p f ( r )  i s  in- 

creasing, and hence ( p f  is strictly increasing. 



PROOF The proof is patterned after that  of Proposition 2 of Zolezzi [50]. Let 

0 5 r1 < r2 5 p and y2 E X such that  l l y 2  - 211 = r2. Take yl = (1 - r l / r2)z  + rl/r2y2. 

Then 

Hence 

which by convexity of f yields 

This inequality being true for any yz E X satisfying lly2 - zll = r2,  it follows 

This means that  r + (cpf(r)/r) is increasing. Noticing that  cpf(r) # 0 as soon as r # 0 

(this is a consequence of Definition 2.1 of admissible functions), it follows that  r - cp,(r) 

is strictly increasing on (0, p ] .  

REMARK Even if f is convex, cp, is not convex in general. Indeed, cp,(r)/r 2 cp'f(O), 

that  is, cp, is convex "near the origin". T o  avoid this difficulty one may work with the 

radial-convex regularization where the admissible functions cp are also required to  be con- 

vex. 

When considering a concrete minimization problem, think for example of a 

mathematical program with a large number of variables, the construction of an admissible 

function cp such that  the inequality (2.2) is satisfied could be quite involved. The main 

reason is that  the point z which actually minimizes f is a priori unknown. For this reason 



i t  is important  t o  know what  global properties for f automatically insure t h a t  a n  inequali- 

ty  of the type (2.2) is satisfied around z (which turns t o  be a global minimizer). This  is 

where the  notion of uniform convezity turns out  t o  be useful. An abundant  li terature has 

been devoted to this  subject (see e.g., Zalinescu [49], Vladimirov, Nestorov and Chekanov 

[47]) and i ts  connection with stability in optimization and control (Sonntag 1451, 

Dontchev [20]). A survey, with some new results, can be found in D. Azd (141. For  the  

sake of simplicity, we first consider the  Hilbert case (see Section 5 for more general 

results). 

PROPOSITION 2.4 Let H be a real Hilbert space and f E r o ( H )  the space of convez, 

lower semicontinuous, proper functions from H into R U {+ oo). The following state- 

ments are equivalent 

( i )  f ( tz  + (1  - t ) y )  I tf(z) + (1  - t ) f(y)  - r t ( l  - t ) l (z  - y)I2, v z ,  Y ~ d o m f , V t ~  10, 

( i i )  f (y)  > f (z )  + <af (z ) ,  y - z >  + r l l z  - Y I \ ~ ,  v ( z , a f ( z ) )  ~ a f , v ~  E d o m f  

(iv) f E r 7 ( H )  i.e. f - 711.112~ r o ( ~ )  . 

Then f is said to be 7-strongly convez. 

As a direct corollary of the  equivalence (ii) (iv) we obtain 

COROLLARY 2.5 Let us assume that f E r 7 ( H )  for some 7 > 0 .  Then f reaches its 

minimum at a unique point zf that satisfies 



In the terminology of Definition 2.1, z, is a 7-quadratic global minimizer of f. This 

leads to introduce the notion of a strong local minimum (see R.T. Rockafellar [39]): 

DEFINITION 2.6 Given  f :  X -+ 8, z E X i s  a local m i n i m u m  o f f  i n  the  strong sense  if 

there ezists  7 > 0 such  that for all y near z, 

A local minimum in the strong sense is a cp-minimum, see Definition 2.1 with cp(r) = 7 r 2 ,  

7 > 0. When writing sufficient optimality condition for a local minimum in terms of 

second derivatives one is naturally led to the notion of strong local minimum. This ex- 

plains the importance of this notion. Recent results of R.T.  Rockafellar [41] allow us to 

characterize the best 7 in (2.5) in terms of a lower bound for second derivatives, for a 

quite general class of functions f.  A function f :  R~ -+ R ,  a lower semicontinuous func- 

tion, is epi-digkrentiable a t  z (see R.T. Rockafellar [40]) if 

epi-converges as t 1 0. The epi-limit is denoted by f, (with f ,(O) > - w ) .  f is said to be 

twice epi-diflerentiable at z relatively t o  v if it is epi-differentiable and the functions 

epi-converges as t 1 0. The epi-limit is denoted f" ,, , (with f",, ,(O) > - w ) .  When f is 

twice epi-differentiable a t  z relative to every pseudo-gradient v then f is said to be twice 

epi-diflerentiable at z .  

