‘ s International Institute for
e Applied Systems Analysis

[1ASA www.iiasa.ac.at

Some Numerical Experiments with
Variable Storage Quasi-Newton
Algorithms

Gilbert, J.C. & Lemarechal, C.
IIASA Working Paper

WP-88-121

August 1988

Gilbert JC & Lemarechal C (1988). Some Numerical Experiments with Variable Storage Quasi-Newton Algorithms. IIASA
Working Paper. IIASA, Laxenburg, Austria: WP-88-121 Copyright © 1988 by the author(s).
http://pure.iiasa.ac.at/id/eprint/3085/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at

mailto:repository@iiasa.ac.at

WORKING PAPER

SOME NUMERICAL EXPERIMENTS WITH
VARIABLE STORAGE QUASI-NEWTON
ALGORITHMS

Jean Charles Gilbert
Claude Lemaréchal

August 1988
WP-88-121

IIIII
International Institute
for Applied Systems Analysis

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

SOME NUMERICAL EXPERIMENTS WITH
VARIABLE STORAGE QUASI-NEWTON
ALGORITHMS

Jean Charles Gilbert
Claude Lemaréchal

August 1988
WP-88-121

Working Papers are interim reports on work of the International Institute for
Apphed Systems Analysis and have received only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute
or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
A-2361 Laxenburg, Austria

FOREWORD

This paper relates some numerical experiments with variable storage quasi-
Newton methods for the optimization of large-scale models. The basic idea of the
recommended algorithm is to start bfgs updates on a diagonal matrix, itself generated
by an update formula and adjusted to Rayleigh’s ellipsoid of the local Hessian of the
objective function in the direction of the change in the gradient.

A variational derivation of some rank one and rank two updates in Hilbert spaces

is also given.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program

SOME NUMERICAL EXPERIMENTS WITH
VARIABLE STORAGE QUASI-NEWTON ALGORITHMS *

Jean Charles GILBERT
International Institute for Applied Systems Analysis
A - 25861 Lazenburg (Austria)

Claude LEMARECHAL

Institut National de Recherche en Informatique et en Automatique
F - 78158 Le Chesnay (France)

Abbreviated title. Variable storage QN algorithms.

Key words. Conjugate Gradient, Diagonal Updates, Large-scale Problems, Lim-
ited Memory, Unconstrained Optimization, Variable Metric Algorithms, Variable
Storage.

Subject classification AMS (MOS): 49D05, 65K05.

* Work supported in part by INRIA (Institut National de Recherche en Informatique et en Automatique),
France and in part by the FNRS (Fonds National de 1a Recherche Scientifique), Belgium.

1. Introduction

This paper relates some numerical experiments with variable storage quasi-
Newton methods for finding a minimum of a smooth real-valued function f defined on
IR™.

These methods are intended for large-scale problems (that is to say, problems
with a large number of variables, say, more than 500) when the Hessian of the objec-
tive function has no particular structure. In particular, in their general setting, these
methods do not try to take advantage of the possible sparsity of the Hessian. It is
thought that this type of algorithms may help in filling the gap between, on the one
hand, conjugate gradient (CG) methods, which use few locations in memory, O(n),
but converge rather slowly and require exact line search, and, on the other hand,
quasi-Newton (QN) or variable metric methods, which have the converse features: fast
rate of convergence (theoretically superlinear), no exact line search requirement but
cumbersome in memory since O(nz) storage locations are needed.

Variable storage QN algorithms are QN-like methods in the sense that they use
the change in the gradient to obtain information on the local Hessian of the objective
function. However, they do not store any matrix of order n because this is supposed
to be either impossible or too expensive. Rather, they are able to operate with a vari-
able amount of storage which typically is a multiple of n. A priori, if CG and QN
methods are regarded as two extremes, a small (resp. a large) amount of storage
should make them resemble CG (resp. QN) methods. In any case, it seems reasonable
to expect an increase in performance if more storage is used.

Among the papers dealing with variable storage methods, let us mention the
works by Buckley (1978), Nocedal (1980), Buckley and Lenir (1983). The papers by
Shanno (1978), Shanno and Phua (1978b) and Gill and Murray (1979) have also some
connection to the subject. We shall come back in details on the methods proposed in
these papers.

This study is definitely experimental in the sense that we have tried to bring
improvements to an existing method by observing the effect of the implementation of
some ideas on a set of test problems.

The resulting algorithms of this study have been included in the Frensh library
Modulopt of INRIA under the names of miqn2 and mlqn3. This library has the
important attraction to put a battery of test problems to the disposal of optimization
code writers and this, for each of the four classes of optimization problems: without
constraints, with bound constraints, with linear constraints and with nonlinear con-
straints. These applications usually come from real-world models. This has not only

-2-

advantages. Indeed, the solutions of the problems are not exactly known, neither is
the nature of the spectrum of the Hessian around a solution, the gradient of the objec-
tive function may be spoilt by rounding errors due to the large amount of computation
and, last but not least, computation time and memory storage may be deterrent fac-
tors. However, those problems are the one to be solved and their large scale is not
artificially obtained. Moreover, the problems from Modulopt library are written in a
fully portable form (Fortran 77), which should allow comparison with further
developped codes. The problems we used essentially come from physics: fluid mechan-
ics, meteorology and crystallography.

We started with an algorithm proposed by Nocedal (1980) in order to compare its
efficiency with the algorithm conmin of Shanno and Phua (1980) and the algorithm of
Buckley and Lenir (1983), called mlge3 in Modulopt library. Strictly speaking, con-
min has not the “variable” storage property but, as we shall see, is rather a "two-
storage” method. However, the code is intended for large-scale problems and, like
variable storage methods, it is inspired by QN methods to enhance the performances of
CG methods. Furthermore, the comparison of the performances of mlge3 and
Nocedal’s algorithm with those of conmin will allow us to see to what extent the
decreasing of the objective function can benefit from the availability of memory space.

Contrary to conmin and mlge3, Nocedal’s method has, in our opinion, the con-
ceptually nice feature of not requiring any restart during computation, a concept
inherited from CG methods. This makes the algorithm closer to QN methods. Our
numerical experiments will show that, at least on our test problems, the “basic”
Nocedal’s method (called mlqn2.a below) generally behaves better than conmin and
mlgce3.

The codes m1qn2 and mlqn3 that we validate by this study are polished versions
of Nocedal’s algorithm. Like this one, it builds the current approximation of the Hes-
sian by updating m times a given matrix HO, using the last m couples (y,s), where s is
the change in the variable z and y is the corresponding change in the gradient of the
objective function. A particular attention is given here in the choice of the starting
matrix H°. In mlqn2, Hy, is just a multiple of the identity matrix. In mlqn3, Hisa
diagonal matrix, itself updated at each iteration using a diagonal update formula. We
have found that the most efficient way to compute H is to use a “diagonal bfgs update

formula”.

Without wishing to go into what will be said in the conclusion of the paper, we
may say, however, that our experiments suggest that the marginal profit yielded by
increasing the number m of updates is clearly decreasing with m and may become
negative. If we take into account the computing time, the best algorithms for our test
problems, which have dimensions n equal to 34, 403, 455, 500, 1559 and 1875, should

-3-

use between 5 and 10 updates. Increasing the number of updates does not increase
significantly the performances or even decreases them and increases substantially the
computing time. In other words, the algorithms do not seem to take much advantage
of the possible avaibility of storage. On the other hand, a good choice of the starting
(diagonal) matrix H® was determining for the performances of the methods. It is
indeed not unusual to observe a better decrease of the objective function with m1qn2

amd m1qn3 than with bfgs algorithm.

The paper is organized as follows. In Section 2, we give more details on the algo-
rithms mentioned above. In Section 3, we briefly describe the test problems and dis-
cuss numerical experiments made with mlgc3 and bfgs on these problems. In Section
4, we introduce several ways of choosing an initial matrix for QN type methods and we
propose several formulae for updating diagonal matrices. Numerical experiments are
related. In Annez, we show how to obtain some variable metric update formulae in
Hilbert spaces by means of a variational formulation.

2. Some variable storage quasi-Newton methods

2.1. Notation

Let IH be a Hilbert space over IR, equipped with a real scalar product <-,-> and
its associated norm |.|. We shall denote by L(IH), the space of continuous linear
operators on IH. Being given two vectors u and v in IH, we shall use the bracket
operator [u,v] € L(IH) defined by [u,v]: H — H: d — [u,v]d:= <v,d>u. We
shall say that B € L(IH) is positive if <Bu,u> is positive, for all nonzero u € H.

