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Foreword 

Many problems arising in optimization and optimal control may be reduced to the 

following nonlinear mathematical programming problem: 

minimize { J ( u )  : u E U , G(u)  E K ) 

where U is a metric space, K is a subset of a Banach space X and 

J: U-tR (J {+oo) , G:U-tX are given functions. The author proves a general Kuhn- 

Tucker type necessary condition for minima. This general multiplier rule allows to prove, 

in particular, the maximum principle for a semilinear problem with nonconvex end points 

constraints and necessary conditions for optimality for a nonconvex ill-posed problem. 

The results were exposed during the Comcon Workshop (Montpelier, 1988) on the 

optimization of flexible structures. 

Alexander B. Kurzhanski 

Chairman 

System and Decision Sciences Program 



A GENERAL MULTIPLIER RULE FOR 
INFINITE DIMENSIONAL OPTIMIZATION PROBLEMS 

WITH CONSTRAINTS 

H. Frankowska 

Ceremade, Universitb Paris-Dauphine 

1. Introduction 

Many problems arising in optimization and optimal control may be reduced to the 

following nonlinear mathematical programming problem: 

minimize {J(u) :  u E U ,  G(u) E K )  (1.1) 

where U is a metric space, K is a subset of a Banach space X and 

J: U - R U {+oo), G: U -X are given functions. 

A vast literature exists on the necessary conditions associated with (1.1) in some 

concrete cases. Usually the methods rely either on subdifferential calculus of convex 

analysis (see for example ((181 151) or on penalization technique ([17], (41). Both ap- 

proaches are somewhat restrictive: the first applies only to convex problems (in particu- 

lar K has to be convex), the second one applies only to these problems which can be pe- 

nalized in reasonable way (which in practice yields many assumptions on the set K and, 

often, the convexity of K). 

When K is just a closed set, one is led to apply a different technique. In [9] Fat- 

torini studied some optimal control problems using Ekeland's variational principle 171, [8]. 

Although this approach is well-known in finite dimensional optimization (161, [8]), its ap- 

plication to infinite dimensional problems is not immediate. 

In Fattorini and Frankowska 1101 results of [9] were extended to a very general class 

of constraints K. Namely K has to be a closed subset of a Hilbert space X satisfying 

some "variational" assumptions. 



We observe here that  the very same ideas allow to go beyond Hilbert spaces and to 

prove a much more general multiplier rule making the class of applications broader. The 

main aim of this paper is to  provide such general rule and to  give some new applications. 

The multiplier rule is proved in Section 2. The application to the maximum principle is 

given in Section 3. Section 4 is devoted to optimal control of an ill posed semi-linear el- 

liptic system with nonconvex constraints. 

2. M u l t i p l i e r  r u l e  f o r  a genera l  op t imiza t ion  p r o b l e m  w i t h  c o n s t r a i n t s  

We study here the problem with constraints. 

minimize { J ( u ) : u  E U , G ( u )  E K )  

where 

U is a complete metric space with the metric d  
LfLS r C c .- 

G is a continuos function from U to  aYBanach space X  

K  is a closed subset of X  

J  is a lower semicontinuous function from U to  RU { f a )  

Throughout this section we denote by I 1.1 I the norm of X  and we assume that  it is 

Gbteaux differentiable away from zero, that  is for all z E X ,  z f  0  there exists p z ~ ~ *  

such that  for all u  E X 

z + h u l l - 1 1  z I L  lim 1 1  = lim 
I I z fhuhI  1 - 1  1 ' 1  1 

h h  
= < p z , u >  

h-0+ h+O+,uh+u 

where <-,.> denotes the duality pairing on X * X X .  

We recall first the definitions of Kuratowski's liminf and limsup of a family of sub- 

sets { A s ) T E  of a Banach space X ,  where T is a metric space. 

liminf A ,  = { V  E X :  lim dist ( v , A , )  = 0 )  
1- To ,+ 70 

l imsupA, = { v  E X :  liminf dist ( v , A  ,) = 0 )  
7- 70 1- T o  

For a point z E K  we denote by z ' - ~ z  the convergence to  z in K .  

