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Foreword

This paper is one of the series of 11 Working Papers presenting the software for interactive
decision support and software tools for developing decision support systems. These products
constitute the outcome of the contracted study agreement between the System and Decision
Sciences Program at IIASA and several Polish scientific institutions. The theoretical part
of these results is presented in the IIASA Working Paper WP-88-071 entitled Theory, Soft-
ware and Testing Ezamples tn Deciston Support Systems which contains the theoretical and
methodological bacgrounds of the software systems developed within the project.

This paper presents the PLP package for parametric linear programming. This package
constitutes the extension to MINOS, the well known linear and nonlinear programming code
developed at Stanford University, and uses the MINOS as the solver of optimization problems.
The PLP gives a complete parametric programming analysis for one, or more, of the following
vectors: cost, rhs and bounds. In the same run several problems of this kind can be solved
and for each, the starting point may be the original optimal solution obtained in the last
problem. This property makes the PLP especially interesting for multiple criteria analysis
using the reference point approach.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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INTRODUCTION

PLP is a software package for parametric linear programming. It is an extension of
MINOS, the well-known linear and nonlinear programming code developed by Saunders
and Murtagh . PLP is initiated by adding some specifications to the original list of
MINOS specifications.

The package PLP uses MINOS as the solver of optimization problems. It includes
sections which create an iterative framework for parametric programming and perform
ranging and housekeeping procedures.

The formulation of the linear problem analyzed by PLP is similar as for MINOS.

Optionally, PLP gives a complete parametric programming analysis for one, or
more, of the following vectors: cost, rhs and bounds. Of course such analysis can also be
performed for single elements of these vectors. In the same run, several problems of this
kind can be solved and for each, the starting point may be the original optimal solution or
the final solution obtained in the last problem.

The last current complete solution in MINOS format is printed or stored with fre-
quency specified by the user. Additionally, the user specifies the frequency of printing of a
short message about current changes of optimal basis.

* B.A. Murtagh and M.A. Saunders. MINOS - A Large-Scale Linear and Nonlinear Programming
System. User’s Guide. Technical Report Sol 77-9, Systeme Optimization Laboratory, Stanford
University California, 1977.



A. THEORETICAL GUIDE

1. GENERAL INFORMATION.

As options of PLP can be expressed in terms of the internal formulation of the linear
problem used by MINOS we shall begin with recalling this concept.

The external formulation (supplied by the user) of the linear problem to be solved
by MINOS is: Minimize (or maximize) a linear cost function

F(z) = apz (1)
subject to m row constraints:

d;<aez<yg, i=1,.m (2)
and n constraints on separate variables:

i <2, < gpyiy =10 . (3)

Here z is an n-dimensional column vector of decision variables, aq is an n-dimensional
row vector of cost coefficients (also called the objective row), the a;, 1 = 1,...,m, are n-
dimensional row vectors, the lower bounds d;, 1+ = 1,...,m+n, are real numbers or —oo,
and the upper bounds g;, 1+ = 1,...,m+n, are real numbers or +oo. Of course, if the
bounds take the values +00 or —oo the corresponding relation (2) or (3) must be replaced
by a strict inequality. If d; = g, then the variable z; is said to be fized. If d; = —o0 and
g; = +oo the variable z; is said to be free. Analogous terms are used to describe the rows
a;z.

It should be recalled that in MINOS the two-sided inequality constraints (2) are not
stated explicitly, but rather specified using ranges. More precisely, a one-sided inequality
is introduced in the form a;z < g; (type L) or a;z > d; (type G), together with a real
number r; called the range. In the first case, the difference between the right-hand side g,
and this number yields the lower bound (d; = g; — r;); in the second case the sum of the
right-hand side d; and the real number r; gives the upper bound (g; = d; + r;).

The linear programming problem is transformed by MINOS into the following inter-
nal form: Minimize (or maximize) the variable

£ 4 1+0bj (4)
subject to equality constraints:

Az=0 ()
and inequality constraints:

i<z<i . (6)
Here A is an (m+1) x (n+m-+2)-matrix:

a b

L)
Il
b

(7)

~
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where I denotes the (m+1) x (m+1) identity matrix and

1

obj = @, G;=4a;_; t>obj , (8)

= a, s

= b;

1 < obj,

g
bobj

]

o

=0, b=b_, i>obj |,

where
if d;=—o0o and g¢; = 400
b, ={d; if d; is finite and g; = +o0
g; if g; is finite
The first n components of the extended vector of decision variables € R**™%2 form a
subvector identical to z; these components are described as structural Element £, is
called the right-hand-side component; it is fixed at —1. The rema.ining components of £

are called slackor logical components. The objective variable £, .}y is free. The vector
of lower bounds [ and the vector of upper bounds i are defined as follows:

=~

N d m+i i = 1,...,"- , 1n+1 = —1, In+1+obj = -0 , (9)

3]

": gm+’ 1t = 1,...,". ) 1‘["+1 = —1, iz"+1+obj = +w

Nowleti=n+1+7,7=1,..,m. Then

[;=h;, d;=k for j<obj and [[=h;_;, i;=k,_, for j > obj, (10)
where
h; = k; = 0 if the j-th row constraint is fixed (i.e., of type E) (11)
hi =0, k; = +oo if d; = —oo and g, is finite (one-sided constraint of type L)
h; = —oo, k; = 0 if d; is finite and g; = +oo (one-sided constraint of type G)
h; =0, k; = g; — d;if d; and g; are finite
h; = —o0, k; = +oo if the j-th row constraint is free.

2. MATHEMATICAL THEORY

This section presents elements of ranging theory for the linear programming problem
(4)-(6). Some nonconventional notation will be used in order to avoid discussion of many
particular cases. The sign < will denote “less than or equal to” if the expressions on its
both sides are finite and “less than” otherwise. Similarly, > will denote "greater than or
equal to” or “greater than”. The notation [t;,t5] will be used for the closure of the open
interval (t;,t5); that is, t; and/or t; do not belong to the interval if they are not finite.
For the sake of simplicity we shall assume that obj = m +1, i.e., the objective row is the
last row in matrix A. As the value of variable £, is fixed at —1 we may remove it from
the problem formulation, defining a new column vector of decision variables y € R"*t™,
where y; = £; 1 = n+1,...,n+m. We also define an m z(n + m)-matrix

a

%m

column vectors b€R™ (see (8)), L,u€R™™, where |, =1, u;=4; i=1,.,n and

li=hiyy, =k t=n+l,..,nt+m; and a row vector c€R,, ., where c;= a6




i=1,..,nandc¢'=0 {=n+l,.,n+m.
The linear programming problem now takes the form: Minimize (or maximize) the
linear cost function

F(y)=cy (12)
subject to:

Ay =1b (13)

I<y<u . (14)

We denote the optimal solution of this problem by 2z and decompose it in the obvi-
ous way into the following subvectors:

2g - basic vector,
2 - vector of nonfixed, nonbasic variables which are at their lower bounds,
2, - vector of nonfixed, nonbasic variables which are at their upper bounds,

2, - vector of fixed variables (i.e., variables for which u; = [;).

Let I, be the set of indices of all nonbasic variables at their upper bounds and let J; be the
set of indices of all nonbasic variables at their lower bounds. Fixed variables are not
included in I, or I;. We shall let Ig denote the set of indices of all basic variables. This
decomposition is also applied to the other vectors, yielding, for example, cpg, ¢}, ¢,; Ip, {,
l,; ug, w, u,. It is clear that zj=1, z, = u,, z, = u,. Thus the constraint matrix is
decomposed into the basic matrix B and matrices L, U, S such that

Beg+ Lz + Uzy + Sz, = b

Hence we have
zg = B~1b — B Y(Lgy+ Uz, + S2,) (15)

for the basic vector and
F(2) = cBB—lb + (¢;— cBB’lL)z, + (ey— cBB-lU)z“ + (e, - cBB"lS)za . (16)

for the optimal cost.
Here and elsewhere we shall denote the i-th row of a matrix H by H; and the j-th
column by H?. Define

D=B"1 . (17)

2.1. Parametric analysis of cost.
In every iteration of PLP COST the ranging problem has to be solved in the first
place. Let Ac be a given nonzero row vector in R, ., where Ac'=0 for

t=n+1,..,n+m and for fixed variables. We consider programming problems (12)-(13)
with the cost vector ¢ replaced by &(t), where

&(t) = c + tAc (18)

and t is a real number, t€ R!. We wish to determine the largest range [0,¢.,..] in which
the coefficient ¢ may vary without affecting the optimal solution, i.e., the range of t
values for which the optimal solution is equal to z.