If H has finite dimension n and if (¢;);<;<, is an orthonormal basis (ONB) of H,
the Frobenius norm associated to the scalar ;roduct <++> of a linear operator B is
defined by

n

RC
Y, |B ¢l . (2.1)

1i=1

[|Bl|p =

This quantity does not depend on the choice of the ONB and is actually a norm. If
||.|| denotes the norm of L(IH), we have clearly ||B|| < ||B||p, V B € L(H), and
for the bracket operator, we have

[[wse) [| = 1] [w,9] || = [u] |o]. (2-2)

-4-

2.2. Quasi-Newton methods in Hilbert spaces

We consider the problem of minimizing a smooth real-valued function f on IH:
min { f(z):z€ H}, (2.3)

and we shall denote by z, a local solution of this problem.

Quasi-Newton (or secant) methods generate two sequences: a sequence (z) C IH
of approximations of z, and a sequence (B;) C L(IH) of bijective approximations of
B, := V%f(z,), the Hessian of f at z,. We shall suppose that B, is nonsingular and we
shall note H, := B_’!. Starting with a couple (z,, By), the sequences are calculated
by:

Ty =%~ o By g (2.4)

By y:=U(B>w»)- (2-5)

In (2.5), p; is a positive step-size determined by a search on f along the direction
dp:= — B{l g and g; := g(z;), where g(z) := Vf(z) is the gradient of f at z. In
(2.5), U represents an update formula that calculates B, from B, using y; :=
91 — 9 and s := 7y — ;. If Hp is the inverse of By, it is generally possible to
update H; instead of B, using the snverse update formula U of U:

Hyy=U(H,u,5). (2.6)

Let us make some comments to see to what extent QN theory depends on the
scalar structure of JH. Formula (2.4) uses the gradient g(z) of f at z = z;, which is
defined by Riesz theorem (see Weidmann (1980), for instance) as the unique represen-
tative in IH of the continuous linear form f'(z), the derivative of f at z:

f'(2)-(u) = <g(z),u>, Vu e H. (2.7)

Formula (2.4) also uses the operator B, which is an approximation of the Hessian
B(z) of f at z = z,. B(z) is the unique representative in L(IH) of the continuous bil-
inear form f"(z), the second order derivative of f at z:

f"(z)-(u,v) = <B(z)u,v>, V (u,0) € H? . (2.8)

Therefore, the choice of the scalar product in IH affects the value of B(z,) that B
should approach. So, B; should also depend on the Hilbert structure of JH. Now, by
Taylor’s theorem and formulae (2.7) and (2.8), we have:

1
yk = .!). B(zk+tsk) Sk dt .

-5-

This relation allows to understand why the basic idea of QN methods is to find update
formulae U such that By, given by (2.5) satisfies the QN equation (or secant equa-
tion):

Y = Bk+1 Sk . (2.9)

Therefore, if a change of scalar product does not affect the secant equation (2.9), it
changes By, by changing y;, via formula (2.7). Moreover, the form of the formulae U
and U in (2.5) and (2.6) also depends on the scalar product. Indeed, the properties
that characterize a given update formula are generally expressed in terms of the Hil-
bert structure of JH. If we take as a guideline the preservation of these properties, the
form of the formulae will reflect its dependance on the scalar product. This point of
vue is taken in Anner, where some classical rank one and rank two update formulae
are derived.

One of them is the bfgs formula, which is thought to be one of the best secant
updates in optimization (Dennis and Moré (1977)). For us, U will stand for the bfgs
formula:

[vi:vel B [sp5e] By
<YpsSp> <8j,Bp5.>

Bk-{—l = Bk + (210)

and U will stand for the snverse bfgs formula:

[ss=Hyosel + [sps—Hyyl <s— Hyypy>
<YpsSp> <yk,sk>2

Hy,,=H + [sp,8) - (2.11)
These formulae clearly show their dependance on the scalar product <-,->.

Formulae (2.10) and (2.11) have the property to transmit the positivity of B; to
By .4 (resp. of Hy to Hy,), if and only if <y,s,> is positive. Having By positive is
important to make d; a descent direction of f at z;: f'(z;):(d;) < 0. For this reason,
the step-size p; in (2.4) is generally determined such that Wolfe’s (1969) conditions are
satisfied:

f(Ztoedy) < f(m) + oy o <grdp> (2.12)
<g(zk+pkdk),dk> > 5] <gk,dk> ’ (213)

where 0 < a; < 1/2 and a; < ay < 1. Clearly, inequality (2.13) implies the positivity
of <yk,sk> .

-6-

In practice, IH is a Hilbert space of finite dimension n. If the number n of vari-
ables is large, it may turn out to be impossible or too expensive to store in memory the
full current approximation Hj of the inversed Hessian. Because the initial matrix H|,
takes generally little place in memory (it is most commonly a multiple of the identity
matrix) and because Hj is formed from Hy and k couples { (y;,5;) : 0 < ¢ < k }, it can
be thought of memorizing these elements instead of Hy and of computing Hy g; by an
appropriate algorithm. Of course, when the number of iteration increases, these pieces
of information become more and more cumbersome in memory and we must think to
truncate the sequence of couples { (y;,5;) : 0 < ¢ < k } or to get rid of some of them.
We shall say that it is an m-storage QN method if only m of these couples are used to
form H from an initial matrix. Note that in this type of methods, the inverse update
formula (2.11) is preferably used to the direct update formula (2.10) because the inver-
sion of B; may be problematic.

The variable storage QN methods we present hereafter, all fit into this framework
and differ in the selection of the couples (y;,5;), in the choice of the starting matrix Hy,
in the way Hj g; is computed and in the presence or absence of restarts.

2.3. The algorithm of Shanno

Motivated by the search of a conjugate gradient type method without exact line
searches, Shanno (1978) recommended, on the basis of a large amount of computa-
tional results, to take d; := — H g; as descent direction at iteration k, with the follow-

ing formulae for Hy:
H,:=U(6,_11,¥,_1,8,1), for k=rg, (2.14)

H, = U (H’k s Y15 8_1), for k> rp, (2.15)

where U stands for the inverse bfgs formula (2.11), r; is the index of the last restart
iteration preceding iteration k and 6"‘_1 is the evaluation at iteration r;—1 of

§ = ily—’rz—> . (2.16)
y

The algorithm is restarted at iteration k when Powell’s (1977) restart criterion is
satisfied, i.e. when |<g;,g:_1>| > 0.2 |g;|% Then, r, is set to k and formula (2.14) is
used. Otherwise, ry is set to r,_; and formula (2.15) is used. The scaling factor (2.16)
was experimented by Shanno and Phua (1978a) who motivated it by the self-scaling
variable metric algorithms of Oren and Spedicato (1976).

-7

So, when k > r;, the algorithm is clearly a 2-storage bfgs method using succes-

sively the couples (y,,_1,s,,_;) and (y;_,,5;_,) to build Hy.

Formulae (2.14) and (2.15) are directly inspired by Beale’s (1972) formulae to res-
tart the CG method at iteration ri. It can be proved indeed (see Shanno (1978)) that
for f quadratic and exact line searches, the search directions obtained by (2.14) and
(2.15) with any scaling factor é are identical to Beale’s directions, scaled by 6. The
advantage of Shanno’s method over Beale’s method is then to generate automatically
descent direction of f without requiring exact line searches, as long as <y;,s;> is posi-

tive at each iteration, which can be provided by the line search.

This algorithm is a part of the code conmin, name by which we shall refer to. It
ry The Euclidean

scalar product is used: <u,v> := uT v. The step-size p; is determined to satisfy (2.12)
with a; = 1074 and

requires 7n locations in memory: for z;, g, di, Zpyy, iy Yr, and s

|<g(Ik+Pk dk)’dk>| < 02 |<gk’dk>| ’ (217)

with a, = 0.9, which is more restrictive than Wolfe’s condition (2.13). At restart
iterations, the first trial step-size is p?k := 1, whereas for nonrestart iterations, the first

trial step-size is chosen to be (see Shanno and Phua (1980)):

0 <@_1:%_1>

= . 2.
PE = Pl o g (2.18)

It is also important to mention that always at least two trial step-sizes are required
before accepting a step-size satisfying (2.12) and (2.17). Therefore, at least one qua-
dratic interpolation can be done at each step, which gives an exact line search in case f
is quadratic.

2.4. The algorithm of Buckley and Lenir

The algorithm of Shanno uses exactly two couples of vectors y and s to build its
current approximation of the metric. Therefore, it cannot take advantage of extra
locations that would be possibly available in memory. The algorithm of Buckley and
Lenir (1983) remedies to this deficiency and may be seen as an extension of Shanno’s
method.