DEFINITION 2.1. LET z E K .  



i) CONTINGENT CONE T O  K AT z IS DEFINED BY 

K-z  TK(z) = limsup - 
h+O+ h 

a )  TANGENT CONE (OF CLARKE) T O  K AT z IS DEFINED BY 

In the other words v 6 TK(z) if there exist sequences hi-0+, v,-v such that  

z+hivi E K. Similarly v 6 CK(z) if for all sequences hi-0+, Z,-KZ there exists a 

sequence v,-v such that  z,+h,v, E K. It is well known that CK(z) c TK(z) are 

closed cones, CK(z) is convex and when dimX<m 

(see [ I ] ,  [6]). When K is convex we have 

When K is closed we always have 

(see [21] ) . 

Computation of elements of contingent cone is simpler than that of tangent vectors 

in the sense of Clarke. In many concrete cases computation of CK(z) may be a very 

difficult task. This is why we formulate here results using both notions of tangent cones. 

For all u E tl ,  h>O, let Bh(u) denote the closed ball in U of center u and radius h. 

DEFINITION 2.2. CONSIDER A FUNCTION F FROM tl T O  A BANACH 

SPACE Y AND A POINT u 6  tl.  

i) THE (FIRST ORDER) CONTINGENT VARIATION OF F AT u IS THE SUBSET 

OF Y DEFINED BY 

VF(u) = limsup 
F(Bh(.')) - F(u ' )  

h+O+ h 



ii) THE (FIRST ORDER) VARIATION OF F AT u IS THE SUBSET OF Y D E  

FINED BY 

VF(u) = l iminf 
F(Bh(u'))-F(u') 

u -+u h 

IN THE OTHER WORDS W E  VF(u) IF THERE EXIST SEQUENCES 

hi+O+, vj-tv SUCH THAT 

AND v E VF(u) IF FOR ALL SEQUENCES h,+O+, u,+u THERE EXISTS A S E  

QUENCE vi-tv SUCH THAT 

It is clear that VF(u) and VF(u) are closed starshaped a t  zero sets and VF(u) c VF(u). 

It was proved in [13] that VF(u) is convex. 

Recall that the negative polar of a set PC X is defined by 

and the normal cone (of Clarke) to K AT z is defined by 

We assume that (2.1) is feasible, i.e., for some u E U satisfying G(u)  E K we have 

J(u) # +a3 
THEOREM 2.3. LET uo BE A SOLUTION OF PROBLEM (2.1). ASSUME 

THAT FOR SOME p>O, 7 > 0 AND A COMPACT Q c X THE FOLLOWING HOLDS 

TRUE: FOR ALL z E K NEAR G(uo), AND u E U NEAR uo 

WHERE T, DENOTES THE PROJECTION OF RxX ON X. 

THEN THERE EXIST 

SUCH THAT 



t/ M > 0, E E ( liminf t E ( T K ( z )  n M B ) )  
Z + K  G ( u ~ )  

(2.5) 

MOREOVER, IF THE NORM OF X IS FRECHET DIFFERENTIABLE ON X\{O), 

THEN E E N K ( G ( u O ) )  AND 

Remark. 

i )  Observe that when X is a finite dimensional space, then the condition (2.2) is always 

satisfied with Q equal to the unit ball and p = 1. 

ii) When J is Lipschitzian on a neighborhood of uo, then the assumption (2.2) may be re- 

placed b y  : for all u E U near uo and all z E K near G ( u o ) .  

iii) When K is convez, the vector E from (2.3) verifies E E T K ( G ( u o ) ) - ,  i.e. E is a nor- 

mal to K at G ( u o )  in the sense of convez analysis. 

THEOREM 2.4. LET uo BE A SOLUTION OF PROBLEM (2.1) AND ASSUME 

THAT J IS LIPSCHITZIAN NEAR U O .  FURTHER ASSUME THAT THERE EXIST 

SUBSETS Z ( u )  c FZ V G ( u )  SUCH THAT THE MAP u-Z(u)  IS CONTINUOUS AT 

u,. IF FOR SOME COMPACT SET Q c X ,  p >O, y > 0 AND ALL z E K NEAR G(u,) 

THEN THE SAME ASSERTIONS AS IN THEOREM 2.3 ARE VALID. 