It is clear from (16) that the optimal solution remains unchanged and equal to z for
all values of t such that

e &(t) - Z5()DL) < 0 (19)



and
6( Eu(t) - EB(‘)DU) 20, (20)
where
+1 in the case of maximization
€=1-1 in the case of minimization
Hence
te(Ac;— AcgDL) < €(egDL — ¢;) (21)

te(Ac,— AcgDU) > e(cgDU - ¢,)

We shall use the following notation:

T;=—cl+ cpDA’, AT;=-Ac’+ AcgDAT, jeLUL . (22)
In the case of maximization we then have

tmax = min {-T;/AT;} (23)
where the minimum is taken over all values of ; from ]; such that AT; < 0 and all values

of j from I, such that AT; > 0.

In the case of minimization ¢ ,, is determined from (23) but with the minimum
taken over all values of j from ; such that AT; > 0 and all values of j from I, such that
AT; <O.

J

In all cases, if the set of indices over which the maximum (or minimum) is taken is
empty, then ¢t ., = +oo.

If t, .4 is finite, two situations are possible: either the optimal solution vanishes for
all ¢t >t, ., or a new optimal solution exists for some ¢t > t ... This change of the
optimal solution is determined by MINOS in the following way.

A shifted value of the cost vector is determined
c(t')=c+ (tpa + A')Ac (24)

A’ is an appropriately chosen increment (see below). For this cost vector, MINOS finds
the corresponding optimal solution. Next, the value of the cost vector and optimal cost at
t =t . are calculated

T(tmax) = €(t)-A"Ac (25)
F(tmax) = e(tymax)? (26)

where z is the right-hand limit of the optimal solution for ¢t = ¢, and A’ is computed
from:

A" = DELTA *z (27)

where DELTA is given by the user in the keyword PLP INCREMENT and z is the
greatest real for which the following inequality is satisfied

-z AT; < f(z) (28)
where
TOLD * || ( €ptmax + ATBZ)B7 ||, || ( Chtmax + ATz)B~ || > 1
f(z) = TOLD , otherwise (29)

This inequality is solved for all values of the subscript § which belong to the set IE (see
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section 3.1 point 3), yielding a sequence {z;}. The maximum value of elements z; is used
in formula (27).

2.2. Parametric analysis of rhs.

In every iteration of PLP RHS the ranging problem has to be solved in the first
place. Let Ab be a given nonzero column vector in R™. We consider the family of linear
programming problems (12)—(14) with the rhs vector b replaced by b(t), where

b(t) = b+ tAb (30)

and t€ R!. We wish to determine the largest range [0,t,,,,] in which the coefficient ¢t may
vary without affecting the optimal basis, i.e., the range of t values for which the optimal
basis is equal to B.

Letting Zg(t) denote the vector of basic variables in the optimal solution correspond-
ing to the rhs vector b(t), we have

z5(t) = 2p+tB~ 1AL . (31)

It is clear that the nonbasic variables do not change for values of t €[0,t,,,,]. The range
[0,¢,,.x) is determined by the feasibility constraint on the basic variables:

Ip < Zp(t) < up (32)
or
IB — 2 _<_ tDAb < up — 2 . (33)
Define
_ . tp; — Zpj ..
t, = j=r1r??,m I—DJ-Ab : D;Ab > 0] (34)

) lp;j— 2p;
t2 = mu? [—D—JA—b'— : D,Ab <0

We then have

tmax = min {t;,t5} (34)
If D;,Ab <O for all 1, 1 = 1,...,m, then we set t; = +oo . Similarly, if D;Ab > 0 for all 1,
1=1,...,m, then we set t, = —oc0 .

If t ., is finite, two situations are possible: either the optimal solution vanishes for
t > tmax or a new optimal solution exists for some ¢t > t,.4. This change of optimal solu-
tion is determined by MINOS in the following way.

A shifted rhs vector is determined
b(t) = b + (tpax + A)AD (35)

A’ is an appropriately chosen increment (see below). For this rhs vector, MINOS finds the
corresponding optimal solution. Next, the value of the rhs vector, the basic vector and the
optimal cost at t = tp,,, are calculated

b(tyha,) = b(t") — A’Ab (36)
2 = B~ b(tpn.,) — B~Y(Lz + Uz, + Sz,) (37)
F(z) = cgB™ b(tmay) + (¢~ ¢gB7 L)z + (cy ~ cpB~1V)z, (38)

+ (ca - ¢:BB_.I‘S‘)"'U:
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where; 2, z,, 2, and zp are the decomposition of the right hand side limit of the optimal
solution for ¢t = t,,,,. The matrices B, L, U, S are the decomposition of constraint matrix
A valid for the optimal solution for t = t,,,,.

A’ is computed from

A'= DELTA * z (39)

where DELTA is given by the user in the keyword PLP INCREMENT and z is the
greatest real for which the following inequality is satisfied

z | DjmaxAb | < TOLX (40)

where j_ .. is the subscript for which ¢, is calculated in formula (34).

2.3. Ranging of bounds.

In every iteration of PLP BOUND the ranging problem has to be solved in the first
place. Let col (Al,Au) be a given column vector in R2(n*+m) and be such that
Al;=Au,=0if y; is a fixed variable. We consider the family of linear programming prob-
lems (A.1) - (A.3) with the vectors of lower and upper bounds [/ and u replaced by
[(t) and u(t), respectively, where

I(t)=l+tAl, @(t)=ut+tAu (41)

and t € R1. We wish to determine two ranges, [0,t,,.,,] and [0,t.,1]. The first of these
intervals is the largest range in which the coefficient ¢ may vary without affecting the
optimal solution (i.e., the range of ¢ values for which the optimal solution remains equal
to z); the second is the largest range in which ¢ may vary without affecting the optimal
basis (i.e., the range of ¢ values for which the optimal basis remains equal to B).

The boundary ¢
t e [0t

maxa 18 easily determined from the following conditions: for every

maxal

tAlL=0if i € ], (42)
tAu=0if i € I,

l+tAL<u;if i € I,

uttAu>lif i€ ],

l+tAL<z<u+tAu if i € Ig.

The first two conditions imply that ¢_,.. =0 if Al; O for some ¢ € I; and/or Au; O for
some t € I,,.

_Let z(t)=z+tAz denote the optimal solution corresponding to the vector of bounds
col (I(t),#(t)). Then

Az=Al, Azy=Au, (43)
Azg=—D(LAl+UAu,)

The values of tp,y}, may be calculated using the feasibility conditions
l[+tAl[S u,+tAu, , lu+tAlu§uu+tAuu (44)
IB+tAlB$zB+tAzB§uB+tAuB

or
t(Al,—Aul)Sul—l, (45)
t(Al,—Au,)<u,—l,
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t(Alg+DLAl+DUAuy)<zp—1g
t(AuB+DLAl,+DUAuu)ZzB— UB

Define
w.—l.
t, = min -3 J . Ali-Au; >0 (46)
1€ AIJ—'AU.J
ZB '_IB
_ . 3 J . .
ty —j___f?:.l?,m Aqu+Dj(LAl,+ Uau,) denominator < 0
IB ,—lB
_ . 3 J . .
t3 —J.;{llf:m A’BJ.+D,'(LA11+ Ubu,) denominator > 0
Finally,
tmaxb:min{tlstZ)tS} (47)

If the set of indices j over which a minimum is taken is empty, we substitute +oo for
t; , ty,or tg in (46). For instance, if Al;—Au,<0 for all j€pg, we take t;=+o00, and so
on.

If t,,., is finite, two situations are possible: either the optimal solution vanishes for
t > t_ .. OF a new optimal solution exists for some t > ¢t .,},. This change of optimal
solution is determined by MINOS in the following way.

The shifted vectors of lower and upper bounds are determined
[(t') =1+ (tmaxp + A7)Al (48)
#(t’) = u + (tsubmaxb + A")Au

where A’ is an appropriately chosen increment (see below). For these bound vectors,
MINOS finds the corresponding optimal solution. Next, the values of the bound vectors,
the basic vector and the optimal cost at t = tmaxb are calculated

tmaxy) = I(t) - &°AL (49)
T(tpaxp) = 8(t7) — A'Aw

zg =B — B Y Lg(tpant) + Uzy(tmaxt) + 52,) (50)
F(z) = cgB7 b + (¢; — cgB™ L) z(tmaxt) + (¢4 — ¢gB~1U)z,(tmaxh) (51)

+ (¢, — cgB71S)z,

where 2, z,, 2z, and zp are the decomposition of the right-hand side limit of the optimal
solution for ¢t = t_, ;. The matrices B, L, U, S are the decomposition of the constraint
matrix A valid for the optimal solution ¢t = t_ .} and A’ is computed from:

A"=DELTA *z (52)
where DELTA is given by the user in the keyword PLP INCREMENT and
TOLX

e= (53)

[ is the denominator of that fraction in the two last definitions (46) which is equal to
t

maxb-
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3. THE METHODS.