PROPOSITION 2.7 [41, Theorem 2.21 Let f :  R~ -+ R be a lower semicont inuous  func- 

t ion  and z be a point where f i s  finite and twice epi-diflerentiable. If 0 i s  a subgradient o f f  

at z and 



then f has a local minimum in  the strong sense, at z .  Moreover, taking 7 0  = min f ' z , o ( J )  
I€l=1 

one has 

that is, for all 7 < r O / 2 ,  there ezists p7 > 0 such that 

Let us end this section and examine how the preceding notions are connected with 

conditioning theory. We need the following definition, see C. Lemaire-Misonne [30] for an 

introduction to nonlinear conditioning. 

DEFINITION 2.8 Let f : X  -+ R be a real eztended valued function and zo a local 

minimizer o f f ,  i.e., there ezists some p > O such that 

f (zo)  <- f ( z )  for all z E B ( zo ,  P )  . 

Let us assume that there is  ezistence and uniqueness of such local minimizer for a11 linear 

perturbations o f f  (with suficiently small norm): for all v E X *  with IIvII 5 6 there ezists a 

unique z ,  E X such that 

The conditioning number of zo relatively to linear perturbations of f is the positive real 

number defined by 

im sup 
Ilzv - zollx 

C,(zo; f )  = 1' 
r1o llvll < r Ilvllx. 

= lim sup 
Ilzv - zoll 

v - 0  1 1 ~ 1 1  



When f is uniformly convex one can obtain rather easily a sharp upper bound on 

C l ( z f ;  n: 

PROPOSITION 2.8 Let H be a real Halbert space and f E r 7 ( H )  for some  7 > 0 (see 

Proposition 2 .4 ) .  Let us denote by z, the unique minimizer o f f ,  

f ( z f )  < f ( z )  for all z EX 

Then 

PROOF Denoting by d f the subgradient map of f, the optimality condition ( 2 . 1 2 )  

means that 

The optimality condition for the linearly perturbed problem ( 2 . 1 0 )  is 

v E d f ( z , )  . 

From Proposition 2 . 4 ,  in particular the equivalence (iv) (iii), 

< d f ( z , )  - d f ( z f ) ,  2 .  - 2 27112. - zf1I2 , 

that is 

< v ,  2 ,  - Z f >  2 27112, - . 

From the Cauchy-Schwarz inequality it follows that for every v E H 



and hence 

REMARK 2.9 Inequality (2.13) is sharp. Consider the case where the Cauchy-Schwarz 

inequality in (2.14) turns to be an equality, that is 

X(z, - zf) E df(z,) for some X E R , 

z, - zf being a nonlinear eigenvector for the operator df(. + zf). (See ClCment [17] for a 

detailed presentation of this theory). 

The preceding (locally lipschitz) stability result takes only into account the linear 

perturbations of f .  In the linear case (we mean by linear the case where A = d f is a linear 

operator) the linear conditioning number CI does not depend on the point zf and is the 

same when considering general perturbations of A .  In the nonlinear case, we shall see that 

the situation is far more delicate. A major obstacle in the development of general results, 

is to understand the meaning to attach to "(small) perturbations" o f f ,  and "dependence" 

of zf on f. This is the purpose of the next section. 

3. THE EPI-DISTANCE 

This notion was introduced in Attouch and Wets [7]. We made first use of it in the 

study of the pseudo-lipschitz stability properties of the €-approximate solutions of convex 

optimization problems [8]. We recall its definition, and mention those results that will be 

useful in the sequel. 