COROLLARY 2.5. ASSUME THAT J = (o o @ , G = g o Q WHERE Q IS A 

FUNCTION FROM 0 TO A BANACH SPACE Y ,  LIPSCHITZIAN NEAR u, AND 

(o : Y -  R , g : Y-X ARE C' at Q ( t i o ) .  IF THERE EXIST p > 0, y > 0 AND A COM- 

PACT SET Q c X SUCH THAT FOR ALL z E K NEAR G ( u o )  AND ALL u E U 

NEAR uo THE INCLUSION (2.2)' HOLDS TRUE, THEN THERE EXIST A ,  E SATIS- 

FYING (2.3),  (2.5) SUCH THAT 

V w E liminf G VQ ( u ) ,  <A (o ' ( Q  (u,))  + g ' ( @  (u,))  * E ,w > 2 0 
U+ uo 

MOREOVER IF THE NORM OF X IS FRECHET DIFFERENTIABLE THEN 

€ E N K ( G ( u o ) )  AND 



Proof. For all n > 1 define functions 

Then Fn is a nonnegative lower semicontinuous function on the complete metric space 

U x K and Fn(uo,G(uo)) = l / n 2 .  Hence we may apply the Ekeiand variational principle 181 

to Fn and the point (uo ,G(uO))  to prove the ezistence of un E U ,  zn E K such that 

and for all ( u , z )  E U x K 

Since uo is a solution, b y  definition of F,, we always have Fn(un,zn) # 0 .  The Giteauz 

differentiability of the norm of X away from zero implies that for all n such that 

G ( u n )  # z,, there ezists pi E X* satisfying 1 J p : l  ( = 1 and for all w E X 

IIG(un) - z n +  hw'II - IIG(un) - znII lim 
h 

= <P;rW > 
h-+O+ , w'-+ w 

Setting = 0 when G ( u n )  = zn and pn = 1 I G ( u n )  - z n  /pi, we have 

I 1 pn 1 I = I I G(un)  - zn I I . Fiz n 2 1. Then for all hi+O+, w,+ w,  ji+ j we have 

where limi,, o ( h , ) / h ,  = 0 = limi+w 5(hi) /h i .  Define Xn>O , ",LO, tn EX* b y  

and observe that Jx:+ I I tn ( 1 2=1.  We shall prove the following inequalities: 

Indeed setting z=zn in (2.10) yields 



Pick any ( j , w ) €  V (  jSG) (un , zn ) .  Then for some hi-O+, ( j i ,wi) - ( j ,w)  we have 

(J(un),G(un))+hi(ji,wi)~(J,G)(Bk(un)). From (2.13), (2.11) we obtain 

where l i m i , w o ( h i ) / h i = O = l i m i ~  (hi) /h, .  This implies that for some 6;-0t 

Dividing by hi and taking the limit when i-oo we obtain (2.12) i).  Set nezt u=un in  

(2.10). Then 

Consider yETK(zn)  and let hi-0+, y i 4 y  be such that z ,+h iy i~K.  Then from (2.14), ap- 

plying (2.11) with wi=- yi, we obtain 

and as in  the proof of (2.12) i )  this implies that 

Dividing by hi and taking the limit when i k o o  we obtain (2.12) ii). Since 1 I (An,(,) I I=l, 

taking a subsequence and keeping the same notations we may assume that for some 

X Z O ,  ( E X *  

Xn-.X; (,-( weakly - * 

Then, from (2.12) i )  we deduce that ( verifies (2.4). We prove nezt that (A,()+. Indeed 

if X=O then 1 ) ( , ( )+1- .  By (2.12) for all ( j , w ) ~ G V ( ~ , G ) ( u , , z , )  and for all 

YE=( T K ( z ~ ) ~ ' Y B ) ,  

Let cn E X be such that ( I I 5 1 and (,, cn > - I - .  By the assumption (2.2) there ez- 

ist cn+O, ( jn,vn) E = V ( J , G ) ( ~ , ) ,  Ijnl 57, y n ~ = ( T K ( z n ) n y B )  , Q,EQ such that 



-pen= rn+vn-yn+qn. Let {qni)  be a subsequence converging to some Q E Q  Then, from 

7+l the last inequality, we deduce that <tn i ,  -pcni-  qn i>t  -T-Xn7- 1 1 rn 1 1 . Taking the 

limit we obtain 

This implies that t f O .  From (2.12) i i )  we derive (2.3). 