3.1.

The method of PLP COST.

The algorithm of PLP COST is as follows:

Set1:=0, t;: =0.

MINOS finds the optimal solution for t; with the basic matrix B and the basic vector
ZB.

The boundary value of the parameter t;.; is calculated, such that for all

ao(t), t € [¢;, t;; ;) the optimal solution is constant. The set I, of nonbasic vari-
ables is determined, containing all nonbasic variables for which reduced costs:

apk(t) — ag(t)B~14* (54)

where A} is the k-th column of the constant matrix A (see (7)), reach zero for some
t in the interval [t;, t; + 107%). These variables are nonbasic in the decomposition
valid for t = ¢,.

Next, the value t’ of the parameter is determined:
t"=1t; .1+ A, A" =DELTA*A, DELTA > 1 (55)

where A is the greatest increment of the parameter such that for t = ¢, ; + A the
nonbasic variable whose reduced cost reaches zero at t; ; is still recognized by
MINOS as optimal.

New cost vector is computed:

ag(t’) = ag(t;) + (£ — t;)Aag (56)
MINOS finds the new optimal solution for the new cost vector ay(t’).
Set t; : = t;,, and shift the cost vector back to t;

aolt) : = ag(t’) - A"Bag (57)

Set 1 := 141 and go to 3.

. The method of PLP RHS.

The algorithm of PLP RHS is as follows:
Set s := 0 and t; := 0.
MINOS finds the optimal solution for t; with the basic matrix B and basic vector zg.

At the same time it finds the optimal decomposition into basic and nonbasic vari-
ables.

The boundary value of the parameter t,,, is calculated (see section 2.2), such that

for all b(t), t € [¢t;, t;, ) the optimal basis (basic matrix) is constant and equal to B.
The set IE of the basic variables is determined containing all basic variables which

reach their bounds for some value of ¢t in the interval [t, ,, t;.; + 10_9]. These vari-
ables are basic in the decomposition valid for t = ¢,.

Next, the value ¢t of the parameter is determined
t'=t, .1+ A", A’=DELTA*A, DELTA > 1 (58)

where A is the greatest increment of the parameter such that for t = ¢;, ; + A the
basic variable which reaches its bound at t,, is still recognized by MINOS as feasi-
ble.
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New rhs vector is computed

b(t) = b(t) + (¢ — t,)Ab (59)
and the corresponding starting basic solution
zp(t') = zp(t) + (v - t)B~'Ab (60)

MINOS finds the optimal solution for the new rhs vector b~(t'), starting from the
shifted basic solution (60) which is infeasible. The new optimal basis is denoted by B
and the new basic vector by zg(t’)

Set t;:= t;,; and shift the solution back to ¢,

zp(t;) = zp(t") — (t' - t;)B~'AE (61)
also
b(ty = b(t) - (' - t)Ab (62)

Set ¢ := ¢ + 1 and go to (3).

The method of PLP BOUND

The algorithm of PLP BOUND is as follows:

Set 1 :=0and ¢;:=0

MINOS finds the optimal solution for t; with the basic matrix B and the basic vector

zg. At the same time it finds the optimal decomposition into the basic and nonbasic
variables.

The boundary value of the parameter ¢, is calculated (see section 2.3), such that
for all I(t) and i(t), t € [t;, t;,;) the optimal basis (basic matrix) is constant and
equal to B. The set IE of basic variables is determined, containing all basic vari-

ables which reach their bounds for some value of ¢ in the interval [t;,, ¢;,, + 10_9].
These variables are basic in the decomposition valid for ¢ = ¢,.

Next, the value t” of the parameter is determined
t"=t; ., +A" , A"=DELTA*A, DELTA > 1 (63)

where A is the greatest increment of the parameter such that for ¢t = ¢, ; + A the

basic variable which reaches its bound at ¢, is still recognized by MINOS as feasi-
ble.

New bound vectors are computed:
[(ty=1It;) + (' - Al (64)
a(t) = a(t;) + (' - t)Ad

and the corresponding starting basic solution:
25(t) = 2p(t) + (' — t;)B~Y LAl + UA®). (65)

MINOS finds the optimal solution for the new bound vectors, starting from the
shifted basic vector (65) (which is infeasible). The optimal basis is denoted by B and
the basic vector by zg(t’).

Set t;=t; ., and shift the solution back to ¢;
zg(t;) = 2g(t) — (' =t)B~YLAT + UA4). (66)



8.

Set 1 := 1+1 and go to 3.
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B. USER MANUAL
1. BRIEF CHARACTERIZATION OF BASIC FUNCTIONS OF PLP.

1.1. Parametric analysis of cost (PLP COST).

The cost vector ag = (ag!,a0%,...,a,") (see (1)) is changed along a direction given by
the user, Aay = (Aaol,AaO ,---,Aay") according to the formula:
where a,(0) is the starting value of cost. If the structural variable, say £, is fixed then
Aag' is automatically set to zero, regardless of the value given in the data.

PLP determines a sequence of values of the parameter denoted by t, ¢;,..., t;, such
that 0 =t5 < t; < ty; <--- < t; and in each of the intervals [t; t;,{),i =0,...,k—1 the
optimal solution is constant and in each case the optimal basis is different. The integer k :
(1) may be defined by the user as the maximum number of iterations, (2) may be deter-
mined by the condition that the optimal solution is constant for every t > t; and different

from that in [ t;_;, t;), (3) may be determined by the condition that there are no optimal
solutions for every t > t;.

1.2. Parametric analysis of rhs (PLP RHS).

The right-hand side & = col (4;,...,6,,,,) §: col (1;1,...,5',"_,:1) (see (7) and (8)) is
changed along a direction given by the user, Ab = col(Aby,...,Ab,, ), according to the
formula:

b(t) = 6(0) + tAs ,t>0 (68)

where b(O) is the starting value of rhs. The component of Ab which corresponds to the

objective row is automatically set to zero, Abob; 0.
PLP determines a sequence of values of the parameter denoted by tg, ¢;,..., t; such
that 0 =1ty <t; <ty < --- < t, and in each of the intervals [t;, t;,,),i =0,...,k—1 the

optimal basis is constant and in each case different. The integer k : (1) may be defined by
the user as the maximum number of iterations, (2) may be determined by the condition
that the optimal basis is constant for every t > t; and different from that in [t;,_,, t;), (3)
may be determined by the condition that there are no feasible solutions for every t > t;.

1.3. Parametric analysis of bounds (PLP BOUND).

The vector of bounds col(/, i) € R2("+m+2) (gee (9)) is changed along a direction
given by the user, col(Al, Ai), according to the formula:

col(i{t), @(t)) = col(1(0), @(0)) + t col(Al, Ad) , t >0 (69)

where col(i(0), i(t)) is the starting value of bounds. The bound increments Al; Ad,
which correspond to fixed variables are automatically set to zero regardless of the values
given in the data.

If there is no lower and/or upper bound for the i-th variable Z; (see (6)) the
corresponding increment Al and/or A, respectively, is also automatlcally set to zero.

PLP determines a sequence of values of the parameter denoted by ¢,, t;,..., t; such
that 0 =1t; < t; <ty <--- <t; and in each of the intervals [t; ¢;,,),i=0,...,k—1 the
optimal basis is constant and in each case different. The integer k : (1) may be defined by
the user as the maximum number of iterations, (2) may be determined by the condition
that the optimal basis is constant for every ¢ > t; and different from that in [t;_;, t}), (3)
may be determined by the condition that there are no feasible solutions for every t > t;.
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Each interval [t;, t;,,] is optionally divided into two subintervals [t,, £;%], [t;%, t;,{].
The interval [¢; ¢;°] is the maximum interval where the optimal solution remains constant
and not only the optimal basis. It often happens that ¢; = t,°.

1.4. Dependent and independent work.

All three kinds of analysis can be performed in one run. The starting point for the
next kind of analysis may be either the original starting optimal solution (The Indepen-
dent Work) or the last optimal solution obtained in the preceding analysis (The Depen-
dent Work). The continuation is impossible if the optimal solution vanishes.