Following the presentation of the authors, we shall say that the algorithm is
cyclic, each cycle being composed of a QN-part followed by a CG-part. The QN-part
builds a preconditioner for the CG-part. The decision to restart a cycle is taken during

-8-

the CG-part by using Powell’s restart criterion. To be more specific, let us consider
iteration k and suppose that the last restart occurs at iteration rp, < k. Let m be an

integer with m > 2. If k = ri, the algorithm takes:

Hrk = L—I (6"1—1 I ’ y"k—l ’ s"k—l) ’ (2'19)

with 6;“_1 evaluated by (2.16). If rp < k < rp+m—1, the algorithm is in the QN-part
of the cycle and takes:

Hy:=U(He_1, Y15 5-1) - (2.20)
If k > ri+m, the algorithm is in the CG-part of the cycle and takes:

Hy:=U(H, 4 m2> Y%—1>%1) - (2.21)

In any case, the descent direction is dj := — H g; at iteration k. The CG-part is so
called because, if the line search is exact, <g;,5;_;> = 0 and d; is identical to the

direction given by the CG formula, preconditioned by Hrg +m—2:

We see that the number of couples (y,s) used to build H varies with k. For r; <
k < ri+m—1, the algorithm uses the (k—r;+1) couples { (y;,5;) : p—1< ¢+ < k—1}
and for k> rp+m, it uses the m couples { (y;,5,): n—1< ¢+ < n+m-3}
{ (vg—18k—1) } - We also see that for m=2, the matrices H, are computed just like in

Sanno’s algorithm.

The paper by Buckley and Lenir (1983) is not very specific about the way the
step-size is determined. However, it is said that in the QN-part the unit step-size is
tried first (because it is usually accepted by (2.12) and (2.13) for QN steps) and that
the positivity of <y,s> is assured (to keep the positive definiteness of the metrics). In
the CG-part, the same strategy is followed (the positivity of <y,s> is still necessary
because of the use of (2.21)), except that at least two step-sizes are tried in order to
take advantage of at least one interpolation. The initial trial step-size pg is given by
(2.18).

This algorithm we have just described is called vscg by Buckley and Lenir (1980).
The tests we present below have been made with a version of this algorithm, called
mlge3 in Modulopt library, on which we can be more specific. It requires
4n+2m(n+1) locations in memory: 4 vectors (z;, g;, d; and an auxiliary vector) and
for each update, 2 vectors (y and s) and 2 scalars (|y|? and <y,s>). The line search
gives a step-size p; satisfying (2.12) with o; = 0.001 and (2.13) with a, = 0.9 in the
QN-part and a, = 0.001 in the CG-part. At the first iteration, the initial trial step-

size is given by

2 A
0._ 0
po' |2 9

= (2.22)
|90

where A, is the expected decrease of f at the first iteration and is supplied by the user.
This is justified when f is quadratic.

2.5. The algorithm of Nocedal

The method proposed by Nocedal (1980) deserts the restart notion that the
preceding algorithms inherited from the CG method and, as a result, is not cyclic
anymore. If m > 1 is the desired number of updates (according to the storage avail-
able in memory), Nocedal proposes to build H; by using always the last m couples
(y,5): at each step, the oldest information contained in the matrix is discarded and a
new one is taken. An elegant procedure to apply H;, which is not stored like a matrix
but just represented by the m couples (y,s), to a vector is given. This procedure is
based on the use of the following form of the inverse bfgs formula:

N
<yk,sk>

[sk’yk]
<yk,sk>

Hy =|I- (2.23)

,8
H, [I— (9154
<yk,sk>

To be more specific, H; is obtained at iteration k > m as follows. A matrix H,? is

supposed given and one computes:
HEH = Ij(Hz’yk—m+i’sk—m+i) , 0<¢<m-1.
Then, H, := Hf*. For short, we shall denote this scheme by
H'=—_1(H°) (2.24
£ = Vk—m \ k) .24)

to mean that H; is obtain by updating H,? using in order the m couples (y,,s;) for
i = k—m, - - -, k—1. With this notation, Hy := T§~! (H) for 1< k < m.

Formula (2.24) clearly outlines the fact that a choice has to be done on the start-
ing matrices H,? . This will be the subject of section 4, where we shall propose and test

several choices.

-10 -

2.6. The bfgs algorithm

In the tests below, we shall name bfgs, the following algorithm. If n is smaller
than 501, it is just the classical bfgs method using Hy:= I, H; := <yg,50>/|yol% I
and next Hy, := U (Hp_y, Yg_1, 8_1) for k> 2. If n is larger than 500, it is the
same algorithm but it is simulated by m1gc3 with m equal to the number of iterations.

3. Test problems

The test problems we briefly describe below are taken from Modulopt library and
we shall refer to them by their library name. Most of them come from real-live appli-
cations (physics, biology, ...) and their difficulty to be solved efficiently is certainly a
challenge for optimization codes. Those problems are written in a fully portable way,
which should allow, we hope so, new developed codes to confront them.

Some of the test problems can be modulated in order to change their conditione-
ment or their number of variables. We shall refer to them by version numbers.
Different versions can also correspond to different starting points z,.

Although the final aim of an optimization code is to find a point of zero gradient,
we shall not use a stopping criterion expressed in terms of the gradient, but rather we
shall ask for a sufficient decrease of the objective function. The reason of this is that
contrary to g, f decreases monotonically. We avoid in this way hazardeous realization
of the stopping criterion. The value of f to reach will be denoted by f,top.

For all the codes, each time the function f is computed, so is its gradient. The
number of function/gradient calls, i.e. the number of simulations, will be denoted by
stimul in the tables. Iter will denote the number of iterations. Tests have been made
on a VAX-11/780.

The code ultsO computes a trans-sonic flow. The number of variables is
n = 403. The Fortran real variable u0 € |0,1] may be used to modulate the conditione-
ment of the problem, which deteriorates when u0 increases. ults0.1: u0 = 0.8,
f(zp) = 01521073, &~ 3.70 (see formula 2.18) and f,, =107'2. ults0.2:
u0 = 0.9, f(zo) ~ 0.257 1073, &) ~ 3.57 and f,,,, = 1078, u1ts0.3: u0 = 0.95, f(z) ~
0.322 1073, 6o~ 3.34 and f“op =105, For each version, Ay = f(z) (see formula
(2.22)).

The problem ulmtl comes from meteorology. The objective function is an aug-

mented Lagragian but the multipliers are set to zero and they are not updated. The
number of variables is n = 1875, f(z,) ~ 0.124 108, 6y = 0.119 103, Ay = f(zq) and

-11 -

frtop = 0-62 10°.

The problem ulcrl comes from crystallography: the so-called phase problem in
X-ray crystallography. It consists in minimizing the opposite of the entropy of a
molecular configuration when some Fourier coefficients of the unknown function (the
electronic density) are supposed measured. These measurements appears as con-
straints. Using duality techniques, the problem is reduced to an unconstrained one in
terms of the multipliers associated to the previous constraints. It is this problem that
ulcrl solves. Thus, the number of variables depends on the number of measurements
taken into account. This data of the problem is controlled by the Fortran variables
drmazl = drmaz2 and drminl = drmin2. In any version, Ay = ||go||2/(2||90!|wo)s
where ||.||, and ||.|| are the I, and I norms, respectively. Ulcrl.1l: n = 34
(obtained with drmaz2 = 5.1 and drmin2 = 3.0), f(z,) ~ —0.198 101, § ~ 0.105 10*
and f,,, = —0.20033 107!, Ulcrl.2: n = 455 (obtained with drmaz2 = 3.1 and
drmin2 = 1.3), f(zp) —0.8821072, &~ 0.29810° and f,,, = —0.8876 1072
Ulcrl.3: n = 1559 (obtained with drmaz2 = 20.0 and drmin2 = 0.8), f(z,) =
—0.106 1071, & ~ 0.139 10° and f,,,, = —0.10625 10",

The objective function of the code vpbi is quadratic:

n
fla)=g X ilag-17,
where () is the i-th component of z. Hence, B, is a diagonal matrix formed with the
first n integers. There are two versions of the code, corresponding to two different
starting points. In each of them, n = 500, Ag = f(z4)/10 and fg,, = 1075, Vpbi.1:
zo = 0, hence f(z,) = 62625 and 6§} ~ 0.250 1072, Vpbi.2: oy =1+ (100/1)*, hence
f(zo) ~ 0.504 10'® and &) ~ 0.958.

The objective function of the code vphi is quadratic:

_1 ¢ 1 2
f@)=5 ¥ —(zy-1)".
1=1
Hence, H, is a diagonal matrix formed with the first n integers. There are also two
versions of the code, corresponding to two different starting points. In each of them,
n =500, Ay = f(z)/10 and fyu,, = 10-19. Vphi.1: z, =0, hence f(z,) ~ 3.40 and
8 ~ 1.11. Vphi.2: z5(y = 1 + (i/100)%, hence f(zo) ~ 0.246 10° and) ~ 417.

We can already give numerical results obtained with the codes described in Sec-
tion 2. They are gathered in Table 1. For each test problem, we have put the dimen-
sion n of the problem in brackets. Results obtained with the code conmin are not
given because the principle of the method is the same as the one of mlge3 with m = 2.