Unless otherwise specifically mentioned, we always denote by (X,  1 1  ell) a normed 

linear space, and by d the distance function generated by the norm. For any subset C of 

x, 



denotes the distance from z to C ;  if C = 0 we set d(z,  C)  = oo. For any p > 0, p B  

denotes the ball of radius p and for any set C,  

For C ,  D c X, the "ezcess" function of C on D is defined as, 

with the (natural) convention that  e = 0 if C = 0. Note that  the definition implies 

e = oo if C is nonempty and D is empty. For any p > 0, the p-(Hausdorff-)distance 

between C and D is given by 

DEFINITION 3.1 For p > 0, the p-(Hausdorff-) epi-distance between two eztended real 

valued functions f ,  g defined on X, is 

hausp(f, g) := hausp(epi f ,  epig), 

where the unit ball of X x R is the set B := BXxR = {(z, a )  : 1 1  z 11 5 1, I a I < 1) . 

Convergence with respect to the family of epi-distances {haus,, p > 0) is closely re- 

lated to epi-convergence, which in some sense, is the weakest form of convergence that  

will guarantee the convergence of the solutions of variational problems, cf. for example, 

Attouch [2], Rockafellar and Wets [42]. For the connections between this two types of 

convergences, we refer to  [5 ,  Section 41. At this point, it suffices to  know that  when X is 

finite dimensional, the two types of convergences coincide. When X is infinite dimension- 

al, we can show, a t  least in the convex case, that  convergence with respect to the epi- 

distances implies epi-convergence with respect to both the weak and the strong topologies 



on X .  Please consult [7,  Section 41 for further details, and the relationship between con- 

vergence with respect to  the (Hausdorff-) epi-distances and other pseudmdistances. 

A very useful criterion, that allows us to  compute or at least estimate, the epi- 

distance, is provided by the Kenmochi conditions. 

THEOREM 3.2 [7,  Theorem 2.1.1 Suppose f ,  g are proper eztended real valued functions 

defined on a normed linear space X ,  both minorized by -ao 1 1  . I J p  - al for some a. 2 0 ,  

al E R and p 2 1. Let po > 0 be such that (epi nPo and (epi g ) P o  are nonempty. 

a )  Then the following conditions - to be called the Kenmochi conditions - hold: for alt 

p > po and z E dom f such that ( 1  z 1 1  I p, 1 f ( z )  I < p,  for every c > 0 there ezists 

some < E dom g that satisfies 

as well as a symmetric condition with the role o f f  and g interchanged. 

b )  Conversely, assuming that for all p > po > 0 there ezists a "constant" ~ ( p )  E R+, 

depending on p,  such that for all z E dom f with I( z 1 1  I p, I f ( z )  I I p,  there ezists 

z" E dom g that satisfies 

and the symmetric condition (interchanging f and g) ,  then with pl := p + aopP + al.  



Let us conclude by observing that  there are many other ways to  define metrics on 

the space of extended real-valued functions that  induce epi-convergence. In fact, in view of 

Theorems 3.4, 3.7 and 3.9 of [7], we know a number of them that  are equivalent to  that 

generated by the family of pseudo-distances {hawp, p > 0). We state our results in terms 

of the epi-distance, because in many applications it is easier to handle, and possibly easier 

to "visualize". 

4. STABILITY RESULTS 

We now turn to  the main result that implies lipschitzian - when the problem is 

(sub)linearly conditioned (see Figure 1, Section 2) -, and more generally holderian stabili- 

ty of the solutions with respect to perturbations measured in terms of the epi-distance. 

To state our result, it is convenient to use the following notation: to any pair (4, 6) we 

can associate a translation map r such that  for any function h 

Then epi rh = epi h + {-  4, - 6). If 4 is a local minimum of h and h(4) = ai, then the 

function rh has a local minimum a t  0 with rh(0) = 0. By cpll~ we denote the epigraphical 

sum cp & 1.1 of cp with the norm, i.e., 

STABILITY THEOREM 4.1 Let X be a normed linear space, f and g two proper ez- 

tended real valued functions defined on X .  Suppose that zr is a p-local minimizer o f f ,  i .e., 

for some p > 0 with cp an admissible function, and z,,, is a local minimizer of g with respect 



to a ball of the same radius, 

Let r be the translation map associated with the pair ( z f ,  f ( z f ) ) .  Suppose also that the 

function g is close enough to f so that 

and 

P > 3 sup{lIzf - zglll I f ( Z f )  - 9(zg)1) . 