Fiz M>O. Inequality (2.12) i i )  implies that for all y € T K ( z n ) n M B  we have 

<En,y><M/n.  Obviously it holds true also for all y ~ Z ( T K ( z n )  n M B )  and (2.5) follows 

by the limit procedure. 

Assume nezt that the norm of X is  Fre'chet differentiable away from zero. Then for 

every n satisfying G ( u n )  # z,, there ezists a function on : R+-R+ such that 

limh,o+on(h)/h=O and for aN ~ E B ,  1 1 G(un)-zn+hb I I j I I G ( u n ) - z n  1 +h<p,,b>+on(h). 

Hence for all n 2 1 and ~ E B  

To  prove (2.6) fiz ( j , w ) ~ V ( ~ , ~ ) ( u ~ )  and let hn-O+ be such that 

Let ( j n ,wn) -+( j ,w)  be such that for all n ,  ( J ( u n ) ,  G ( u n ) ) + h n ( j n , w n ) ~  ( J , G ) ( B h n ( u n ) ) .  

Then from (2.13) , (2.15) we obtain 

6 (hn )  - o(hn)  
where limn,,-- O=limn,,- v n  - hn =limn,, -o(-). This implies that 

h n h n hn v n  

W e  already know that (An,€,) has a subsequence converging weakly - * to (A , ( )# .  Divid- 

ing by h, the last inequality and taking the limit we obtain that Xj  + < t , w > t O .  Since 



( j , w ) ~ V ( ~ , ~ ) ( u ~ )  is arbitrary, this proves (2.6). To prove that < € N K ( G ( u O ) )  fiz 

W E C ~ ( G ( U ~ ) )  and let h,+O+ be such that (2.16) holds true. Pick a sequence w,+w such 

that for all n ,  z,+h,w,~K. Then from (2.14), (2.15) we obtain 

Hence we proved that 

Dividing by h, and taking the limit yields <(,w>LO. Since W E C ~ ( G ( U ~ ) )  is arbitrary, this 

implies that ( € N K ( G ( u O ) )  and ends the proof. 

To prove Theorem 2.4 it is enough to replace Q by GQ and to observe that (2.7) 

continuity of Z a t  uo and the separation theorem imply that  for all u ~ l l  near uo and all 

z E K  near ( G (  Uo) (2.2) '  is satisfied with p  replaced by p / 2 .  Hence the result follows from 

Theorem 2.3. 

3. Maximum principle in optimal control of infinite dimensional semilinear 

systems 

We consider below the problem 

minimize P ( Y ( O ) , Y (  T ) )  

over the solutions of semilinear initial value problem 

[0 ,  T ] 3 t  + u ( t ) ~  U is measurable 

satisfying the end point constraints 

where 



U is a topological space. 
5Ep"rLc 'C 

A is the infinitesimal generator of a Co -semigroup { S ( t ) ) t > o  in avBanach space E 
- 

with the norm FrCchet differentiable away from zero. 

f:[O,T] x E X  U+E, p : E x  E+R are continuous functions with f ( t , . ,u)  differentiable 

for all t € [ O , T ] ,  u E U 

K is a closed subset of E x  E.  

We assume that  for some a>O and all ~ E [ O , T ] ,  U E  U 

and that  for every bounded set CC E there exists a constant L>O such that  

i.e. f ( t; ,u)  is Lipschitz continuous on C uniformly in ( t , u ) .  

A continuous function y : [ O ,  T ] + E  is called a mild solution of (3.2) if for all t€[O, T ]  

Our assumptions imply that  for every u ( . )  as in (3.3) the system (3.2) has a unique, mild 

solution. 

R e m a r k .  Recall that the problem 

T 
minimize g ( z ( O ) , z ( T ) )  + I ~ ( t , y ( t ) , u ( t ) ) d t  

0 

over the solutions of (9.2) - (9.4) can easily be reduced to the problem (9.1) - (9.4) b y  a 

simple changing of variables. 