-12-

Differences may only come from the line-search procedures and from adjustment of
some parameters.

m=2 | m=5 |m=10 | m=20 | m =50 bfgs
ults0.1 (403) 162/82 157/81 151/81 146/82 78/63 66/64
ults0.2 (403) | 330/168 | 227/147 | 179/144 | 249/180 | 156/140 142/134
ults0.3 (403) 181/93 | 165/111 | 131/105 | 117/102 | 100/92 95/91
ulmtl (1875) | 277/142 | 273/142 | 251/149 | 228/155 | 206/166 | 192/190 (**)
ulecrl.l (34) 174/87 125/78 (***) (***) (***) 118/114
ulcrl.2 (455) 85/43 76/42 67/44 65/47 52/48 52/48

ulerl.8 (1559) | 46/24 | 49/33 31/23 35/28 31/29 31/29 (**)
vpbi.1 (500) | 162/81 | 155/81 | 148/83 | 135/87 | 109/102 116/114
vpbi.2 (500) | 253/126 | 307/158 | 290/153 | 302/188 | 295/195 515/257
vphi.l (500) | 158/81 | 139/83 | 125/82 | 108/86 | 124/117 190/188
vphi.2 (500) | 148/74 | 138/69 | 112/56 | 100/50 | 94/47 94/47

Table 1- Performances (simul/iter) of m1gc8 and bfgs
(**) by m1gc8, (***) enough storage for bfgs.

These results enable us to recover some of the conclusions of Buckley and Lenir
(1983): (1) there is a reasonable trend for the number of function evaluations simul to
decrease as m increases but (2) this rule may be invalidated in some cases (see ults0.2
[m = 20], ulerl.3 [m = 5, m = 50|, vpbi.2 and vphi.l [m = 50]). As in their test prob-
lems, we observe that (3) bfgs method has not always the best performances (see
vpbi.1, vpbi.2 and vphi.1) and that (4) the number of iterations iter has rather a trend
to increase with m.

However, these results do not enable us to infer on the improvement of perfor-
mances that a variable storage QN method can expect by increasing m. Indeed, con-
clusion (1) is mainly due to the difference in the line-search options during the CG-
part (at least two function evaluations are required per iteration) and the QN-part
(the first trial step-size may be and is often accepted) of algorithm mlge3. As m
increases, the algorithm is more and more often in the QN-part (because it takes m
iterations per cycle and the CG-part usually lasts several iterations) and therefore, the
ratio simul/iter decreases as m increases. Hence, even when iter increases slightly,

simul decreases.

Some other interpretations can also be done on the results obtained on vpbi and
vphi. First, let us remark that iter is larger for vpbi.2 than for vpbi.l since the starting
point is more distant from the optimal point in the second version. The converse is
true for vphi. The results obtained by bfgs method on these problems bring out the

-13-

importance of the choice of the starting matrix. A close examination of the output
shows, indeed, that the matrix H; and, in particular, its diagonal change very slowly.
This has the following consequences, which may be observed in Table 1. As the start-
ing matrix is H; = 8§y I and as 6, depends on the starting point, this one influences the
results and notably the ratio simul/iter. In vpbi.1, most of the diagonal elements of H,
(the small one) are initially not too badly approximated by 8§y = 0.0025. Therefore, d;
is well scaled and the unit step-size is usually accepted: simul/iter = 1. For vphi.l,
the diagonal element of H, are underestimated by 63 ~ 1.11. Therefore d;, and also d;
because H; changes slowly, is too small in comparison with the optimal step. How-
ever, due to the tolerance of the criterion (2.13) with a, = 0.9, the unit step-size is also
generally accepted: simul/iter = 1. On the other hand, for vpbi.2, the diagonal ele-
ments of H, are noticeably overestimated by 6y ~ 0.954. Therefore dj is usually too
large and the unit step-size is not accepted by the line-search procedure. As the objec-
tive function is quadratic and as a cubic interpolation is used in the procedure, the
second step-size is usually accepted and we have simul/iter ~ 2. The same remarks
apply for vphi.2.

The reasons why iter may increase or decrease with m in vphi seem also largely
due to the starting matrix and the line-search procedure. We may reason on vphi.l, as
follows. When m increases, the optimizer is more and more often in its QN-part. Any-
way, during the first m iterations, there is the same problem as before: d; is too small
in comparison with the optimal step, but the unit step-size is accepted. This means
that d; is not a very good step during this part of the minimization and the dicrease of
[is bad. On the other hand, the step-sizes of vphi.2 are usually optimal because they
are obtained by interpolation, which makes each iteration more efficient for a qua-
dratic function. The results in Table 2 seem to confirm this analyse: we have forced
the line-search procedure to try at least two step-sizes at each iteration when milge3
was running on vphi.l. We see that the number of iterations iter has a trend to
decrease as m increases, at least for small m. The increase of iter for larger m may be
due to the fact that for vphi.1, the second step-size is obtained by extrapolation during
the QN-part, which seems not to give always the optimal step-size.

m=2 m=5 | m=10 | m=20 | m =50 bfgs
vphi.1 (500) | 166/83 | 135/68 | 117/58 117/59 141/71 | 155/77

Table 2 - Performances (ssimul/iter) of m1gc$ and bfgs on vphi.1
when at least two step-sizes are tried per steration.

-14 -

We see that the interpretation of results obtained by mlgc3 are sometimes
difficult and complex, because of the various parameters shaping the algorithm.

4. The choice of a starting matrix

In this section, we address the problem of choosing a starting matrix HB for algo-
rithm (2.24). This choice is particularly important in this method because it has to be

done at each iteration.

All the optimization codes (versions of m1qn2 and mlqn3) tested in this section
only differ by this choice of HB and have the same characteristics. We shall succes-
sively take and test HB as a multiple of the identity matrix and as a diagonal matrix.
The line-search procedure is mlisO from Modulopt, which is described in Lemaréchal
(1981). At the first iteration, the first step-size to be tried, pg, is given by (2.22) and
forkZl,pB=1.

Throughout this section, y and s will denote two vectors in IR™ with <y,s> posi-
tive, y being the change in the gradient of f for a displacement s.

4.1. Scaling the identity

Because it is usually impossible to satisfy the QN equation, Hy = s, with an H of
the form 6 I, it may be thought, a priori, to satisfy it in some direction v. Projecting
the QN equation in a direction v such that <y,v> # 0 gives for §, the value

5 = <s,u>
g = .
<yYy,v>

If v belongs to V:= {ay+Ps:a>0,8>0,aB #0}, <y,v> and <s,v> are posi-
tive and by Cauchy-Schwarz inequality, we have

2
§i= SUE> o5 o 817 g (4.1)
|y|? <y,8>

Note that realizing the QN equation in norm corresponds to taking 6 = 6, with v =
y/|y|+8/|8| in V. From (4.1), §, reaches its minimum value §' and its maximum
value §” in V along the rays {ay : @ > 0} and {Bs : 8 > 0}, respectively.

The value &' is used as scaling factor in Shanno’s and Buckley and Lenir’s
methods: see (2.16). Here are some of its properties.

-15-

(P1): If f is quadratic, &' is the Rayleigh coefficient of H, in the direction y, i.e.
<H‘y,y>/|y|2. This property is usefull since 6’ I has to approximate H,.

(P3): &' minimizes in 6 € IR, the norm |6y—s|. Therefore, §' I is the least square
solution of the QN equation Hy = s, for H multiple of the identity.

(P3): &' minimizes in 6 € [§', 6" |, the condition number of U (61,y,s), the
inverse bfgs update. Therefore, starting with 6’ I may be a wise choice. A more gen-
eral result, which is due to Oren and Spedicato (1976), claims that 88 .=
[0/6'+ (1-0)/6"]"! minimizes in é€ [§,6"], the condition number of
Ug(61,y,8):=0U0(6I,y,5)+ (1-9)U(6I,s,y), the §-Broyden’s update
of 6 I.

(Pg): &' is the unique solution of the following problem:

min min 6I - H , 4.2
min I || |[F (4.2)

where Q(s,y) := { H € L(IR"™) : Hy = s }. This means that é' I is the multiple of the
identity, the closest to Q(s,y) for the Frobenius norm associated to the scalar product
<-y»> (see formula (2.1)). To show this, let us remark that problem (4.2) is equivalent

to

mi 6I - H ,
min |81 ;||

where Hj;:= 6 I+ [s—by,y]/|y|? (y70) is the inverse Broyden’s update of 6 I (see
problem (A.3) and formula (A.5) in annex). But, ||6I—H||p = ||[s—6y,y]||f/|y|% =
|s—éby|/|y| by (2.2). Hence property (P;) from property (P;). O

(Pg): &' is the unique solution of the following problem:

min min 6121 - K , 4.3

pin & || | F (4.3)
where S(s,y) := { K € L(IR") : K*Ky = s }. Note that S(s,y) # @ because <y,s> is
positive (see Proposition A.3 in annex). To prove (Pg), let us remark that problem
(4.3) is equivalent to

mi 121 - K , 4.4
min |l s F (4.4)

-16 -

where, Ks:= 621+ [y,5]/(|lyl<y,s>Y/%) — 6% [y,y]/|y|® (the reasoning is the
same as in Dennis and Schnabel (1981), but for a general scalar product). Now, using
an orthonormal basis (e;); of IR™ for the scalar product <-,->, we get:

2
n <s,,>y 61/2 <y,e,>y
|82 1-K; ||} = % -
=1 | |y] <y,s>1/? ly|?
2 1/2 1/2
_ [s|* 26Y°<y,s> nyy
<y,s> ly|

Therefore, the minimum in (4.4) is obtained for 6/2 = <y,s>1/2/|y|,ie.6=6. D

All these properties seem indicate that 6’ I is the good starting matrix. However,
by exchanging y and s, we obtain similar properties for 6".