1.5. Controlling output.

In each of the three kinds of analysis the following information is available. The user
has to specify the frequency of printing the complete current optimal solution in MINOS
format. This means that the complete printout is given for the values of parameters ¢
equal to ¢y, tpys tapyse-ns and b(k—1)+ OF by depending on whether the optimal solution
exists for ¢t > ¢;. The notation ¢;, means that we take the right-hand limit of the optimal
solution at ¢;. The user specifies frequency of printing the so called PLP ITERATION
LOG. This is a short message containing most important information about current
change of optimal solution (value of the parameter ¢, change of optimal basis, current
value of objective function).

1.6. Tolerances.

The performance of PLP is strongly affected by the choice of tolerances. Especially
important are two tolerances determined in MINOS : the tolerance of optimality (TOLD)
and the tolerance of feasibility (TOLX). In the proper procedures of the PLP the follow-
ing general rule is adopted. All quantities greater than or equal to 1.E+15 are taken as
equal to infinity and all quantities whose absolute value is less than 1.E-9 are regarded as
equal to zero.

2. INPUT

The input contains all necessary elements for MINOS with the conditions given
below.

2.1. New key-words in the SPECS file

Key Default Meaning
PLP COST off This keyword activates the parametric analysis of
ANALYSIS n cost. The integer n is the number of iterations to be

performed. If no value or a zero value of n is given,
all iterations will be performed (until the optimal
solution becomes constant or the optimal solution

vanishes).
PLP RHS off This keyword activates the parametric analysis of
ANALYSIS n rhs. The integer n is the number of iterations to be

performed. If no value or a zero value of n is given,
all iterations will be performed (until the optimal
basis becomes constant or the optimal solution van-
ishes).




PLP BOUND
ANALYSIS n

off
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This keyword activates the parametric analysis of
bounds. The absolute value of integer n is the
number of iterations to be performed. If n is less
than zero an additional output is printed in each
iteration which gives the values of t?—¢t; and
ti;1 — t; and the corresponding boundary values of
bounds.

PLP ORDER

off

This keyword activates the dependent work of PLP.
If it does not occur, PLP performs each of the
required kinds of analysis only once (keywords PLP
COST..., PLP RHS..., PLP BOUND...). In each of
these, the starting point is the original optimal solu-
tion. If PLP ORDER appears in the SPECS FILE,
it must precede the sequence of keywords PLP
COST..., PLP RHS..., PLP BOUND..., which define
the kinds of analysis to be performed in the same
order. For each kind of analysis, the starting point
is the last optimal solution obtained in the last
analysis. If the optimal solution vanishes, the run
stops. Each kind of analysis can be performed up to
five times, in an arbitrary order (determined by the
sequence of keywords PLP COST..., PLP RHS..,,
PLP BOUND...). In each repetition of the same
kind of analysis, the search direction and the max-
imum number of iterations must be the same. The
value of n given in the last keyword referring to a
particular kind of analysis is valid for all its repeti-
tions.

PLP SOLN n

This keyword specifies the frequency of printing the
current complete solution in the MINOS format.
Full solution is printed after every n iterations. If
this keyword is omitted or n = 0, the effect is the
same as for n = 1.

PLP
FREQUENCY n

This command activates the frequency of printing
the short message called PLP ITERATION LOG
(see section 3 of USER MANUAL). A PLP ITERA-
TION LOG is printed after every n iterations. If this
keyword is omitted or n = 0, the effect is the same
asfor n = 1.

PLP SOLU-
TION n

off

If this (optional) keyword is used with n > 0 com-
plete outputs of optimal solution will be stored in
file n with the frequency given in PLP SOLN m. If
n=0 or this keyword does not occur, the complete
outputs are stored in the printer file.

PLP FILE n

The absolute value of n is the logical number of the
data file for parametric programming. This file is
read after processing other MINOS files has been
completed. The parameter n also controls the out-
put of the search directions. If n is less than zero,
the search direction of each PLP analysis is printed.
These directions are not printed for any other entry.
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PRINT DATA off If this keyword is used, the whole DATA PLP FILE

PLP FILE will be printed in the output. Otherwise, only the
records with comments and the records NAME,
SET and ENDATA are printed.

PLP d=11 This keyword specifies the value of factor A (see
INCREMENT d sections 3.1, 3.2 and 3.3 of THEORETICAL
GUIDE). (4.2), (4.3)).

2.2. DATA PLP file — input format.

The data for the PLP procedures are prepared in an MPS-like format and placed in
the file specified by the key-word DATA PLP FILE n. The data sets for different PLP
procedures may be given in any order. The beginning of the data set for each procedure is
identified by the line NAME and its end by the line ENDATA. If it occurs, the line 'SET’
must be given immediately after the line NAME in each data set; this line defines the
default values of all the variables which are not explicitly defined. Every data set is
identified by the name given in the line NAME.

The records in the DATA RANGING FILE should have the following (basic) form,
which is analogous to MPS format:

Columns: 1-4, 5-12, 15-22, 25-36, 40-47, 50-61
Fields: f1, f2, f3, f4, 5, f6

Below we give a detailed description of the data set for each parametric programming
procedure.

Parametric analysis of cost (PLP COST)

f1 2 3 f4 5 f6
NAME PLPC
SET’ Comments Value

Col. name | Value | Col. name | Value

90 8

ENDATA

Parametric analysis of rhs (PLP RHS)

f1 f2 3 f4 5 f6
NAME PLPR
SET’ Comments Value

Row name | Value | Row name | Value

W

ENDATA

Parametric analysis of bounds (PLP BOUNDS)
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f1 f2 f3 f4 f5 f6
1. | NAME PLPB
2. | 'SET’ Comments Value
3. LOWER | Row/col. name | Value | Row/col. name | Value
4. UPPER | Row/col. name | Value | Row/col. name | Value
5. | ENDATA
Remarks:

if field f2 in a given record is empty, this means that it is the same as in the previous
record. Field f2 must not be empty in the first data record,

the records with identifiers UPPER and LOWER may appear in any order,

LOWER is used for increments of the lower bounds and UPPER for increments of
the upper bounds.

The following general rules apply to all data sets:

2.3.

One of the fields 3, f5, (f4, f6) may be empty.

If 'SET’ appears, it must follow immediately after NAME. If 'SET’ does not occur,
the default for all variables whose values are not specified is zero. This has the same
effect as:

‘SET’ 0.

Comments may be entered in arbitrary positions in the data set. They are identified
by an asterisk * in the first column.

The values should be written as real numbers in a format accepted by FORTRAN.

Specification of zeros in the MPS file.
In two kinds of parametric analysis, PLP COST and PLP RHS the user has to

specify explicitly some of the zero values of the objective row elements (vector ay) and/or
the rhs column elements (vector b), exactly in the same way as the nonzero values
specified in the data (MPS file). This refers to those elements of the vector aq and/or b for
which the corresponding elements of Aag and/or A¥b, respectively, are different from zero.

Example ag = (1.,0.,0.,3.,5.) , Aag=(-1.,0.,0.1,1.,0.)

In this case the element a3 has to be explicitly specified in MPS
x3 obj 0.

where z3 is the name of the third column (structural variable) and obj is
the name of the objective row.

3. ouTPUT

The title of the output of PLP is:

P L P VERSION 1.0 JUNE 1986

In the case of dependent work of PLP the subtitle is printed:
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DEPENDENT WORK OF PLP

Otherwise, this subtitle is omitted.

The output may be sent either to the printer file or to the file defined by the key-
word PLP SOLUTION FILE. Only the output produced by the procedure SOLN of
MINOS can be stored in the latter one.

Since the SOLN output is described in MINOS manuals we will confine ourselves to
the output of PLP sent to the printer file, and so we will also skip the messages given by
MINOS.

Each kind of parametric analysis procedures produces a printout containing the fol-
lowing information.