Let z be a solution of (3.2),  (3.4) corresponding to  a control ii and consider the 

linearized control system 

Let R L  -( T) denote its reachable set at  time T ,  i.e. 
z,u 

R L _ ( ~ )  = { w ( T ) : w  is a mild solution of (3 .6 ) ) .  
2 ,  u 



Then 

T 
R ~ - ( T )  = { I S  - ( T , t ) v ( t ) d t :  v ( t ) ~ F Z f ( t , z ( t ) ,  U)- f ( t , z ( t ) , i i ( t ) )  is measurable) 

21 u (, Z'U 

where S y l u ( t  , s )  is the solution operator of the linear equation 

That  is, the only strongly continuous solution of the operator equation 

in O<s<t< T  with By,U(u)  = g ( u , Y ( u ) , ~ ( u ) )  
a Y 

Denote by Sy,u(T,O)B the restriction of the linear operator Sy,u(T,O)  to  the closed 

unit ball B.  

THEOREM 3.1 LET z BE A SOLUTION OF (3 .1 )  - (3 .4 )  AND ii BE THE 

CORRESPONDING CONTROL. ASSUME THAT cp IS CONTINUOUSLY DIFFEREN- 

TIABLE ON A NEIGHBORHOOD OF ( z ( O ) , z ( T ) )  AND FOR ALMOST ALL 

t c [ O , T ] ,  g ( t , . , i i ( t ) )  IS CONTINUOUS AT z ( t )  FURTHER ASSUME THAT FOR 
a Y 

SOME F>O, 7 > 0  AND A COMPACT SET Q C E X E  AND FOR ALL Z E K  NEAR 

( 4 0 )  ,z( T I )  

THEN THERE EXIST A20 AND t = ( t l , t 2 ) €  N K ( z ( 0 ) , z ( T ) )  NOT BOTH EQUAL T O  

ZERO SUCH THAT THE FUNCTION 

SATISFIES THE MINIMUM PRINCIPLE 

AND THE TRANSVERSALITY CONDITION 

COROLLARY 3.2. LET z ,  ii, c p ,  f BE AS IN THEOREM 3.1.  AND ASSUME THAT 



K = K , x K 2 c E x E .  FURTHER ASSUME THAT THERE EXIST p>O, r>O AND A 

COMPACT Q C E  SUCH THAT FOR ALL z € K 2  near z ( T )  

THEN T H E  CONCLUSION O F  THEOREM 3.1 IS VALID. 

R e m a r k  3.3. Observe that, in particular, (3.11) is satisfied for all z € K 2  near z ( T )  

i f  one of the following assumptions holds true 

i )  Int R ~ - ( T )  # 0 
2,  u 

ii) K is a convez subset of a closed subspace HcE of finite codamension and IntHK # 0 

iii) E is a Halbert space and for some 7 > 0 , ~ > 0  and a closed subspace H of finite codimen- 

sio n 

where r~ denotes the orthogonal projection on H 

iv) E is a finite dimensional space. 

Loosely speaking (3.11) means that  cl(RL-( T) - co(TX2(z(T))n7B) is an open set 
2, u 

modulo a compact set Q. Corollary 3.2 and iii) allow to  compare results of this paper 

with those from [lo].  

T o  prove the above results set 

U ={u:[O, TI+ U :  u is measurable) 

where p stands for the Lebesgue measure. Then ( U  , d )  is a complete metric space (see 

Ekeland [8]). (Since d(u,v)= 0 y,= y, , we identify controls equal almost everywhere, 

here yu denotes the (mild) solution of (3.2)). 

Define continuous maps J: K x U +R, G : K x  U + E x E by 

Then the problem (3.1) - (3.4) may be rewritten as the problem (2.1) considered in the 

previous section. Hence in order to write necessary conditions for optimality we have to  

study variations of the map ( J , G ) .  



For this aim fix U E U ,  yo€E and let y be the solution of (3.2).  Consider needle per- 

turbations of u at a point s€[O,T]:  Let vEU, h>O, and set 

Denote by yh the solution of (3.2) with u replaced by uh. 