Then 

and 

Moreover, i f  p is a finite valued, convez, even function, and i f  the right-derivative of p ,  

denoted p'+, satisfies 

then 

PROOF Let us first prove (4.6). The  optimality conditions could equivalently be stated 

as 



Observe that assumption (4.5) implies that 

and hence 

Figure 3 illustrates the situation. 

FIGURE 3 rf, rg and ~ ( 1 1 - 1 1 ) .  

Let 9: = hausp(rf, rg). By definition of hausp, we have 



Next, let us observe that  

These identities are justified by the following argument. For any (2, a )  6 p B,  

Where (4.5) was used to  obtain the second inequality. Thus, 

d((Y, P),  epi r f  n (X x R\PB))  > 2 ~ 1 3  . 

But, as follows from (4.4) 

and this confirms (4.10). The same argument yields (4.9). In particular this implies that  

and 

If /3 < 0, noticing that  rf 2 0 on B(0, p), it follows from (4.12) that  IPI 5 '7. If P > 0 the 

other inequality (4.11) implies too that  IP( I '7, since a > P for any (y,  a )  E ( e p i ~ g ) ~ ~ / ~ .  

This completes the proof of (4.6). 



- 1 9 -  

From (4.10), it  follows that  q 1 d((y, P), ( e p i ~ f ) ~ ) .  In turn this yields 

since p(ll-11) 5 rf on pB. Repeating once more the argument that  gave us (4.10), we see 

that  

d((y,  PI, epicp(II.II)) = d((y, PI, e~icp(ll.Il)p) 7 

and thus d((y, p), epi p(ll-ll)) I q. NOW from the triangle inequality and (4.6) 

~ ( ( Y Y  01, e p i ~ ( ( \ . I I ) )  I d((y, P),  epip(llaIl)) + IPI I 2~ - (4.13) 

Next, we calculate an upper bound for d((y, O ) ,  epi p(JI.ll)) : 

d((y, 01, epip(ll.ll) = inf{sup Illy - 211, QI :Q L ( P ( I I z I I ) )  9 
Z 

This, with (4.13) yields (4.7), i.e., p[ll((lyll) ( 4q. 

In order to  obtain (4 :.8), we use a result of Hiriart-Urruty [25] which shows that  

plll = p whenever p'+ 5 1. Thus in that  case, p(llyI) 5 4q, from which (4.8) lollows. 



REMARK 4.2 

a) We stress the fact that  in Theorem 4.1, we only assume that one of the two functions 

f or g is well-conditioned, say f. In particular that  means that  f has a unique local 

minimizer zf. When perturbing (or approximating) f ,  let us call g the perturbed (or 

approximating) function, it could happen that  the local minimization of g has many 

solutions. Theorem 4.1 tells us that 

where pf denotes the radial regularization of f at  zf, and rl  = hausp(f, g) with p 

large enough so that  all the significant elements are contained in B((zf,  f(zf)), p). 

b) When f is well-conditioned a t  zf, and g a t  zg, let 

Let us assume that  both pf and pg are convex, finite-valued. From (4.8) we obtain 

provided ( P ' ~  v ~ ' ~ ) ( l l z ~  - zgll) 5 1. Thus the larger of the two functions prevails. 

c) The best stability estimates in (4.7) and (4.8) are, of course, obtained by taking cp as 

large as possible, i.e., by choosing for cp the radial regularization, see Proposition 2.2. 

T o  conclude' this section, we state as corollary of Theorem 4.1, a version of that  

Theorem that  is useful in many applications. 

