
Observability of Systems under 
Uncertainty

Aubin, J.-P. & Frankowska, H.

IIASA Working Paper

WP-87-091

September 1987 



Aubin J­P & Frankowska H (1987). Observability of Systems under Uncertainty. IIASA Working Paper. IIASA, Laxenburg, 
Austria: WP­87­091 Copyright © 1987 by the author(s). http://pure.iiasa.ac.at/id/eprint/2961/ 

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 
servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


WORKIIVG PAPER 

OBSERVABILITY OF SYSTEMS UNDER 
UNCERTAINTY 

Jean-Pierre Aubin 
and 
Halina Frankowska 

September 1987 
WP-87-91 

I n t e r n a t i o n a l  I n s t i t u t e  
for Applied Systems Analysis 



NOT FOR QUOTATION 
WITHOUT PERMISSION 
OF THE AUTHOR 

OBSERVABILITY OF SYSTEMS UNDER 
UNCERTAINTY 

Jean-Pierre Aubin and 
Halina ~rankowska* 

September 1987 
WP-87-91 

* 
CEREMADE, Universitg de Paris-Dauphine, 
Paris, France 

W o r k i n g  p a p e r s  are interim reports on work of the 
International Institute for Applied Systems Analysis 
and have received only limited review. Views or 
opinions expressed herein do not necessarily repre- 
sent those of the Institute or of its ~ational Member 
Organizations. 

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 
A-2361 Laxenburg, Austria 



FOREWORD 

The authors observe the evolution t E [O.T] r x( t )  E -Y of 
the state z(.) of a system under uncertainty governed by a 
differential inclusion 

for almost al l t  E [O,T], z'(t) E F ( t , x ( t ) )  

through an observation map H 

The set-valued character due t,o the uncertainty leads them to 
introduce 

Sharp Input-Output map which is the (usual) product 

Hazy Input-Output map which is the square product 

Recovering the input $0 from the outputs I- (so) or I+ (xO j means 
that these Input-Output maps are "injective* in the sense t,hat. 
locally, 

whenever sl # La! then I ( x l )  n I(x2) = 8 

They provide criteria for both sharp and hazy local ohservability 
in terms of (global) sharp and hazy observabiliy of the variational 
inclusion 

w'(t) E D F ( t ,  ~ ( t ) , i ( t ) ) ( , w  ( t ) )  

which is a .'linearizationY of the differential inclusion along a 
solution T ( . ) ,  where for almost all t ,  DF ( 6 ,  +, y )  ( I L )  denotes the 
~ont~ingent derivative of t,he set,-valued map F ( t ,  .. .) at a point, 
(3, y )  of its graph. They reach these conclusionv by implementhlg 
the following st,rategy: 

iii 



I. Provide a general principle of local injectivity and observ- 
ability of a set-valued map I, which derives these properties 
from the fact tha t  the kernel of an adequate derivative of I 
is equal to  0. 

2. Supply chain rule formulas which allow to compute t,he 
derivatives of the usual product I- and the square prod- 
uct I+ from the derivatives of the observation map H and 
the  solution map S . 

3. Characterize t h e  various derivatives of the solution map S 
in terms of the solution maps of the associated variational 
inclusions. 

4. Piece together these results for deriving local sharp and 
hazy observability of the origial systern fro111 sharp and hazy 
observability of the variational inclusions. 

3. Study global sharp and hazy observability of the variational 
inclusions. 

Alexander B. I iunhanski 
C l a i m a n  

System and Decision Sciences Program 
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Observability of Systems under Uncertainty 

1 Introduction 

We describe the evolution f E [0, TI + a ( f )  E -1- of the state z(.) of a system 
under uncertainty by a differential inclusion 

(1  1 foralmost al l i€[O,T] ,  zl(t.) E F( i , r ( t ) )  

where t8he set-valued map charactler t*akes into account disturbances and/or 
pert,tirl)ations of the system1. This syst,em is observed through an ohser- 
vation map H, which is generally a set-valued map from the state space 
S to some obsen-ation space Y ,  which associates with each solution to the 
differential inclusion ( I )  an observation2 y(.) satisbing 