LEMMA 3.4. LET s BE THE LEFT LEBESGUE POINT OF THE FUNCTION 

t + f ( t , v ( t ) , u ( t ) ) .  THEN 

lim 
Y ~ ( ~ ) - Y ( ~ )  

h+o+ h =SVju(T,s)(f(s,~(s),v)-f(s)~(s),u(s))) 

For the proof see [9]. 

Differentiating with respect to the initial condition we obtain easily 

LEMMA 3.5. LET wO€E and yh DENOTE THE SOLUTION OF (3.2) WITH yo 

REPLACED BY yo+hwo. THEN 

lim 
Y ~ ( ~ ) - Y ( ~ )  

h+O+ h =S,,,( T,O)wo 

COROLLARY 3.6. FOR EVERY U E U ,  yo€E AND THE CORRESPONDING SOLU- 

TION y OF (3.2) WE HAVE 

Proof. By Lemma 3.4, for every Lebesgue point s of the function t+ f ( t , ~ ( t ) , u ( t ) )  we 

have 

Since the set of Lebesgue points has a full measure, integrating the above inclusion we ob- 

tain 

This and Lemma 3.5 yield the result. 

Proof of Theorem 3.1. It is not restrictive to assume that T = l .  We apply 

Theorem 2.4 with J = p o G  and G defined b y  



where y ,  is the solution of (3.2). By our assumptions G is Lipschitz continuous. From 

Corollary 3.6 follows that for all ( Y ~ , U ) E  Extl  

On the other hand, the map (yo,u)-Sy,u(l ,O) is continuous and ( y O , u ) - ~ k u ( l )  is con- 

tinuous in the Hausdorff metric (here y denotes the solution of (3.2)). 

Hence we deduce from (3.7) that the assumptions of Theorem 2.4 are satisfied with 
- - 
P 7 1 - 

p=- 7=- Q=-Q. Let XLO, ( = ( ( 1 , ( 2 ) ~ N K ( 2 ( o ) , ~ ( l ) )  be as in the claim of Theorem 
2 '  2 '  2 

2.4. Then 

we have 

<Xv'(z(O) ,  z ( l ) )+F,  w> 2 0 

Hence for every measurable selection v ( t ) ~ G f ( t , z ( t ) ,  U )  - f ( t , z ( t )  , i i ( t ) )  

Set 

Then (3.13) yields the minimum principle (3.9). On the other hand (3.12) implies that for 

every w E E 

Hence a P  - p ( ) - ( Z ( ) , Z ( ) ) + ~ .  Moreover b y  the definition of 
321 

8 P  p ( . ) ,  p( l )=A-(z (0 ) , z ( l ) )  +c2. This ends the proof. 
322 



4. O p t i m a l  con t ro l  of a semil inear  s y s t e m  w i t h  s t a t e  c o n s t r a i n t s  
< L  . r - - -  

Let R be an open bounded subset of Rn ( n 5 3 )  with C 2  boundary r ,  X be dlBanach 

space with Frechet differentiable norm and 

be C1 (nonlinear) mappings. Set Y = H ~ ( R ) ~ H A ( R )  and consider closed sets 

KC L ~ ( R ) ,  C c R m ,  DC X and a continuously differentiable function J :  C o ( R )  x L ~ ( R ) - + R .  

We study here the problem 

minimize J( y ,u) (4.1) 

over the pairs ( y , u ) ~  Y x  K satisfying the constraints 

and 

where 

and 

a0 E Lm(R)  , aO(z)>O for a.e. Z E R ,  

a,, is Lipschitz on (l<i,  j ,<n) ,  

p : R-+R is C1 nondecreasing junction . 

R e m a r k .  It may happen that to a control U E K  correspond several solutions oj (4.3), 

i.e. we have to deal with an ill posed problem. 

From now on we denote by BX the closed unit ball in the space X .  