(Py): If f is quadratic, 1/6" is the Rayleigh coefficient of B, in the direction s, i.e.
<B,s,s>/|s|%. This property is also usefull since 1/6" I has to approximate B,.

(P3): 8" minimizes in 6 € IR, the norm |y—s/6|. Therefore, 1/6" I is the least
square solution of the QN equation y = Bs, for B multiple of the identity.

(P3): 6" minimizes in 6 € [§', 6", the condition number of U (61,5 ,y), the
tnverse dfp update. This is obtained by taking @ = O in the result of Oren and Spedi-
cato mentioned after Property (P3).

. (Pf): 6" is the unique solution of the following problem:

i i 1/61- B ||p. 4.5
&ﬁnggL)ll/ [¢ (4.5)

This means that 1/6” I is the multiple of the identity, the closest to Q(y,s) for the

Frobenius norm.

(Pg): 8" is the unique solution of the following problem:

i i 1/68121-C ||o. 4.6
B IF (46)

-17 -

Because bfgs update is used in algorithm (2.24), the only property among them
given above that could orientate the choice is property (Pj3), which is in favour of §'.
However, the argument is decidedly slim and some numerical experiments are well-
come. They are shown in Table 3, where the results of mlqn2.a (HE =61 I),
mlqn2b (HY = 64 I for k < m and Hf = 6{_,, I for k> m) and mlqn2.c (Hf =

6¢_1 I) are given one above the other.

m=1 m=323 m=325 m=10 | m=20 | m =50
ults0.1 (403) 145/132 | 117/106 97/93 76/71 76/72 70/68
145/132 | 121/110 97/87 86/74 78/71 68/67
179/95 171/95 160/84 135/70 127/67 118/62
ults0.2 (403) 293/254 | 270/235 | 157/143 | 156/142 161/142 | 149/140
293/254 | 309/268 | 169/148 | 158/141 158/142 | 151/135
727/348 | 613/277 | 440/178 | 418/154 | 379/160 | 353/155
ults0.3 (403) 112/101 | 112/105 100/95 104/96 102/93 102/90
112/101 | 124/113 110/97 108/100 104/94 98/92
252/127 | 248/115 197/89 188/91 183/88 167/82
ulmtl (1875) 208/177 | 203/181 | 169/162 | 162/156 | 161/156 | 164/155
208/177 | 225/201 | 178/162 | 188/154 | 197/161 | 193/168
387/181 | 399/187 | 369/153 | 367/149 | 362/149 | 364/143
ulcrl.l (34) 141/119 121/99 97/87 84/79 68/64 50/49
141/119 *) 93/86 86/77 82/75 91/90
*) 186/91 157/75 130/61 93/50 57/37
ulcrl.2 (455) *) 58/52 53/49 49/46 48/44 47/44
*) 60/52 53/49 55/46 50/45 50/49
87/54 85/46 87/47 85/45 76/41 70/38
ulcrl.3 (1559) *) 32/27 30/26 25/23 23/21 23/21
*) 31/27 27/24 26/24 29/27 30/29
46/23 46/23 49/23 40/20 32/16 32/16
vpbi.1 (500) 118/104 | 113/103 95/90 97/89 93/89 93/89
118/104 | 111/100 99/88 110/90 106/91 107/98
163/86 156/81 155/82 152/82 152/82 150/81
vpbi.2 (500) 327/279 | 263/236 | 235/225 | 204/194 | 199/185 170/160
327/279 | 263/227 | 248/209 | 265/211 | 272/194 | 285/178
373/187 | 369/184 | 393/196 | 373/186 | 353/176 | 295/147
vphi.1 (500) 179/153 | 162/138 | 131/123 | 111/100 87/80 64/61
179/153 | 174/144 | 138/122 | 121/107 105/99 126/122
248/139 | 229/128 | 183/101 147/80 114/64 78/45
vphi.2 (500) 153/138 | 141/125 | 117/106 102/92 87/78 66/59
153/138 | 151/128 | 126/103 117/87 117/72 110/48
193/106 182/97 169/95 144/80 109/65 74/49

Table 3 - Performances (simul/iter) of mign2.a, mign2.b and mign2.c

These results show that when mlqn2.a does not fail to reach f,top (i.e. apart from
ulcrl.2 [m = 1] and ulerl.3 [m = 1]), it is always better than m1gn2.c for the number

(*) fails to reach fatop'

- 18 -

of function evaluations. Therefore, the choice of the scaling factor é' is more suitable
than 6”. This seems due to the fact that 6", which is larger than é’, is generally too
large, which is revealed on Table 3 by a ratio simul/iter close to two for m1gn2.c: one
or two interpolations are often necessary to reduce the initial unit step-size. These
interpolations may make each iteration more efficient and may decrease the number of
iterations, like for the quadratic functions vpbi and vphi, but not enough to reduce the
global cost of the runs, which is better measured by the number of simulations. On
the other hand, the factor ' gives a good scaling to the matrix as shown by a ratio
simul/iter close to one.

Comparison between mlqn2.a and mlqn2.b shows that, in general, it is better to
use more recent information, 6;_,, than older one, §;_ ., even though it is the latter
that can be interpreted in terms of property (P3). The difference is particularly sensi-
ble on vpbi.2 and vphi.2 where the phenomenon observed with mlgec3 crops up again:
the matrix is initially overestimated and as no corrections are made by m1qn2.c during
the first m iterations, the ratio simul/iter is close to two when m is large (for m =1,
mlqgn2.a and m1qn2.b are the same optimizers).

Some remarks can still be made on the performances of mlqn2.a, which appears
to be the best of the three optimizers. We observe that it has a general tendancy to
improve with m but that, like for milge3, this rule is not absolute (see ults0.2
[m = 20], ults0.3 [m = 10, 20, 50|, ulmtl [m = 50| and vpbi.l1 [m = 10]). Further-
more, this tendancy slows down for large m. As the computing time increases with m,
the optimal number of updates for this optimizer should be placed between 5 and 10.

If we compare the performances of mlge3 and mlqn2.a, we see that the number
of function evaluations required by the latter is generally smaller, although the con-
verse is generally true for the number of iterations, still an effect of the forced interpo-
lation made at some iterations by the line-search procedure of mlge3. If these results
are rather in favour of mlqn2.a, this optimizer is, however, less robust and more sensi-
tive to rounding errors than milge3 or bfgs method (see ulcrl). This may be due to
the principle of the method itself. Using always local information to build the matrix,
the search direction d; may not be a descent direction if this local information is not
very reliable, as this is often the case in the last iterations of a run. In practice, this
defect could be avoided by a restart of the method in the opposite direction of the gra-
dient.

-19 -

4.2. Diagonal scaling

In this subsection, we shall suppose that the user knows an orthonormal basis
(e;)1<i<n of IR™ for the scalar product <-,-> and that he can compute easily <u,e,>
for a_ny_ u € IR™®. Probably, this limits the use of the formulae below to situations
where the scalar product is simple.

We shall say that a matrix D is diagonal, understood for the scalar product <-,->
and the orthonormal basis (¢;);<;<p, if <Deje;> = 0 for i # j. We shall note DU .=
<De,,e;>. The identity matrix is diagonal. A diagonal matrix D is self-adjoint and it
is positive if and only if the elements D) are positive. Therefore, we can represent
and update positive diagonal matrices Dy, just by storing and updating its n positive
diagonal elements D}"), 1 <t < n. We have the following representation formula:

n :
D=3 D [eue], (4.7)
=1
which shows that it would be very interesting to have for (e,;);<;<n an orthogonal
basis formed by the eigenvectors of H,, a dream. We shall denote by D, the average
of the diagonal elements:

p=1 é DO . (4.8)

If He L(RR"), its diagonal is the n-uple { H) = <He,e>:1<i<n}. We
introduce the operator diag on L(IR"), which is such that if H € L(IR"), diag H is the
diagonal matrix defined by (dsag H)(‘) = H) for 1 < i< n. If H is positive, so are
the elements of its diagonal.