Ohservahility concepts deal with the possibility of recovering the initial state 
xo = r (0 )  of the system knowing only the evolution of an observation t E 
[0, TI c y ( t )  during the interval (0, TI, and naturally, knowing the laws (1) 
and (2). Once we get the initial state s o .  we may. by studying the differential 
inclusion, gather information about the solutions starting from zo, using the 
many results provided by the theory of differential inclusionst. Let 5 := ZF 

'A  familiar representation of uncertainty is represented in parametrized form 

for almost all t E lO.Tj, z'(t) = j ( t .  z( t ) ]  + g(t. d(t)), d( t )  E D(t )  

'general ly, given in a paranlecrized form 

We assume for simplicity t,hat H does not depend of the time I. but we shall provide in 
the appropriate remarks tlw extensions to the time-dependent case. 

"or instance, under an adequate Lipschitr property, we know that for every Z(.) E 

S(z0).  

S(zg) E Z(.) - M diamF(t, S(t) jdtB LT 
where :\I is a constant independent of Z(.) and B denotes the closed unit ball in the 
Soholev spare U"-'(O, T). 



from -1- t o  C(0, T : S )  denote the solut,ion m a p  associating with e v e v  initial 
st,ate ro E .Y the (possibly empty) set S ( zo )  of solutiorls t o  the differential 
inclusion (1) starting a t  xo at  the initial time t = 0. 

In other words, we have introduced an Input-Output system where the 

1. inputs , are the initial states xo 

2. outputs, are the observations y(.) E H ( x ( . ) )  of the evolution of t,he 
stafe of the system through H 

C 

Inputs States +. Outputs 
1 1 1 

-4- 3 o x ( - )  E S(xo)  +- y(.)  E H ( x ( - ) )  
t t t 

Initial States 
1 r ' ( f)  E F (t . z ( f ) )  
1 4 0 ) = x o  

Observations 

It remains t,o define an Input-Output  map. Bu t ,  because of the  set- 
valued character ( the prevence of uncertainty), one can conceive two dual 
ways for defining composition products of the set-valued maps S from X t,o 
the space C(0, T:X') and H from C (0, T; A-) to t (0 ,T;  1'). So, for s y s t e m  
under uncertainty, aye have to deal with two Input-Output maps from 
S tlo C(0, T;Y):  the 

Sharp Input-Output map which is the (usual) product 

V z0 E -y, 1- (xo) := ( H  0 S)  (xo) := U H (z(.)) 
4 . ) E  S ( t o !  

Haay Input-Output map which is the square product 

The sharp Input-Output  m a p  tracks at least the evolution of a stsate 
starting a t  some initial s tate s o  whereas the hazy Input-Output m a p  tracks 
all such solutions. 

Opinions may differ about  which would be the **rightv Input-Output 
map,  just because they depend upon the context in which a given problem 
is stated. So, we shall study observability properties of both the sharp and 
hazy Input-Output  maps. 



Recovering the input zo from the outputs I - ( r o )  or I+ ( r o )  meals tshat 
the set-valued maps are "inject,iven in some sense. 

Khen H  and S are single-valued maps, the input-output map is called 
observable whenever the product I  := H  5 is injective, i.e.. 

When we adapt this definition to the set-valued case, we come up with 
t,wo possibilities: If I  stands now for either I- or I+,  we can require either 
the property 

I ( r l )  = I ( r 2 )  3 X I  = $ 2  

or the stronger condition 

The first way would not be, in general, useful in the framework of uncertain 
systems since we often observe just one output y ( . )  CE H S ( z o )  and not the 
whole set of possible outputs H S ( z o ) .  That is why we shall the second 
point of view. by saying that the sharp or hazy Input-Output map I  is 
"observabale" around zo if  

(4 )  whenever z l  # z,, then I ( x l )  n I(2,) = 0 

If this property llolds only on a neighborhood of some zo, we shall say that 
I  is "locally observable around zo. 