Title:

PLP COST - for parametric analysis of cost
PLP RHS - for parametric analysis of rhs
PLP BOUND - for parametric analysis of bounds

Search direction (optionally):
For PLP COST it has the following format. For each structural variable

£, 1=1,...,n the following information is given:
NUMBER - Number of structural variable
COLUMN - Name of structural variable

DIRECTION - Increment component Aaf)
OBJ GRADIENT- Cost component af)
M+J -m+1+1

In the case of PLP RHS the following information is given for each row (or each
slack variable £, i = n+2,...,n+m+2) except for the objective row (or slack variable

£, 1+obj):

NUMBER - Number of slack variable

ROW - Name of row

DIRECTION - Component Ab; of increment vector
RHS - Right-hand-side component b;

I - Row number

For PLP BOUND this printout is divided into two sections:

SECTION 1 - ROWS contains the following information for each slack variable
£, 1 =n+2,...,n+m+2 (or for each row), except for the slack variable £, , obj which
corresponds to the objective row:

NUMBER - Number of slack variable
ROW - Name of row
LL DIRECTION- Component Al; of the lower bound inc. vector Al
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LOWER LIMIT- Lower bound [
UL DIRECTION- Component At; of the upper bound inc. vector A
UPPER LIMIT- Upper bound ;

I - Row number

SECTION 2 - COLUMNS contains information analogous to that described above for

each structural variable £;, 1 = 1,...,n with the following differences:
NUMBER - Number of structural variable

COLUMN - Name of structural variable

M+J -m+1+1

PLP iteration log printing:

Printing frequency is given in the keyword PLP FREQUENCY. It takes one of the
following forms:

If only one variable in the optimal basis has been exchanged and none of the non-
basics has changed its state, the following message is printed:

PITN - Number of iteration of current parametric analysis
OBJ - Objective value
TMAX - Current boundary value of parameter ¢

VARIABLE "name” (number of the variable) FROM "bound” REPLACES BASIC VARI-
ABLE "name” (number of the variable) WHICH PASSES TO "bound”

(LL is substituted for "lower bound” and UL for "upper bound”)

In other cases the first three items are the same as above and the last row is replaced
by the appropriate number of the following sentences:

VARIABLE "name” (number of the variable) FROM "bound” ENTERS THE BASIS
BASIC VARIABLE "name” (number of the variable) PASSES TO "bound”

VARIABLE "name” (number of the variable) FROM "bound” PASSES TO "bound”
If a variable which does not belong to 12 has changed its state, this row is preceded

by the following message:

WITHIN THE GIVEN TOLERANCE ONLY THE FOLLOWING INFORMATION IS
AVAILABLE

Special messages

1. If in the final iteration the situation arises in which the optimal basis is constant for
every t > t. .., the following message appears in the printer file:

PITN - Number of iteration of current parametric analysis - FOR THE VALUE OF
THE PARAMETER = Value of t; INFINITE RANGE (TMAX.GE.1.E15)

where TMAX =t;,;—t;,. In this case the last optimal solution is stored in the
printer file or in the file defined by the keyword PLP SOLUTION FILE.
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2.  If the optimal solution vanishes, one of the following MINOS messages is printed:
- in the case of PLP COST:

EXIT - PROBLEM IS UNBOUNDED
this is followed by:

PITN - Number of iteration of current parametric analysis
TMAX= Boundary value of the parameter t

- for PLP RHS and PLP BOUND:

EXIT - PROBLEM IS INFEASIBLE
NO. AND SUM OF INFEASIBILITIES “number” and “value”

This is followed by:

PITN = Number of iteration of current kind of analysis
TMAX = Boundary value of parameter

In both cases the SOLN output corresponding to the value t;,; of parameter t is
printed or stored in the file defined by the user in the keyword PLP SOLUTION
FILE.

3. If MINOS cannot find the next optimal solution because of tolerances defined in
MINOS, the following printout is displayed:

WITHIN THE GIVEN TOLERANCE NO NEW BASIS IS FOUND

This is a failure of the package. In order to continue the analysis, the user should
decrease the appropriate tolerance (tolerances) in MINOS or to increase the factor
DELTA in keyword PLP INCREMENT.

4. If the keyword PLP BOUND ANALYSIS n is less than zero an additional output is
printed. It gives the values: t? — t; = tp.0. 441 — t; = tyayp and the correspond-
ing boundary values of bounds:

PITN = Number of iteration of current kind of analysis
TMAX = boundary value of parameter

This is followed by the information on tp,,,.

4. EXAMPLES

We shall now illustrate the performance of PLP using a simple example. The linear
programming problem is as follows :

Maximize

F(z) =0.1z; + z,
subject to:

z, +z23=3.

07065 (21 + 12) + 14 = 3826
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22 + 35 = 3.

—0.7065(z; — z4) + zg = 1.

—21 + 27 =-1

0<z , 2955 ,0<L2,<2 =3,...,7T.
Two runs of PLP are presented. The first shows the independent work of PLP. It contains
all three kinds of parametric analysis: PLP COST, PLP RHS, PLP BOUND. In the
second, we have the results of dependent work of PLP. The task for PLP was to perform

one iteration of PLP RHS, then all iterations of PLP COST and then all iterations of
PLP BOUND.

Below we give the MPS file common for both runs and then we give the MINOS and
PLP specifications used to solve each of these problems.

Then we give the standard MINOS printout, followed by two outputs of PLP.

e test
rows
n ob
e ri
e r2
e r3
o rd
e 15
columns
xi ob 0.1
xi ri 1.
xi 7] .7088
xi rd ~-.7086
xi 15 -1,
b 7] ob 1.
b 7] 7] .7088
b 7] r3 1.
b 7] rd .T086
x3 ri 1.
x4 7] 1.
xb 3 1.
xB8 rd 1.
x7 15 1.
rhs
rh ri 3.
rh 7] 3.828
rh r3 3.
rh rd i.
rh s -1,
bounds
ud bo 1
up bo x 6.
up bo x3 2.
up bo xd 2.
up bo xb 2.
up bo x5 2.
up bo 7 2.
endata

minos -—- version 4.0 mr 1981



begin Second P L P Test
mxcinize
plp rhs analysis
plp cost analysie
plp bound analysis -10
plp increment 1.6
plp frequency 1
data plp file -
print data plp file

- 23 .

end
problem name test objective value  3.24154282154+00
status optimel soln iteration 1 superbasica O
objective ob (mex)
the rh
ranges
bounds bo
section 1 - rowe
number .row.. at ...activity... slack activity ..lower limit. ..upper limit.
9 ob be 3.24164 -3. 24184 none none
a 10 r1 oq 3.00000 . 00000 3.00000 3.00000
11 r2 oq 3.82600 .00000 3.82800 3.82800
12 r3 oq 3.00000 .00000 3.00000 3.00000
a 13 r4 oq 1.00000 .00000 1.00000 1.00000
a 141 oq -1.00000 .00000 -1.00000 -1.00000
section 2 - columns
number .colum. at ...activity... .obj gradient. ..lower limit. ..upper limit.
1 d be 2.41643 .10000 .00000 none
2 2 be 3.00000 1.00000 none 5.00000
3 a3 be 68457 .00000 . 00000 2.00000
4 n .00000 .00000 .00000 2.00000
6 x5 u .00000 .00000 . 00000 2.00000
6 xB be .68700 00000 .00000 2.00000
T X7 be 1.41543 .00000 00000 2.00000
8 rh oq -1.00000 .00000 -1.00000 -1.00000
PLP --- version 1.0 june 1986,
data plp file
1 name plpc
2 ‘set’ .000000d +00
3 xd 1.000004+00 .00000d+00
4 x2 -1.000004+00 .00000d+00
B »
6 *+ Note:
7 * Declaration of dummy coefficients (=0 in MPS file) of the objective
8 * is not necessary because the above direction is defined in the x1-x2
9 * subspace of cost vectors.