In this subsection, we shall take for HY in (2.24) a positive diagonal matrix, which
we shall denote by D, (or simply D). Its inverse is also diagonal and (D~1)() =
1/ D). The motivations to take for H,? a positive diagonal matrix are the following.
First, a diagonal matrix may contain more information than just a factor of the iden-
tity, which is a particular case of diagonal matrix. Secondly, it only takes n locations
in memory, i.e. half the locations taken by a couple (y,s) for an additional update. In
vue of the preceding numerical results, the marginal profit of such an update is gen-
erally poor and therefore, starting with a diagonal matrix could yield some improve-
ments. Finally, a diagonal matrix may give a good approximation of Rayleigh’s ellip-
soid of H,, which is defined by Ra(H,):= {u € R":u #0, <H,u,u> = |u|®} and
constitutes a full description of H,.

-20 -

We have found that the most convenient and efficient way to obtain good diago-
nal matrices D; is to generate them by some formula, using the last couple (y;_;,5_;)
to update them, just in the way matrices are generated in classical QN methods. At
the beginning, we take for D; the diagonal matrix é) I, using the factor 8y suggested
by the previous numerical experiments. Next, D; is obtained by some formula, say
Dy:= V(Dg_y, Y_1, 84—,) or, dropping the subscripts, D, := V(D ,y,s). Of
course, Hj is still obtained by using formula (2.24) with HY = D;. The algorithms we
shall test, only differ by the choice of the formula V.

In mlqn3.a, formula V is obtained by diagonalizing the inverse bfgs formula

(2.23): D :=diag U (D ,y,s). Wehave:

2 DU) <y,e;> <s,e,>
<y,5>

D_Sf) = D) 4 1 + <Dy,y> <a:,c,->2 - . (4.9)

<y,8> <y,s>2

In mlqn3.b, formula V is obtained by diagonalizing the direct bfgs formula (2.11):
D;l :=diag U(D™',y,s). Wehave:

<y,e;>% (<s,e;>/DW)?
<y,s> <D 1s,5>

DY) = 1.) +

oG (4.10)

In mlqn3.c, formula V is obtained by diagonalizing the inverse dfp formula: D :=
diag U(D,s,y). Wehave:

<s,e;>2 (Dl)<y,e,>)?

1) — pl)
D'S' DT+ <y,s> <Dy,y>

(4.11)

As bfgs and dfp formulae transmit positivity if and only if <y,s> is positive, this will
also be a sufficient condition to have D positive when D is positive.

In Table 4, results with m1qn3.a, m1qn3.b and mlqn3.c are given one above the

other.

-21-

m=1 m=32 m=2>5 m= 10 m = 20 m = 50
ults0.1 (403) 355/142 527/186 168/91 170/83 94/58 80/51
86/85 73/72 67/66 60/59 56/55 55/54
117/81 105/79 78/63 71/61 61/54 52/50
ults0.2 (403) 831/226 (*) | 1001/183 (*) | 485/116 (*) | 538/129 (*) | 693/157 (*) | 1001/250 (*)
183/176 145/142 128/122 134/123 136/123 134/120
292/174 279/188 251/150 230/138 229/136 209/132
ults0.3 (403) 465/162 238/126 226/103 181/96 167/92 154/87
99/96 89/87 90/85 89/85 92/85 92/84
143/116 113/100 95/82 105/86 101/81 93/79
ulmtl (1875) 548/164 (*) 319/78 (*) 207/77 (*) 272/89 (*) 490/126 (*) 889/179 (*)
225/209 242/240 176/174 183/181 173/171 171/169
334/235 247/177 260/184 212/160 205/161 179/148
ulcrl.l (34) (*) *) *) (*) 1001/73 (*) 111/57
85/83 88/86 83/82 82/81 80/79 78/77
104/73 (*) 103/71 107/69 88/60 75/54 60/49
ulcrl.2 (455) 34/33 40/39 37/36 37/36 36/35 36/35
52/49 51/50 46/45 48/47 45/44 (*) 47/46
34/33 40/39 37/36 37/36 37/36 37/36
ulerl.83 (1559) 27/26 28/27 26/25 26/25 26/25 26/25
38/37 34/33 30/29 30/29 30/29 34/33
26/25 28/27 27/26 27/26 26/25 26/25
vpbi.1 (500) 37/36 39/35 38/34 37/33 37/33 36/32
71/69 53/51 54/52 55/53 54/52 53/51
37/35 41/37 39/35 39/35 38/34 38/34
vpbi.2 (500) 243/71 254/175 281/83 398/123 375/126 371/124
123/51 127/54 139/60 133/57 134/60 126/56
518/162 456/149 459/148 540/173 549/176 611/204
vphi.1 (500) 104/103 91/90 91/90 90/89 90/89 89/88
696/695 209/208 250/249 206/205 183/182 183/182
106/105 98/97 97/96 96/95 95/94 95/94
vphi.2 (500) 92/41 96/44 94/43 91/42 91/42 87/40
49/24 49/24 47/23 47/23 47/23 47/23
93/42 96/45 90/42 85/40 83/39 83/40

(?) fals to reach fatop'

Table 4 - Performances (ssimul/iter) of m1gnS.a, mign3.b and mign3.c

These results enable us to make the following observations: (1) performances are

very much depending on the formulae used to update the diagonal matrix (see test

problem vpbi.2, for instance); but (2) it is not always the same formula that gives the

best results (if m1qn3.b is the best optimizer for ults0, ulmtl, vpbi.2 and vphi.2, it is

the worst one for ulerl.2, ulerl.3, vpbi.l and vphi.1); however (3) for each test prob-

lem, there is generally one of the three optimizers that gives better results than

mlqn2.a (the only exception is for ulmtl, but the number of simulations used by

mlqgn3.b is rather close to the one used by mlqn2.a), which shows that obtaining a

good diagonal starting matrix for algorithm (2.24) may improve the results.

-22-

Despite its good results on ulcrl.2, ulcrl.3, vpbi.l and vphi.l, optimizer mlqgn3.a
(i.e. formula (4.9)) should be discarded for the following reason. The right hand side
of (4.9) updates D by using two correcting terms. The first one is positive (D and
<y,s> are supposed positive), while the sign of the second one depends on the sign of
the components of y and s in the basis (¢;). As <y,e;> and <s,e,> have no reason to
have the same sign, the diagonal elements of D; may have a trend to increase during
the minimization. This trend can be observed when the number of iterations is
sufficiently large like in ulmtl where D blows up and the run stops on overflow: for
m = 50, we have at the last iteration, D ;9 ~ 0.108 10*, while 6], ~ 0.178 1073. The
large number of simulations needed during the line-search to reduce the step-size
reflects this phenomenon. Of course when the function is quadratic with a positive
diagonal Hessian, <y,e;> = Hi‘) <s,e;> and <s,e;> have the same sign and the last
term in (4.9) is negative. In this case, the previous argument does not apply. Any-
way, the blowing up of the diagonal D; does not occur on vpbi and vphi.

Results obtained with m1qn3.b and mlqn3.c are more difficult to comment and
we do not have any convincing argument to decide between them. A partial
clarification is obtained, however, by observing that é' is a lower attractor for formula
(4.10), whereas &" is an upper attractor for formula (4.11). Precisely, we mean by this
that, denoting by D, and D, the diagonal matrices obtained from D by (4.10) and
(4.11) respectively, we have

pl) > & Vi = (DyYy> (DY, (4.12)

where (D~1) is the average value of the diagonal elements of D™, see formula (4.8),
and

DW<¢ ,vi = D,>D. (4.13)

To see (4.13) (it is similar for (4.12)), we remark that) (D<y,e;>)? < (max DV)
<Dy,y>. Hence, from (4.11), we have

)

- - 2 .
DCZD+l _l_ﬂ__ma_xp(')
n | <y,s> 1<i<n

from which (4.13) follows.

As §” > &, implications (4.12) and (4.13) suggest that formula (4.11) may have a
trend to make the elements of the diagonal preconditioner D bigger than those gen-
erated by formula (4.10). We observed, indeed, this trend, which does not appear
directly in Table 4: formula (4.10) has some ability to decrease D when &' decreases
and formula (4.11) has some ability to increase D when 6" increases.

-23 -

Now, going back to Table 4, the previous remarks highlight the results obtained
on vpbi and vphi, in particular. Problems vpbi.l and vphi.l have both an initially
underestimated diagonal matrix D;. Therefore, as D increases more rapidly with for-
mula (4.11) than with formula (4.10), it seems now more comprehensible to see that
mlqn3.c works better than m1qn3.b on these problems. For example, in vphi.l, ﬁo ~
1.11 and at iteration 50, we have ﬁso ~ 1.21 (although &5y ~ 6.35) when mlqn3.b
[m = 50] is used and Dy, ~ 6.87 (6%, ~ 27.2 and 62, ~ 107.) when mlgn3.c [m = 50| is
used. The inverse situation occurs on vpbi.2 and vphi.2 because the initial diagonal

matrix is overestimated.