COROLLARY 4.2 Let X be a normed linear space, f and g two proper, eztended real 

valued functions defined on X. Suppose zf is a local minimizer off  so that 



for some p 2 1, 7 > 0 and p > 0 ,  and zg is  a local minimizer of g, so  that 

Suppose moreover that 

and, with r the translation map associated with (z,, f ( z , ) ) ,  

Then, we have the following estimate: 

provided 112, - zg)l 5 ( 7 p )  ' / p -  l .  

Are these estimates optimal? The following examples show that they are sharp, un- 

less additional assumptions enter into play. 

5. EXAMPLES 

EXAMPLE 5.1 Let us start with the following elementary example. Take X = R ,  

f = 0 ~ - ~ ( . 1  and g = 0 P - l I . -  01, and define 



where p E [ I ,  + oo) and 8 is a positive parameter that  will go to zero. 

Clearly f8 and go are two convex continuous functions that  achieve their minimum 

respectively a t  

and 

FIGURE 4 

Hence (?(8) - zg(8)( = 8, while I fg(z) - ge(z)l = OP- lI(lz1 - Iz - 81)1, and thus 

SUP Ife(2) - ge(z)I = eP 
Z 

We have exactly 

the distance being computed with the uniform norm on R.  (Notice that  

haus,(fe, ge) I d(f ,  g) I (1  + eP- ' + pP - l )  hausp(fe, ge) for all 0 > 0, and p 2 0). Let us 



interpret this result with the help of Theorem 4.1: ~ ~ ( 8 )  = 0 is a p-minimum of fe with 

p ( r )  = ( 1 l p ) r P .  Indeed the largest admissible function cp (independent of 8 )  such that  

EXAMPLE 5 .2  Let us now examine the projection on a convex set. Let X be a reflexive 

Banach space, C a closed convex non empty subset of X and z, E X. The minimization 

problem 

min {( lzO - zll : z E C )  ( 5 . 2 )  

has a unique solution ~ ~ ( 2 ~ )  which is the projection of zo on C. The minimization prob- 

lem ( 5 . 2 )  can be rewritten as 

min { f ( z )  : z E X )  

with 6C the indicator function of the set C ,  

Let us examine the stability of pC(zo)  with respect to zo and C. We first assume X 

to be a real Hilbert space: i t  is a well known result that  zo ++ pC(zo)  is a contraction. Let 

us now study the mapping C ++ P ~ ( Z ~ )  and prove the following 

PROPOSITION 5.3 Let C and D two closed convez non empty subsets of an Hilbert 

space H .  Given zo E H and 

we have the following estimation: 
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PROOF Let us write the classical optimality conditions 

<z,, - pc(z0), Z - pc(z0)> I0 VZE C 

<ZO - P D ( ~ o ) ,  Y - PD(ZO)> I0 VY ED 

that  characterize pC(zo) and pD(zo). From 

pc(z0) I 11~011 + d(zo, C)  5 P 

PD(ZO) 5 11z01l + 420 ,  D) 5 P 

there exists some .? E C such that  

I~PD(ZO) - Zll = ~ ( P D ( z o ) )  C)  I e(Dp, C) 

and some y" E D such that  

IIpc(z0) - y"ll = d(pc(zo), D) I e(Cp, D) 

which by definition of haus p(C,  D) yields 

SUP {llpc(zo) - fII; IIPD(ZO) - zll) 5 hausp(C, D) - (5.8) 

Take z = z" in (5.6)) y = y" in (5.7) and add the two inequalities. We obtain 

<ZO - PC(ZO), f - ~ ~ ( 2 0 )  + PD(ZO) - PC(ZO)> + 

+ <zo - PD(ZO), i7 - PC(ZO) + PC(ZO) - PD(ZO)> 50 ) 

that  is 

IIPC(ZO) - PD(zo)II~ I ~ ~ ~ { ~ I P D ( Z O )  - 41; IIPC(ZO) - y"ll)(d(zo) C) + d(zo) Dl)  

Using inequality (5.8), we finally obtain 



We now turn to the following questions. Is the holder exponent 112 optimal? How is 

this exponent related to the geometry of the space? And how to interpret this result with 

the help of Theorem 4.1? 