-
o

.dual activity

1.00000

(- I I 7 S B

ot

oo

10

P T T
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11 endata
plp cost
number .colum. ...direction.. .obj gradient. mtj
1 d 1.00000 .10000 7
2 2 ~1.00000 1.00000 8
3 3 .00000 .00000 9
4 = 00000 .00000 10
b X .00000 .00000 11
6 x8 .00000 .00000 12
7 X7 00000 00000 13
pitn= 1 obj= 0.297848664+01 = 0.45000d+00 variable xb
replaces basic variable x3 ( 3) which passes to 11
froblen name  test objective value 2.9784856632d+00
status optimal soln iteration 1 superbasics 0
objective ob (mex)
rhs rh
ranges
bounds bo
section 1 - rows
number ...row.. at ...activity... slack activity . .lower limit. ..upper limit.
9 ob be 2.97849 -2.97839 none none
101 eq 3.00000 . 00000 3.00000 3.00000
11 n2 eq 3.82600 .00000 3.82600 3.82600
12 r3 eq 3.00000 . 00000 3.00000 3.00000
a 13 eq 1.00000 . 00000 1.00000 1.00000
a W r6 eq ~1.00000 .00000 -1.00000 ~1.00000
section 2 - columna
number .colum. at ...activity... .obj gradient. ..lower limit. ..upper limit.
1 d be 3.00000 . 56000 .00000 none
2 Q2 bs 2.41643 65000 none 5.00000
3 8 1n .00000 00000 00000 2.00000
4 = n .00000 .00000 .00000 2.00000
5 x5 be 68357 . 00000 .00000 2.00000
6 x8 be 1.41300 . 00000 .00000 2.00000
d 7 X7 be 2.00000 00000 .00000 2.00000
8 rh eq -1.00000 . 00000 -1.00000 -1.00000
pitn= 2 obj= 0.32999960d+01 tmax= 0.10000d+01 variable x4
replaces basic variable x8 ( 6) which passes to nl
problen name test objective value  3.2099960006d+00
status optimal soln iteration 2 superbasics 0
objective ob (mex)
rhs rh
ranges
bounds bo

section 1 - rows

( B) fram 11

.dual activity

1.00000
0. 00000
-. 77848
0. 00000
. 00000
.00000

reduced gradnt

. 00000
. 00000
0.00000
-.77848
0. 00000
00000
00000
-2.97849

( 4) fram 11

A oW

m]

P i o SR
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.dual activity

1.00000
-1.09999
-.00001
. 00000
0.00000
00000

reduced gradnt

-1.09999
-.00001

0.00000

~3..30000

number .row.. at ...activity... slack activity ..lower limit. . .upper limit.
9 ob be 3.30000 -3.30000 none none
10 r1 L] 3.00000 00000 3.00000 3.00000
11 r2 « 3.82600 .00000 3.82600 3.82800
a 12 r3 ] 3.00000 00000 3.00000 3.00000
13 ] 1.00000 00000 1.00000 1.00000
a U 16 o« ~1.00000 .00000 -1.00000 -1.00000
section 2 - columns
number .columm. at ...activity... .obj gradient. ..lower limit. ..upper limit.
1 d be 3.00000 1.10000 .00000 none
2 x2 be 1.68457 0.00000 none 5.00000
3 3 n 00000 .00000 .00000 2.00000
4 xi be 68700 00000 .00000 2.00000
b x5 be 1.41643 00000 .00000 2.00000
6 xB ul 2.00000 . 00000 00000 2.00000
d 4 be 2.00000 00000 .00000 2.00000
8 rh « ~1.00000 .00000 -1.00000 -1.00000
pitn= 3 for the value of the parmmeter= 1.00000 infinite range (tmex.ge.1.e15)
data plp file
12 name pPlpr
13 ‘set’ .000000d +00
1 r3 1.00000d+00 .00000d+00
16 =
16 * Note that all camponents of rhs vector are defined in MPS file.
17 =
18 endata
Plp rhs
number ...row.. ...directioam.. ......... the.. ..i
10 1 . 00000 3.00000 2
11 2 . 00000 3.82600 3
12 r3 1.00000 3.00000 4
13 . 00000 1.00000 3
14 6 . 00000 -1.00000 6
pitn= 1 obj= 0.361564282d+01 tmx=  0.41643d+00 variable x6

replaces basic variable x8

problen name

status

objective
rhs

ranges
bounds

teat objective value
optimal soln iteration 1
ob (zmx)

rh

bo

section 1 - rows

..row.. at ...activity...

number
9 od
a 10 1

be 3.61643
o« 3.00000

slack activity

-3.61643
.00000

( 6) which passes to 11

3.6154281824d+00

superbasics

.. lower limit.

none
3.00000

0

. .upper limit.

none
3.00000

( 5) fram 11
.dual activity
1.00000
. 00000

D oW N

)

AEBE2Boow~
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11 2 g 3.82800 .00000 3.82800 3.82800 -. 77849
a 12 r3 g 3.41544 .00000 3.41544 3.41844 .00000
13 g 1.00000 . 00000 1.00000 1.00000 -.63004
a 14 b g -1.00000 .00000 ~1.00000 -1.00000 .00000
section 2 - columns
nunber .columm. at ...activity... .obj gradiemt. ..lower limit. ..upper limit. reduced gradnt
1 xd bs 2.00000 10000 .00000 none . 00000
2 2 bs 3.41643 1.00000 ncne 6.00000 00000
3 x3 bs 1.00000 .00000 00000 2.00000 00000
4 x n .00000 .00000 00000 2.00000 -.T7849
d 6 x5 bs 0.00000 . 00000 .00000 2.00000 00000
6 xB ot .00000 .00000 .00000 2.00000 -.63604
7 % bs 1.00000 00000 .00000 2.00000 .00000
8 rh o« -1.00000 00000 ~1.00000 -1.00000 -3.61543
oxit — problem is infeasible.
no. and sum of infeasibilities 1 2.57313880d-06
pitn= 2 tmax=  0.2{154d+01
data plp file
19 name plpb
2 'set’ . 000000d 00
21 upper 2 -1.000004+00 .00000d+00
22 endata
plp bound
section 1 - rows
number ...row.. .1l direction. .lower limit.. .ul directiom. .upper limit.. i
10 1 .00000 .00000 .00000 .00000 2
11 2 . 00000 .00000 . 00000 .00000 3
12 r3 .00000 .00000 . 00000 00000 4
13 . 00000 .00000 . 00000 00000 3
14 6 . 00000 .00000 . 00000 00000 6
section 2 -~ columns
number .colum. .11 direction. .lower limit.. .ul direction. .upper limit.. m+j
1 d . 00000 .00000 .00000 none 7
2 Q2 . 00000 none ~1.,00000 6.00000 8
3 3 . 00000 .00000 .00000 2.00000 9
4 xd 00000 .00000 .00000 2.00000 10
-3 00000 .00000 00000 2.00000 1
6 x8 .00000 .00000 .00000 2.00000 12
7 X7 .00000 .00000 . 00000 2.00000 13
a. no change in the optimal solution
finite range (tmma= 0.20000d+01)
b. no change in the optiml basis
finite range (tmob=  0.20000d+01)

section 1 - rows

[ B 7

]

~AEDBE B ow
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number ...row.. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
10 ri .00000 .00000 . 00000 .00000 .00000 .00000
11 2 .00000 .00000 .00000 .00000 .00000 00000
12 r3 .00000 .00000 00000 .00000 .00000 00000
13 4 .00000 .00000 .00000 .00000 .00000 .00000
14 16 .00000 .00000 00000 .00000 .00000 . 00000

section 2 - columns

number .colum. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
1 xd 00000 .00000 .00000 .00000 none none
2 2 . 00000 none none -1.00000 3.00000 3.00000
3 x3 . 00000 .00000 .00000 .00000 2.00000 2.00000
4 xi .00000 .00000 .00000 .00000 2.00000 2.00000
6 X .00000 00000 00000 .00000 2.00000 2.00000
6 x8 .00000 00000 .00000 .00000 2.00000 2.00000
7 0 .00000 .00000 00000 .00000 2.00000 2.00000

pita= 1 obj= 0.32416278d+01 tm=  0.200004+01 variable xb ( B) from 11

replaces basic variable x2 ( 2) which passes to ul

problam name test objective value 3.2416278032d+00

status optimal soln iteration 1 superbasics [¢]

objective ob (mex)

ths th

ranges

bounds bo

section 1 - rows

number .row.. at ...activity... slack activity ..lower limit. ..upper limit. .dual activity ..i
9 ob bs 3.24163 -3.24163 none none 1.00000 1

a 10 ri oq 3.00000 .00000 3.00000 3.00000 .00000 2
11 r2 oq 3.82600 .00000 3.82800 3.82600 -.14154 3

a 12 r3 oq 3.00000 00000 3.00000 3.00000 .00000 4

a 13 rd oq 1.00000 00000 1.00000 1.00000 .00000 6

a 14 16 oq -1.00000 .00000 ~1.00000 -1.00000 .00000 6

section 2 - columns

number .colum. at ...activity... .obj gradient. ..lower limit. ..upper limit. reduced gradnt m*j
1 x be 2.41643 . 10000 00000 none .00000 7
2 2 ul 3.00000 1.00000 nons 3.00000 . 80000 8
3 3 be 68467 . 00000 00000 2.00000 .00000 9
4 n .00000 00000 00000 2.00000 -.14154 10

d 6 X6 be 0.00000 00000 00000 2.00000 .00000 11
6 x8 be 68700 .00000 .00000 2.00000 .00000 12
7 7 be 1.41543 00000 .00000 2.00000 .00000 13
8 rh oq -1.00000 . 00000 -1.00000 -1.00000 -.54154 14