This a very pleasant concept, which we shall study for hazy Input-Output 
maps. 

However. it is a bit too strong for sharp obsewability, and we shall be 
content with the weaker condition that the inverse image I - ' (yo)  of some 
observation yo contains at most one input so: 

(, -5 1 whenever xl # zo? then yo $4 I(x1)  

If this is the case, we shall say that the Input-Output map I  is "observ- 
able' at zo , and "locally observablen at so if it holds only on a neighbor- 
hood of zo (instead of "around" z o ) .  

In other words, sharp observability at  z0 means that whenever yo is an 
observation of some solution r*( . ) ,  i.e.. yo E H ( x * ( . ) ) ,  then 2*(0) = r0. 
Local sharp observability means that the above holds true only for those 
z"'s not too far from r(j. 



Hazy observability a t  $0 of yo means tha t  yo can be a "common" obser- 
vation only for one input  xo. In other words, if we (hopefully) observe an  
output  y. which is a common observation of all solutions z( . )  E S (G). then 
- 
xo = 50. 

Actually, the purpose of this paper is to derive local observability of 
both the sharp and hazy Input-Output  maps from the global sharp and 
hazy observability a t  0 of Variational inclusions" through a linearization4 
of the Input-Output  map. 

Here, variational inclusions are "linearizations" of the differential inclu- 
sion (1) along a solution z(.) E S ( s o )  of the form 

where for almost all t ,  D F ( t ,  z ,  y )  (u)  denotes an adequate concept of 
derivative (the contingent derivative, defined below) of the set-valiied map 
F ( t ,  ., .) a t  a point ( z ,  y) of its graph. Let us just say for the time t h a t  they 
are set-valued analogues of continuous linear operators. 

(These linearized differential inclusions are called v a r i a t i o n a l  i n e l u -  
dons because they extend (in various ways) the classical variational equa- 
tions of ordinary differential equations: their solutions starting a t  some u 
provide the directional derivative of the solution to  the initial system in the 
direction u.) 

To say t h a t  the variational inclusion is h a a i l y  (respectively s h a r p l y  ) 
observable a t  0 amounts to saying tha t  whenever all  (respectively at l e a s t  
o n e )  solutions a ( . )  t o  the variational inclusion (6) starting a t  IL sati3fy 

V t E [0, TI, H1(z(t)),w(t) = O 

then u = 0. 
To reach such conclusions, we shall choose the following strategy: 

1. Provide a general principle of local injectivity and observability of a 
set-valued map  I ,  which derives these properties from the fact r.hat 
the kernel of an  adequate derivative of I  is equal to 0. 

2. Supply chain rule formulas which allow to compiite the deri\-at,ives of 
the usual product I- and the square prodiict I+ from t,he der i~a t~ives  
of the observation map H and the  solution map  5. 

'The linearization techniques based on the differential calcillils and inverse tilnctirrn 
theorems for set-vallied maps has been succesfillly used in the study of local ronrrollability 
of differential inclusions and control systems with feedbacks. (See '13.1~J,11.12.1U~.) 



3. Characterize the various derivatives of the solution map S in terms of 
the solution maps of the associated variational inclusions. 

4. Piece together these results for deriving local sharp and hazy observ- 
abilit,y of the origial system from sharp and hazy ~bservabilit~y of the 
variational inclusions. 

5. Study global sharp and hazy observability of the variational inclusions6 

But, before implementing this program, we have to avoid the trivial case 
when the hazy Input,-Output map I+ takes (locally) empty values. 

For doing that ,  we " project" the differential inclusion (1) onto a differ- 
ential inclusion 

(8) for almost a U t  E [O,T], yl(t) E G(t ,y( t ) )  

in such a way that  the following property 

V (20, yo) E Graph(H) all solutions z(.) to ( I )  and y(.) to (8) 
('1 1 satisfy v ~ E [ o , T ] ,  y(t) E ~ ( z ( t ) )  

holds true. If such is the case, then the hazy Input-Output map I ,  is well 
defined. 