For other test problems, the analysis is not so simple. First, the problems are not
quadratic anymore, hence 6 is not a Rayleigh coefficient of a same matrix. Secondly, if
for each problem & is rather less than the values of 6’ met during minimization, this
underestimation of D, is not so pronounced as in vpbi.1 or vphi.l. Therefore, various
causes may be responsible of the observed results. If we look in details on the outputs,
it could be thought that much could be explained by this finally rough argument on
the magnitude of the preconditioner D and on its rapid or slow evolution when using
(4.10) or (4.11). However, a more detailed observation of the results shows that a finer
analysis, which we do not have, is necessary to understand the respective merits of
mlqn3.b and mlqn3.c. For example, if we change the stopping criterion for ults0.1
and take f,top = 109, we obtain the following results.

m=1 m=2 | m=5 m=10 m =20 | m = 50

ults0.1 (403) | 47/46 | 48/47 | 41/40 | 40/39 41/40 40/39
79/58 | 59/54 | 45/40 | 47/42 40/39 41/39

Table § - Performances (simul/iter) of m1gn3.b and mign.c for fygor, = 1079,

Although Dy never becomes too large with mlqn3.c (simul/iter is closer to one, unlike
in Table 4 for m small), its performances remain less good as those of m1qn3.b.

The previous analysis shows the important role played by the magnitude of D;.
The temptation is great, consequently, to scale D before updating it by (4.10) or
(4.11). This idea is at the root of the optimizers m1qn3.b2 and m1qn3.c2 that are ver-
sions corresponding to mlqgn3.b and mlqn3.c respectively. In both of them, before
updating D, we multiply it by a factor o such that oD has the good Rayleigh
coefficient in the direction y, that is to say ' (see property (P{)). We find for o:

_ <y,8>
g = .
<Dy,y>

-24 -

With this scaling factor, formulae (4.10) and (4.11) become respectively:

D_@ =

<Dy,y> + <y,¢,'>2 <Dy,y>(<3,¢,'>/D('.])2 (4 14)
<y,s>D(‘) <y,s> <y,s><D7 135> '

and

D_@ _ <y,s>D0) + <s,c,~>2 _ <y,3>(D('.)<y,c,->)2 - (4.15)

<Dy,y> <y,8> <Dy,y>?

Results obtained with m1qn3.b2 (formula (4.14)) and mlqn3.c2 (formula (4.15)) are
given one above the other in Table 6.

m=1 m=323 m=25 m =10 m = 20 m = 50
ults0.1 (403) 76/71 84/76 70/65 65/60 59/56 58/55
205/163 (*) 124/116 151/127 (*) 80/77 69/65 59/56
ults0.2 (403) 179/167 150/138 130/118 137/123 131/116 125/116
581/505 (*) | 630/555 (*) | 763/705 (*) | 607/558 (*) | 752/677 (*) | 434/408
ults0.3 (403) 95/90 93/83 89/81 90/79 87/79 B7/77
194/182 209/194 151/148 141/133 126/118 120/113
ulmtl (1875) 207/184 175/152 150/145 151/144 148/141 145/139
(*) (*) (*) (*) (*) 442/414
ulcrl.l (34) 72/68 (*) 65/57 57/54 53/51 47/45 44/42
99/89 (*) 47/39 (*) 94/87 (*) 58/53 (*) 60/54 50/46
ulcrl.3 (455) 41/38 41/37 38/36 38/35 36/34 37/35
35/34 35/33 36/33 34/32 35/33 34/32
ulcrl.3 (1559) 22/19 21/18 19/18 18/17 18/17 18/17
19/18 20/19 18/17 18/17 18/17 18/17
vpbi.1 (500) 50/45 51/47 48/44 47/43 47/43 47/43
42/36 39/35 39/37 38/34 37/33 37/33
vpbi.2 (500) 76/69 77/68 74/66 72/65 71/64 68/60
62/56 65/56 58/49 55/47 58/48 53/45
vphi.1 (500) 46/44 53/51 50/47 48/45 48/46 47/45
47/46 53/50 47/46 49/46 47/45 45/43
vphi.2 (500) 51/47 55/49 48/44 48/44 48/43 47/43
52/49 55/49 51/47 47/43 48/43 47/42

Table 6 - Performances (simul/iter] of mign3.b2 and mignS.c2
(*) fals to reach f:top'

We see that m1qn3.b2 generally works better than mlqn3.b: exceptions are for
ultsO and vphi.2, but they are minor in comparison with the better performances
obtained on ulmtl and ulcrl. On the other hand, if mlqn3.c2 sometimes improves
mlqgn3.c, for instance on ulcrl.2, ulcrl.3, vpbi and vphi, it has great deficiencies on
ultsO, ulmtl and ulcrl.l. Therefore, formula (4.15) should not be used. After all it

-925-

comes from the diagonalization of dfp formula, whereas it is updated in (2.24) by bfgs
formula, which may not be very suitable.

Now, comparing the results obtained by m1qn3.b2 with the one obtained by the
previous optimizers, we see that mlqn3.b2 works always better than mlqn2.a (Table
3) and mlge3 (Table 1), if we compare performances for a same number m of bfgs
updates and that it is better than bfgs method as soon as m is greater than or equal to
1- . .10, depending on the problem.

The optimizer m1qn3.b2 is the one we should recommend.

5. Conclusion

The main merit of algorithm mlqn3.b2, which is the one that gives the best
results, is precisely its performances on the test problems we have.

This is not very much, because our conclusion could be invalidated on other prob-
lems but this is inherent in any inductive processes. On the other hand, it is clear that
a finer mathematical analysis of diagonal update formulae is wellcome and it is not
clear whether formula (4.14) would stand up such an analysis. However, our tests
have enable us to make a first sort among possible formulae. For instance, it could
have been thought, a priori, that formula (4.9) obtained by diagonalization of the
inverse bfgs formula is as good as formula (4.10) obtained by diagonalization of the
direct bfgs formula. Numerical experiments have shown that this is not true. Other
diagonal update formulae have also been tested, some by taking the variational point

of vue used to obtain matrix updates, but few works well.

On the other hand, this study shows the interest that the update of diagonal
matrices may have in some cases. It seems clear that this is not a general conclusion
and that the success of m1qn3.b2 could be due to the fact that the eigenvectors of H,
in our test problems are not too different from the basic vectors e;, which form, in
these problems, the canonical basis of JR®. However, when such is the case, algorithm
mlqgn3.b2 may do good services.

Annex. A derivation of least-change secant update formulae in Hilbert
space

- 26 -

In this annex, we show how to extend to Hilbert spaces, the variational derivation
of some rank one and rank two quasi-Newton formulae. The fact that we shall work in
an infinite dimension space is rather anecdotal but does not require any particular
effort, so, we did not hold back from doing this generalization. More important is the
fact that the obtained formulae are valid for any scalar product and not only (in case
the dimension is finite) for the Euclidean scalar product. This allows the use of the
theory in various real-live situations.

For the abstract tools used in this annex, we refer the reader to the book by
Weidmann (1980).

The formulae we shall derive are not new. They can, indeed, be found in the
book by Gruver and Sachs (1980). However, our approach is different. If these
authors obtained the formulae by selecting, in the family of perturbations of rank one
or two, the one that gives the desired properties (QN property, symmetry, positivity),
we shall adopt the more classical but more elegant variational point of vue, showing in
this way that the formulae still give least-change updates.

The basic tool to implement this strategy is the Frobenius norm (2.1) associated
to a scalar product of a Hilbert space IH, or in case IH has infinite dimension, its gen-
eralization, the Hilbert-Schmidt norm. So, let IH be an infinite dimensional Hilbert
space over IR with a real scalar product <-,-> and its associated norm |.|. Let B be
in L(HH), and let (e;);c; be an ONB of IH, where the family of indices I is not neces-
sarily countable. The generalization of (2.1) is

1/2
1Bl1ss = 3 |B e.-|2] - (A1)

The quantity of the right hand side of (A.1) makes sense if at most countably many of
the Be, are different from zero and if the series is convergent. This is not satisfied for
all operators B in L(IH) (take B = I, for example), but if it is, the quantity does not
depend on the choice of the ONB and formula (A.1) defines a norm, called the
Hilbert-Schmidt norm of B and the operator is called a Hilbert-Schmidt operator. Such
operators form a Hilbert space for the norm (A.1). We shall denote this space by
L,(H). If ||.|| denotes the norm of L(H), ||B|| < ||B||gs for B € Lo(H). Let us
still mention that if B, and B, are continuous operators on IH and if one of them is a
Hilbert-Schmidt operator then B, B, is a Hilbert-Schmidt operator.