EXAMPLE 5.4 Let us first examine the question of optimality. Take X = R~ equipped 

with its euclidian structure and consider the following picture: 

FIGURE 5 Projection on a convex set. 

Take Ce = (AEe] and Do = [AFe] as convex sets depending on the parameter 0 and 

zo = 0 .  Then pC,(0) = A ,  pD,(0) = He,  i.e., IIPCo(0) - pDo(0)II = sine. On the other 

hand 

haus ( C e ,  Do) = d(Ee, Fe) = 2 sin28 

that is 



For this example one has no better than the 112 holder continuity provided by Pro- 

position 5.1 for the map C ++ proj CzO. 

Let us now explain how the 112-holder continuity result can be derived from 

Theorem 4.1 and how it is related to the hilbertian structure. At this point, we need a 

general version of Proposition 2.4 concerning uniformly convex functions, cf. to the re- 

cent survey of Azd [14]. 

PROPOSITION 5.5 Let X be a Banach space and f E ro(X) ,  the space of eztended 

real-valued, proper, lower semicontinuous, convez functions. Let us consider the following 

statements: 

( i )  VZ,, z1 E dom f ~t E(O, I) ,  f b t )  5 t f ( ~ 1 )  + (1 - t)f(zo) - t ( l  - t)k(IIzl - zoll) 

where zt = tzl + (1 - t)zo, k(s) > 0, k(0) = 0. 

(ii) V(zo, yo) E af VZ E X  f(z)  > f(zo) + <yo, z - z0> + w(llz - zoll) where w(s) > 0, 

w(0) = 0. 

(iii) Q(zo, yo) E af, Q(zl, yl) E af <y l  - yo, 21 - zO> 2 W(IIz1 - 2011) where W(s) 2 0, 

W(0) = 0. 

Then (i) (ii) with w = k, 

(ii) (iii) with W = 2w, 

(iii) (i) with w(r) = kr( W(s)/s) ds if X is reflezive, 

(ii) (i) with k(r) = 2w(r/2) if ( ( - 1 1 2  is uniformly convez. 

In order to derive Proposition 5.1 from Theorem 4.1, we notice that  pC(zo) is solu- 

tion of the following minimization problem 

min {SC(z) + llzO - z ~ J P :  z E H) 

for every p E [ I ,  + m ) ,  with Sc(.) we denote the indicator function of C, i.e., SC(z) = m 

if z 6 C ,  and Sc = 0 on C.  Here, 



We then note that  in a Hilbert space the function z (lzlJp is uniformly convex as soon 

as p 2 2. Indeed, with A := a(l/pII-I(P), we have 

Hence, from Proposition 5.5, (iii) j (ii), 

From Theorem 4.1, it follows that  f + pC(zo) and hence C + pC(zo) is llp-holder con- 

tinuous for any p > 2. Clearly the sharpest result is obtained by taking p = 2 which pro- 

vides 112-holder continuity of C + pc(zo). 

We are now able to explain how this ezponent 112 is related to the hilbertian struc- 

ture. Let us assume we work in a space of type p : like ( R m ,  J J . J J p )  where 

z J I p  = (C,"= or lP (N) ,  Lp(n),  Wmy P(R),- - .. These spaces are characterized 

by the fact that  the Clarkson's inequality holds (see R.A. Adams [I.], Theorem 2.28): 

u + v  if p > 2 11- 1 1 
v - u v u ,  v € X , 2 11: 5 , IIuIl,P + IIvllpP - - 

2p 

where p' is the conjugate exponent of p,  p' = ( p l p  - I ) .  

Thus f given by (5.9) satisfies the same type of inequality. It follows from Proposi- 

tion 5.5 (i) j (ii), that  pC(zo) is a 9-minimizer of f with 

rp and l l - l l p  if p > 2 9 ( r )  = fl 

and 



Let us summarize this in the following proposition. 