T H E O R E M  4.1. LET (y,ii) BE AN OPTIMAL SOLUTION O F  (4.1) - (4.3) AND 

ASSUME THAT FOR SOME p>O, ~ > 0  AND A COMPACT Q c X  WE HAVE 

V ~ E D  near L ( y )  , pBX c E i ( T D ( d ) n ~ B x ) + Q  (4.4) 



1eRm, peX' NOT ALL  EQUAL THEN T H E R E  EXIST A20 ,  pe W ~ I ~ ( R ) ,  s < - 
n - 1 '  

T O  ZERO SUCH T H A T  

M O R E O V E R ,  IF  

Im L ' ( y )  = X ,  Im T ' ( y )  = Rm, L ' ( y )  * N D ( L ( y ) ) n I m  T ' ( i j )  ' = { 0 )  (4.7) 

THEN A+ I I p I I >O A N D  IF  IN ADDITION 

THEN A>O. 

R e m a r k .  a) Observe that the assumption (4.4) holds true in  particular when D is a 

convez subset of a closed subspace H c X  of finite codimension and IntHD#@ 

b) The above result can be related to [dl .  
P r o o f .  Define A l :  Y - + L ~ ( R ) ,  J1 :  Y - + R ,  G:  Y - + R ~ X X X  L ~ ( R )  b y  

and set 

K = C x D x K  

Then our problem may be reduced to the following one. 

m in  { J A Y )  : Y E  Y G ( Y ) E K )  

W e  easily verify that for all Y E  Y 

{ ( ~ i ( y ) ( w , A w + ~ ' ( y ) w ) ,  T ' ( Y ) w ,  L ' ( y ) w I  Aw+c'(y)w:I  IwI I ~ 5 1 ) ~  V ( J . G ) ( Y )  

Z ( y ) : = { ( T ' ( y ) w ,  L ' ( Y ) w ,  Aw+cp'(y)w):I I wl I ~ 5 1 ) ~  V G ( Y )  

and for all C E C ,  dED,  ~ E K  

T ~ ( c , d , k )  = T c ( c ) x  T D ( ~ ) x T K ( ~ )  

c ~ ( c , d , k )  = C C ( c ) x C ~ ( d ) x  C K ( ~ )  



Moreover the map Z i s  continuous i n  the Hausdorff metric.  W e  apply Theorem 2.4. 

Since cp i s  nondecreasing, for every Z E R  we have cp'(ij(z))>O. This  and /19] yield that for 

some E>O. 

Set  q= 1 ( T ' ( F )  ( I + I I L ' ( y )  I 1 +1 and observe that from (4.4) follows that 

Hence from (4.9) we deduce that for all ~ E K ,  C E C  and every  ED near L ( y )  

qBRrnx q B x x a B L Z ( n ) c z ( @ ) + { o )  x 2 q B x x  {O) i 2 q B R m x  {O) {O)C 

2 7  2 q Setting 6 = m i n ( q , ~ )  , ?= P, ~ = 2 q ~ R m x - ~ x { ~ )  W e  obtain that for all ~ E K  near 
P P 

( T ( F ) , L ( G ) , A l ( @ ) )  

B y  Theorem 2.4 there ezist X>0, ~ E N ~ ( T ( ~ ) ) ,  p € N D ( L ( @ ) )  , PENK ( A l ( y ) )  not all equal 

t o  zero such that for every w € B y  

This  yields that 

i3J - -  - 
Setting p=-A-(y,u)-p we obtain (4.5), (4.6). Bu t  from (4.5)  we also deduce that a u 

n 
A f p ~ C o ( R )  * and, consequently, for all s<- , p~ w,'*'(R). Assume for a moment  that 

n - 1  

X=O , p=O and (4.7) holds true. Then ,  by (4.5), 

and, therefore, L ' (F)  *p=O. From the injectivity of L ' ( y )  * follows that p=O. This,  (4 .5)  

and injectivity of T ' ( y )  * yields 1=0, which is  not possible. Hence A+ I I p 1 1 >O. Assume 



nezt  that (4.71,  ( 4 . 8 )  hold t rue .  If X = O  then,  by ( 4 . 5 )  , ( 4 . 6 ) ,  ( A  # + c p ' ( y ) ) p  E Im 

( L ' ( y )  # + T ' ( y )  *) This  impl ies  that p=O and,  consequently, A+ 1 1 p 1 1 = O .  The  obtained 

contradict ion ends the proof.  
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