Obviously, finite rank operators are in L,(IH), but the converse is generally false.
On the other hand, Hilbert-Schmidt operators are compact. For example, the bracket
operator [u,v] introduced at the beginning of section 2 is in L,(IH) and we still have

|| [wse] [1s = || [ws0] || = [[o] . (A-2)

-27-

Note that if R € L(IH), we have R [u,v] = [Ru,v] and [u,v] R = [u,R*v], where R* is
the adjoint of R.

The problem we consider is the following. Being given two vectors y and s in IH
and B € L(IH), we look for an updated operator B, € L(IH), the closest to B in some
sense and verifying the QN equation (see (2.9)):

y=B,s. (A.3)

We write B, = B + P and we restrict the perturbation operator P to be a Hilbert-
Schmidt operator so that the perturbation can be measured with the norm (A.1).
Hence, P is supposed to belong to

M:={PeL,(H):y=(B+P)s}.

Let R, and R, be bijective operators in L(IH). Then, we consider the following
minimization problem:
min R, PR . A4
min || By P Ry [|ps (A.4)
Note that the norm in (A.4) makes sense since if P € Ly(HH), so does R{PR,. If we
take R, = R, = I (identity), we see that B, is simply the operator satisfying (A.3),
the closest to B for the Hilbert-Schmidt norm. The next proposition shows that this
problem has a unique solution independent of R, and depending on R, only through
= RT* R—l
¢ = 2 2 S.

Proposition A.1. Let IH be a Hilbert space and B, R, and R, be operators in
L(H) with R, and R, bijective. Let y and s be two vectors in IH with s #0. Then,
problem (A.{) has a unique solution P,, given by

P = [y—Bs,¢

€T <es>
- —sp—1
where ¢ := Ry "Ry " s.

Proof. Let P€Il and set E:= R, PR, and E,:= R, P, R,. We have to
prove that ||E,||gs < || E||gs - With z2:= R;! s = R} ¢ and y—Bs = Ps, we have

E = [Ez,z

Tk

- 28 -

Hence, using (2.2), we get

E
[1Eel s = T2 < 11EJ < 1) s

Unicity comes from the fact that the Hilbert-Schmidt norm, deriving from a
scalar product, is a strictly convex norm (i.e., E, # E,, ||E||gs = |[E3||gs = 7 and
0<a<1limply ||a E; + (1—-a) Ey||ys < 7), from the fact that IT is convex (affine)
and from the bijectivity of B and R,. 8]

The solution of problem (A.4) with R, = I gives Broyden’s update formula:

J_LBsﬁ]_ . (A.5)

BBroydcn = B + Islz

We consider now the case where B is self-adjoint, i.e. B = B*, and we look for an
updated self-adjoint operator B, € L(IH) satisfying (A.3). This time, the perturba-
tion operator P is supposed to belong to

Ng:={PeLy(lH): P=P*, y=(B+P)s}.
For R € L(H), bijective, we consider the following minimization problem:

i R*PR . A.6
P || || s (A.6)

The next proposition shows that this problem has a unique solution depending on R
only through ¢ := R™*R~1s.

Proposition A.2 (Dennis and Moré). Let B be a self-adjoint continuous
operator on a Hilbert space IH and R be a bijective continuous operator on IH. Let y
and s be two vectors in IH with s # 0. Then, problem (A.5) has a unique solution P,
given by

Pc = [y_Bsz‘;l:'s[)cstBs] _ <y—Bs,;> [c’c] , (A7)
) <c,8>

where ¢ := R~*R~ls.

Proof. It is a straightforward adaptation of the proof of Theorem 7.3 of Dennis
and Moré (1977). Let P € llg and set E:= R* P R and E, := R* P, R. We have to
prove that | [E,||ygs < ||E||ys - With z:= R=1 5 = R* ¢, we have

g =E [2,2] + [2,2] E _ <FE z,2>

: HE P

-29-

Hence, E,z=E:z and |E ,z|=|Ez|. Let ¢ € H for 1€ I, such that
{z/]2]} U (¢;)ics forms an ONB of H (this is possible, see Weidmann (1980),

Theorem 3.10). Since e; L z, we have

E c.:MEC..
] |z|2]

c

Then using (2.2), we deduce from this that |E_¢;| < |E ¢;| for 1 € I and therefore

|1 Ee|las < [E||gs -
Unicity comes from the same argument as in Proposition A.1. o

If we take R = I in problem (A.5), we obtain the psb update formula:

B+ [y—Bs,s| + [s,y—Bs] _ <y—Bs,s>

BE s el

Bpab =

The question of the existence of positive self-adjoint secant (i.e. verifying the

secant equation (A.3)) operators is addressed in the following proposition.

Proposition A.3. Let y and s be two nonzero vectors in a Hilbert space H.

Then, the following statements are equivalent:

(1) 3 B € L(H), self-adjoint, positive, such that y = B s,
(11) 3 C € L(H), bijective, such that y = C*C s,

(1) <y,s> fis positive .

Proof. As (1) = (#f) and (i#f) => (i) are clear, it remains to prove
(111) = (#1). So, suppose that <y,s> is positive. The following Dennis and
Schnabel’s (1981) factor is suitable for (11):

Ci=I+ [s,y] _ ls8]
|s| <y,s>12 |52

Indeed, y = C*C s and because C is a finite rank pertubation of the identity, it is
bijective if it is injective (Fredholm’s alternative, Weidmann (1980, Theorem 6.8)),
which is true because C z =0 implies 2= a s with a € IR and a C s = 0 implies

a=0,hence z=0. O

Now, if <y,s> is positive, if C is given by Proposition A.3 (ii) and if we take
R = C~! in Proposition A.2, then ¢ = y and formula (A.7) becomes the dfp update

Jormula:

-30 -

[y—Bs,y| + |y, y—Bs] _ <y—Bs,s>
<yY,8> <y,s>2

By, = B + [v,y] . (A.8)
If in (A.8), we exchange y and s on the one hand and if we change B by H on the
other hand, we recover bfgs formula (2.12). The positivity of Byg (if B is self-adjoint,
positive and if <y,s> is positive) is easily verified using the following form of formula
(A.8):

I - _[s,9]

ly,y]
2res LY (A.9)

<y,8>

References

E.M.L. Beale (1972). A derivation of conjugate gradients. Numerical Methods for
Non-linear Optimization, 39-43. F. Lootsma (ed). Academic Press, London.

A. Buckley (1978). A combined conjugate gradient quasi-Newton minimization algo-
rithm. Mathematical Programming 15, 200-210.

A. Buckley, A. Lenir (1983). QN-like variable storage conjugate gradients.
Mathematical Programming 27, 155-175.

J.E. Dennis, J.J. Moré (1977). Quasi-Newton methods, motivation and theory. SIAM
Review 19, 46-89.

J.E. Dennis, R.B. Schnabel (1981). A new derivation of symmetric positive definite
secant updates. Nonlinear Programming 4, 167-199. Academic Press.

P.E. Gill, W. Murray (1979). Conjugate gradient methods for large scale nonlinear
optimization. Technical Report SOL 79-15. Department of Operations Research,
Stanford.

W.A. Gruver, E. Sachs (1980). Algorithmic Methods in Optimal Control. Research
Notes in Mathematics 47. Pitman.

C. Lemaréchal (1981). A view of line-searches. Optimization and optimal control.
Lecture Notes in Control and Information Science 30, 59-78. A. Auslender, W.
Oettli, J. Stoer (eds.). Springer.

J. Nocedal (1980). Updating quasi-Newton matrices with limited storage. Mathemat-
ics of Computation 35/151, 773-782.

S.S. Oren, E. Spedicato (1976). Optimal conditioning of self-scaling variable metric
algorithms. Mathematical Programming 10, 70-90.

M.J.D. Powell (1976). Some global convergence properties of a variable metric

-31-

algorithm for minimization without exact line searches. Nonlinear Programming.
R.W. Cottle, C.E. Lemke (eds). American Mathematical Society, Providence,
R.I

M.J.D. Powell (1977). Restart procedures for the conjugate gradient method.
Mathematical Programming 12, 241-254.

D.F. Shanno (1978). Conjugate gradient methods with inexact searches. Mathematics
of Operations Reseach 3/3, 244-256.

D.F. Shanno, K.-H. Phua (1978a). Matrix conditioning and nonlinear optimization.
Mathematical Programming 14, 149-160.
D.F. Shanno, K.-H. Phua (1978b). Numerical comparison of several variable metric

algorithms. Journal of Optimization Theory and Applications 25, 507-518.
D.F. Shanno, K.-H. Phua (1980). Remark on algorithm 500: minimization of uncon-

strained multivariate functions. ACM Transactions on Mathematical Software
6/4, 618-622.

J. Weidmann (1980). Linear operators sn Hilbert spaces. Graduate Texts in
Mathematics 68. Springer-Verlag.

P. Wolfe (1969). Convergence conditions for ascent methods. SIAM Review 11/2,
226-235.