PROPOSITION 5.6 Let X be a Banach space of type p (say LP(R) ,  l P ( N ) , -  - - ) with 

1 < p < + m. Let zo E X and C a closed convez set i n  X .  Then  the mapping C I+ pC(zO) 

is  holder continuous with ezponent l / p  i f  p > 2, and with ezponent lip', i f  p 5 2. 

Figure 6 shows the variation of the holder exponent as a function of p, 

( X  = LP,. - .). 

FIGURE 6 

It is for the hilbertian structure that  we have the best stability result. So the hilber- 

tian metric is well adapted to  approximation theory. On the opposite when p -+ 1 or 

p -+ + m the holder exponent goes to  zero. Indeed in a Banach space of type 11, L I -  . - 
the solution of the minimization problem (5.2) may fail to  exist or, because of the lack of 

strict convexity of the norm, it may not be reduced to  a singleton. 

Let consider the case X = R m  equipped with the 11-norm 1 1 ~ 1 1  = im, Jzi l .  Then 

P C ( ~ O )  is a nonempty convex set. One may conjecture, that  when C ,  -+ C for the haus- 

dorff metric then pCV(zO) -+ pC(zO) for the hausdorff metric. This is false as shown by the 

following counter example: 



Take X = R ~ ,  llzll = lzll + 1z21, zo = 0, C = {A(O, 1) + (1 - A ) ( l ,  0);  0 1. A 5 I ) ,  and 

C,, = {A(O, 1) + (1 - A ) ( l  + ( l / n ) ,  0); 0 5 A 5 1) 

FIGURE 7 

Indeed when working in non reflexive Banach spaces, the good notion that  still enjoys sta- 

bility properties is the notion of t-solution. It is proved in Attouch & Wets [8] that the 

mapping 

f + t-argmin f (t > 0) 

is lipschitz, when the space of convex functions is equipped with the epi-distance, and the 

distance between the t-solutions sets, t-argmin f, is measured in terms of the (hausdorff-) 

p-distance. 

6. APPLICATION TO CONVEX PROGRAMMING AND PENALIZATION 

The purpose of this section is to suggest the arguments that could be used to exploit 

the Stability Theorem. Let us begin with the case when we are approximating a convex 

programming problem ( Pf) : 

minimize fo(z) 



- 3 0 -  

subject to fi(z) 5 0, i = 1 ,..., m , 

by another convex program (Pg): 

minimize go(z) 

subject to  gi(z) 5 0, i = 1,. . ., m , 

where the { fi, 1 = 0,. . ., m) and {gi, i = 0,. . ., m )  are proper, lower semicontinuous, con- 

vex functions defined on a Banach space X with values in R U {oo). If we denote by 

C f : =  {zlfi(z) _< 0, a =  1 ,..., m), and Cg:=  {zJgi(z)  _< 0, i = 1 ,..., m) , 

and 

f :  = fo + 6c1, and g : = go + 6c, , 

we can apply the Stability Theorem. Our formulation allows for perturbations that  affect 

fo, as well as some or all of the constraints. We are interested in their global effect on Pf, 

in particular in how they affect the optimal solutions. Since f = fo + 6 we are led to  
C1) 

the study of the stability of a sum, a problem that  has received a lot of attention in a to- 

pological setting, cf. for example Attouch, AzC and Wets [3, Theorem 4.11.1. A standard 

feature of such results is the need for some constraint qualification. Recently AzC and 

Penot [15] obtained a version of these results that  provide estimates in terms of the epi- 

distance. 

PROPOSITION 6.1 [15, Corollary 2.81 Let X be a Banach space, (p i ,  i = 1, ..., n) and 

( t / ~ ~ ,  i = 1,. . ., n)  proper, lower semicontinuous, convez functions defined on X with values 

in R U {oo). Assume that these functions are minorized by - a(ll.ll + 1) for some a 2 0, 

and 

n 
(uB) c diag Xn n (7B)" - II (levypi), 

i = l  



for some 7 > 0, a > 0, where 

n 
diag X n  : = diag II X(,), with each X(i) = X , 

i = l  

Then, for all p 2 n 7  + a, assuming that hauspl(pi, $i) < a, 

wherepl = p + ( n  + l ) [ a ( p  + a + 1) + a ] .  