a. no change in the optimal solution

finita range (tmea= .00000d+00)
b. no change in the optimal basis
finite range (tmmd=  0.58457d+00)
section 1 - rows
number ...row.. .1l direction. .11 boundary a .1l boundary b .ul direction. .ul boundary a .ul boundary b
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10 r1 .00000 .00000 00000 .00000 .00000 . 00000
11 2 .00000 .00000 .00000 00000 .00000 . 00000
12 r3 .00000 .00000 .00000 00000 .00000 .00000
13 4 00000 .00000 .00000 00000 00000 . 00000
1§ 15 .00000 .00000 . 00000 00000 .00000 . 00000

section 2 - columms

number .column. .11 direction. .11 boundary a .11 boundary b .ul directicn. .ul boundary a .ul boundary b
1 .00000 00000 00000 00000 none none
2 xa .00000 none none -1.00000 3.00000 2.41643
3 3 00000 00000 .00000 .00000 2.00000 2.00000
4 xi 00000 00000 . 00000 .00000 2.00000 2.00000
5 xb 00000 00000 . 00000 .00000 2.00000 2.00000
6 x8 00000 00000 . 00000 .00000 2.00000 2.00000
7T X7 . 00000 00000 .00000 .00000 2.00000 2.00000

pita= 2 obj= 0.27154131d+01 tmx=  0.25846d+01 variable xi ( 4) fram 11

replaces basic variable x7 ( 7) which passes to ul

Jroblem neme  test objective value  2.71641314574+00

status optimml soln iteration 2 superbasics 0

objective ob (mmx)

rhs rh

ranges

bounds bo

section 1 - rows

nuber ...row.. at ...activity... slack activity ..lower limit. ..upper limit. .dual activity ..i
9 o be 2.71541 -2.71541 none none 1.00000 1

a 10 r1 o 3.00000 . 00000 3.00000 3.00000 . 00000 2

a 11 2 oq 3.82600 .00000 3.82600 3.82600 . 00000 3

a 12 r3 oq 3.00000 00000 3.00000 3.00000 .00000 4

a 13 4 oq 1.00000 .00000 1.00000 1.00000 .00000 B
14 16 oq -1.00000 .00000 -1.00000 ~1.00000 - 10000 ]

section 2 - colums

number .colum. at ...activity... .obj gradient. . lower limit. ..upper limit. reduced gradnt mtj
1 x ] 3.00000 . 10000 .00000 none .00000 7
2 xa ul 2.41643 1.00000 none 2.41543 1.00000 8

d 3 x3 ba 00000 .00000 .00000 2.00000 .00000 9

d 4 xi be 0.00000 00000 .00000 2.00000 .00000 10
5 xb be 58467 .00000 .00000 2.00000 .00000 11
6 x8 be 1.41300 .00000 .00000 2.00000 .00000 12
7 ul 2.00000 .00000 .00000 2.00000 . 10000 13
8 rh eq -1.00000 .00000 -1.00000 -1.00000 -.10000 14

a. no change in the optimml solution

finite range (tmexa=  .00000d+00)
b. no change in the optimal basis
finite range (tmexb=  0.830864+00)

section 1 - rows

number ...row.. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
10 r1 .00000 00000 00000 .00000 .00000 00000
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11 r2 00000 .00000 . 00000 .00000 00000 . 00000
12 r3 00000 .00000 . 00000 00000 .00000 . 00000
13 rd 00000 .00000 .00000 .00000 .00000 . 00000
14 16 00000 00000 .00000 .00000 .00000 .00000

section 2 - columns

namber .column. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul bourdary b
1 d 00000 00000 00000 .00000 none none
2 2 . 00000 none none -1.00000 2.41643 1.68457
3 B3 00000 .00000 .00000 .00000 2.00000 2.00000
4 x 00000 .00000 . 00000 .00000 2.00000 2.00000
6 x5 00000 00000 . 00000 .00000 2.00000 2.00000
¢ xB 00000 00000 . 00000 .00000 2.00000 2.00000
7 7 00000 00000 . 00000 .00000 2.00000 2.00000

pita= 3 obj= 0.18816606d+01 tm=  0.341564d+01 variabls x7 ( 7) from nl

replaces basic varisble 6 ( 6) which passes to nl

problem neme teat objective value 1.88455062664+00

status optimml soln iteration 3 superbasics 0

objective ob (max)

the rh

ranges

bounds bo

section 1 - rows

number ...row.. at ...activity... slack activity .. lower limit. ..upper limit. .dual activity ..i
9 ob be 1.88158 -1.88155 nane none 1.00000 1

a 10r ] 3.00000 . 00000 3.00000 3.00000 00000 2

a 11 r2 ] 3.82600 . 00000 3.82800 3.82800 .00000 3

a 12 r3 oq 3.00000 00000 3.00000 3.00000 . 00000 4
13 4 ] 1.00000 .00000 1.00000 1.00000 .14184 3

a 16 oq -1.00000 00000 -1.00000 -1.00000 .00000 [}

section 2 - columns

number .columm. at ...activity... .obj gradient. ..lower limit. .. upper limit. reduced gradnt mrj
1 d be 3.00000 . 10000 .00000 none .00000 7
2 x2 ul 1.68467 1.00000 none 1.68457 1.10000 8

d 3 B3 be 0.00000 00000 .00000 2.00000 .00000 9
4 xi be 68700 .00000 .00000 2.00000 . 00000 10
6 xb be 1.41543 . 00000 .00000 2.00000 . 00000 11
6 x8 (18 2.00000 .00000 .00000 2.00000 . 14154 12

d 7 X7 be 2.00000 .00000 .00000 2.00000 .00000 13
8 rh ] -1.00000 .00000 -1.00000 -1.00000 14184 1

minos ---  version 4.0 mar 1981
specs file

begin Second P L P Test

maximize
plp arder
plp rhs analysis 1
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Plp cost analysis
Plp bound analysis -3
Plp increment 1000.
Plp frequency 1

data plp file 9
print data plp file

PLP --- version 1.0  june 1986,

[EPEXDENT WIRK of PLP

data plp file
12 name plpr
13 'set’ .000000d +00
1 r3 1.00000d+00 .00000d+00
16 =
16 *= Note that all camponents of rha vectar are defined in MPS file.
17 =
18 endata
Plp Ths
number ...row.. ...directien.. ......... the.. ..
10 1 .00000 3.00000 2
11 r2 . 00000 3.82600 3
12 3 1.00000 3.00000 4
13 4 .00000 1.00000 3
14 6 . 00000 ~-1.00000 8
pitn= 1 obj= 0.36154282d+01 twe= 0.415434+00 variable xb ( 6) from 11
replaces besic variable x6 ( 6) which passes to 11
problem name test objective value 3.61542818244+00
status optimal soln iteration 1 superbasics 0
objective ob (max)
rhs th
ranges
bounds bo

section 1 - rows

number ...row.. at ...activity... slack activity ..lower limit. ..upper limit. .dual activity
9 od be 3.61643 -3.61543 none none 1.00000
s 1011 oq 3.00000 00000 3.00000 3.00000 . 00000
11 2 oq 3.82600 00000 3.82600 3.82600 -.Trsde
a 12 =3 oq 3.42251 00000 3.451 3.42051 .00000
13 rd oq 1.00000 00000 1.00000 1.00000 -.63604
s U b oq -1.00000 .00000 -1.00000 -1.00000 .00000

section 2 - colums
number .column. at ...activity... .obj gradient. . lower limtit. ..upper limit. reduced gradnt

2.00000 . 10000 .00000 none 00000
3.41543 1.00000 none 5.00000 .00000
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3 3 be 1.00000 .00000 . 00000 2.00000

4 = n .00000 .00000 .00000 2.00000
d b X bs 0.00000 .00000 .00000 2.00000

6 x8 n .00000 .00000 .00000 2.00000

T be 1.00000 .00000 00000 2.00000

8 rh o -1.00000 .00000 -1.00000 -1.00000
data plp file

1 pame plpc

2 ‘set’ .000000d +00

3 xd 1.00000d+00 .00000d+00

4 x2 -1.00000d+00 .00000d+00

b =

6 * Note:

7 + Declaration of dummy coefficients (=0 in MPS file) of the objective

8 * is not necessary because the above direction is defined in the xi—x2

9 * subepace of cost vectors.