T o  apply this to  our situation, we take pa : = jo, ( p i  : = 6{/ < o), i = I , .  . . , m), and 
1 - 

similarly $o = go, ($i = 6{g. <0)  i = 1,. . ., m). We use the upper estimate for 
I - 

Assuming tha t  inf fi < 0,  and inf g, < 0 ,  a result in Attouch and Wets [8] allows us to  es- 

timate the epi-distance between the level-sets: 

where 

Now combining this with Proposition 6.1, we obtain the following 
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PROPOSITION 6.2 Consider problems ( P f )  and ( P g )  as defined above, such that the 

functions are minorized b y  - c r ( ( ( . J ( P  + 1) where cr > 0,  p > 1 .  Suppose that 

(i) constraint qualification: for some 7 2 0,  a > 0 ,  

and (inf f i )  < 0 ,  (inf g,)  < 0 ,  for i = 1,. . ., m ,  

(ii) strong convexity of fo: for all zo, z1 E dom fo, A E[O,  I ]  

for w, a convez finite valued function, and zA = (1  - X)zO + Azl. 

Then, there ezist po > 0 and q > 0 such that whenever 

with -y and K depending (boundedly) on p. 

For our next example, let us consider approximations based on penalization. One of 

the implications of the next proposition, is that  in general one should not expect good 

convergence rates for numerical methods based on penalization. Let fo be a locally 

lipschitz, finite valued function to be minimized over a nonempty subset C c X. We a p  

proximate the minimization problem 

find z that  minimizes f ( z )  : = fo (z )  + SC(z) on X, 



by a problem of the type 

find z that  minimizes fg(2) : = fo(z) + p g ( ~ )  on X 

where { p g :  X + R+,  0 > 0) is a cast of functions such that  

(i) pe = 0 on C 

(ii) p g ( ~ )  > aO[d(z, C)]p for all z in X,  

where p > 1 and a > 0. We think of 0 as a parameter that  tends t o  oo. 

PROPOSITION 6.3 Let X be a normed linear space, with f and fg as defined above. Let 

For any p > 0, we have that 

where 7 = 7(p) is defined in the proof. Moreover, if zf E argmin f and 

with w a convez, finite valued, function, then for 0 suficiently large, 

for all zg E argrnin fg, and some pl > 0. 

PROOF Since fg 5 f ,  with the excess function as defined in Section 3, e((epi n p ,  

epi fg) = 0. T o  majorize e((epi fe)p, " epi A, we rely on Kenmochi's conditions, cf. 

Theorem 3.2. We start  with some point with IIi() 5 p and (fe(i)l 5 p. By definition of fg 

and pe, it follows that  



Because 1 fol I M(p) on pB, we have 

d(4, C)  2 [(ae)-'(p + M(P)) ] ' /~  , 

and for every 0 < E < 1, there exists 4, E C such that 

The following upper bound on f(4,) is obtained directly from the preceding inequality and 

the local lipschitz property of fo: since 4, E C, 

where pl = p + ((afl)-l(p + M(p))ll/p + 1. If we now take into account the facts that  

fo I fs and that  (og > 0, we obtain 

This, with (6.2) shows that  the conditions (3.2) are satisfied and thus (6.1) holds with 

T(P) : = [ff-l(p + M ( P ) ) I ' / ~ ~ ~ P { L ( P ~ ) ~  1) 

The second assertion of the theorem is obtained by combining the preceding result 

with Theorem 4.1. Recall, that  in the bounds derived above we need to replace fo by 

fo(' + zf) - fo(zf)t and thus L by L(. + II~fll), and M by M(. + llzrll) + Ifo(zr)l. 
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