10 =

11 endata
Plp cost
number .colum. ...direction.. .obj gradient. m+j

1 1.00000 10000 7

2 -1.00000 1.00000 8

3 a3 00000 00000 9

4 .00000 .00000 10

b x5 . 00000 .00000 11

6 x8 .00000 .00000 12

7 .00000 .00000 13
pitn= 1 obj= 0.29784866d+01 tmo= 0.450004+00 variable x8
replaces basic variable x3 ( 3) which pasees to 11
problen name test objective value  2.9784866632d+00
status optimal soln iteration 1 superbasics 0
objective ob (max)
rhe rh
ranges
bounds bo

section 1 - rows

number
9

10

11

a 12
a 13
a b

.row.. at ...activity... slack activity ..lower limit. ..upper limit.
ob bs 2.97849 -2.97849 none none
ri o 3.00000 .00000 3.00000 3.00000
2 o 3.82800 .00000 3.82800 3.82800
r3 o 3.42351 .00000 3.42261 3.42261
rd oq 1.00000 .00000 1.00000 1.00000
2 oq ~1.00000 .00000 -1.00000 -1.00000

section 2 - colums

number

[ S

.column. at ...activity... .obj gradiemt. ..lower limit. ..upper limit.

3.00000 .B6000 00000 none
2.41643 .B6000 none 5.00000

[J-Y
g

( 6) fram 11

.dual activity

1.00000
-.00680
-.T7849
.00000
00000
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3 3 u .00000 .00000 .00000 2.00000 -.00680
4 xd u .00000 .00000 .00000 2.00000 -.T1849
5 %% be 1.00708 .00000 .00000 2.00000 . 00000
6 xB be 1.41300 .00000 .00000 2.00000 00000
d a4 be 2.00000 .00000 .00000 2.00000 00000
8 rh o -1.00000 00000 -1.00000 -1.00000 -2.99580
pitn= 2 obj= 0.33000001d+01 tmax=  0.10000d+01 variable xd ( 4) fram 1l
replaces besic variable x8 ( 68) which passes to ul
problem name test objective value 3.3000000716d+00
status optimal soln iteration 2 superbesics O
cbjective ob ()
the rh
rangee
bounds bo
section 1 - rows
number .row.. at ...activity... elack activity ..lower limit. ..upper limit. .dual activity
9 ob be 3.30000 -3.30000 none none 1.00000
10 r1 oq 3.00000 .00000 3.00000 3.00000 -1.00717
11 2 oq 3.82600 00000 3.82800 3.82800 -.00200
s 12 r3 oq 3.4251 .00000 3.42251 3.42261 . 00000
13 rd oq 1.00000 .00000 1.00000 1.00000 .00200
s 14 b oq -1.00000 . 00000 -1.00000 -1.00000 .00000
section 2 - columns
number .column. at ...activity... .obj gradient. ..lower limit. ..upper limit. reduced gradnt
1 x be 3.00000 1.10000 .00000 none 0.00000
2 2 be 1.584567 0.00000 nane 5.00000 . 00000
3 3 u .00000 .00000 00000 2.00000 -1.00717
4 x be 68700 .00000 . 00000 2.00000 -.00200
B x5 be 1.83783 .00000 00000 2.00000 00000
6 xB ul 2.00000 . 00000 00000 2.00000 . 00200
d 7 7 be 2.00000 .00000 . 00000 2.00000 00000
8 rh oq ~1.00000 .00000 -1.00000 -1.00000 -3. 209717
pitn= 3 for the value of the parameter= 1.00000 infinite range (tmex.ge.1.e15)
data plp file
19 name plpdb
20 ‘set’ .000000d +00
2 upper x -1,00000d+00 .00000d+00
22 endata
plp bound
section 1 - rows
aumber ...row.. .11 direction. .lower limit.. .ul direction. .upper limit.. ..i
10 r1 .00000 .00000 .00000 .00000 2
11 2 .00000 .00000 . 00000 .00000 3
12 r3 .00000 .00000 .00000 .00000 4
13 4 .00000 00000 .00000 00000 b
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14 rb .00000 .00000 . 00000 .00000 (]
section 2 - columns
number .columm. .11 direction. .lower limit.. .ul direction. .upper limit.. m+j
1 x . 00000 .00000 .00000 none 7
2 xa .00000 none ~1.00000 5.00000 8
3 3 .00000 .00000 .00000 2.00000 [}
4 .00000 .00000 . 00000 2.00000 10
B xb .00000 .00000 . 00000 2.00000 11
6 xB .00000 00000 .00000 2.00000 12
7 X7 .00000 .00000 .00000 2.00000 13
a. no change in the optimal solution
finite range (tmom= 0.341B54d+01)
b. no change in the optimal basis
finite range (tmod=  0.34154d+01)
section 1 - rows
number ...row.. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
10 r1 .00000 .00000 . 00000 00000 00000 .00000
11 r2 00000 .00000 .00000 . 00000 00000 .00000
12 13 .00000 .00000 .00000 . 00000 .00000 .00000
13 rd .00000 00000 .00000 .00000 .00000 .00000
14 b .00000 00000 .00000 .00000 .00000 .00000
section 2 - columns
number .colum. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
1 d . 00000 .00000 00000 .00000 none none
2 2 .00000 none none -1.00000 1.684E7 1.58457
3 x3 00000 .00000 00000 .00000 2.00000 2.00000
4 . 00000 .00000 00000 . 00000 2.00000 2.00000
E x5 00000 .00000 00000 . 00000 2.00000 2.00000
6 xB . 00000 .00000 00000 .00000 2.00000 2.00000
7 X7 . 00000 .00000 .00000 .00000 2.00000 2.00000
pitn= 1 obj= 0.33000001d+01 tmx=  0.34164d+01 variable x3 ( 3) frem 11
replaces basic variable x2 { 2) which passes to ul
problem nmne  test objective value  3.3000001013d+00
status optimal soln iteration 1 superbasics 0
objective ob (mex)
ths rh
ranges
bounds bo
section 1 - rows
number ...row.. at ...activity... slack activity ..lower limit. ..upper limit. .dual activity ..i
® ob bs 3.30000 -3.30000 none none 1.00000 1
a 10 r1 o« 3.00000 . Q0000 3.00000 3.00000 . 00000 2
11 2 « 3.82600 .00000 3.82800 3.826800 .00000 3
a 12 r3 « 3.42351 .00000 3.42261 3.42351 .00000 4
13 rd « 1.00000 .00000 1.00000 1.00000 1.56097 B
a 13 b « -1.00000 .00000 -1.00000 -1.00000 .00000 (]
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section 2 - columns
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nmber .colum. at ...activity... .obj gradient. .. lower limit. ..upper limit. reduced gradnt m+j
1 d be 3.00000 1.10000 .00000 none . 00000 7
2 2 ul 1.68457 0.00000 none 1.68457 1.10000 8

d 3 3 be 0.00000 . 00000 .00000 2.00000 . 00000 9
4 x! ba .B8T00 .00000 .00000 2.00000 . 00000 10
6 xb ba 1.83783 .00000 00000 2.00000 . 00000 11
6 8 ul 2.00000 . 00000 .00000 2.00000 1.55607 12

d 7 9 ba 2.00000 . 00000 00000 2.00000 00000 13
8 rh ] -1.00000 . 00000 -1.00000 ~1.00000 1.55697 14

a. no change in the optimal solution

finite range (tmmom= .00000d+00)
b. no change in the optimml basis
finite range (tmexb= 0.16207d4+00)

section 1 - rows

number ...row.. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
10 r1 . 00000 .00000 . 00000 .00000 .00000 .00000
11 2 .00000 .00000 .00000 .00000 .00000 .00000
12 r3 .00000 00000 .00000 .00000 .00000 .00000
13 r4 . 00000 .00000 . 00000 .00000 .00000 .00000
14 16 .00000 .00000 . 00000 00000 00000 . 00000

section 2 - columns

number .colum. .11 direction. .11 boundary a .11 boundary b .ul direction. .ul boundary a .ul boundary b
1 d .00000 00000 00000 00000 none none
2 X2 .00000 none none -1.00000 1.58467 1.42261
3 3 00000 .00000 .00000 00000 2.00000 2.00000
4 00000 00000 .00000 .00000 2.00000 2..00000
6 xb 00000 .00000 .00000 .00000 2.00000 2.00000
6 x8 00000 .00000 .00000 .00000 2.00000 2.00000
7 00000 .00000 .00000 00000 2.00000 2.00000

exit -- problem is infeasible.
no. and sum of infeasibilities 1 9.999990464~03

pitn= 2 tmax= 0.36775d+01
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