To proceed further, we need to  introduce the concept of "contingente 
derivative" of a set-valued map H from a Banach space -Y to a Banach space 
I- a t  a point (x, y )  of its graph: It is the set-valued map DH (x, y) : A- - I' 
which associates with any direction u the set DH(z ,  y) (u) of directions 41 

satisfying 

liminf d ( r ,  
H ( z  + hu') - y 

h ) = o  h-O+,v'+v 

"11is has already been done in 14.61 for time-independant closed convex processes, 
where it was shorn that  sharp observability is a dual concept of controllability and where 
various characterizations were provided. See below the comments on the oservability of a 
system around an equilibrium. 

"The choice of this particular derivative is motivated by the iact that its graph is the 
contingent cone to  the graph of H at (I, y),  where the contingent cone TK(I) to K ,Z X 
at  z E K is the set of directions v E X such that  

For our purpose. the contingent cone plays a major role compared to otller tangent cones. 
However, we shall need other tangent cones and associated derivatives. 



I t  is said "derivablen if for every ( x ,  y)  in the graph of F, v belongs to 
D F ( x ,  y) (n )  if and only if 

We extend the concept of C1-function by saying that  H is "sleek" if and 
only if' 

Graph(H) 3 ( 3 ,  y) - Graph(DH ( x ,  y)) is lower semicontinuouv 

(See the Appendix for more details on the differential calculus of jet-valued 
maps). 

Returning to  the projection problem, we shall say that  a set-valued map 
G : [0, T]  x Y - Y is a " lipschitzean8 square projection" of the set-valued 
map F : [0, T] x ,Y - X by H if and only if 

i )  F x Ci is lipschitzean around [0, T] x Graph(H) 
i i )  (z,  Y) E G(t,  Y) C nvE~[t , t )  DH ( x ?  Y)("') 

We shall prove that  if there exists a lipschitzean square projection of F b y  
H ,  then the hazy Input-Outpsrt map I+ := H S has non empty  values for 
any initial value yo E H(zo) .  

We state now the observability properties of the hazy Input-Output map 
around a solution F ( . )  t o  the differential inclusion (1). We assume that  F 
satisfies the following assumptions: 

Vz E X the set-valued map F (., z )  is meavurable 

i i )  V t E [0, TI, V x E .Y. F ( t  , z) is a closed nonempty set 
i i i )  3 k(.) E L1(O, T) such that  for almost all t E 10, TI 

the map F ( t .  a )  is k(t)  - Lipschitzean 

Theorem 1.1 Let rrs assrrme that H is eontinuorlsiy diflerentiable, that F 
satisfies assumptions (12), that i t  has linear growth9 and that it has a lips- 
chitzean rquare projection G b y  H. 

'Ln this case, the graph of D F ( t , z ,  y )  is a closed convex cone. Maps whose graphs 
are closed convex cones, called closed convex processes, are the set-valued analogues uf 
continuous linear operators, and  enjoy most of their properties. 

a This means tha t  
F ( f ,  2 )  c F ( t .  u )  f k(t)ll.c - yl B 

3 

3 c > 0 such tha t  i iF[t .+) i i  5 c(ll.rij + 1) 



1. If F i s  derivable and  if for some  F ( . )  E 5 ( z o )  f h e  cont ingent  iiar;at;ona/ 
inc lus ion  

( 1 3 )  for almost allt E [O,T], u : ' ( l )  E D F ( t , ~ ( t ) , $ ( t . ) ) ( u l ( t ) )  

is globally haz i ly  observable through H1(? f ( . ) )  a t  0, t h e n  the s y s t em  (1) 
is locally haz i ly  obseroahle through H at zo .  

2. If F i s  sleek a n d  if for  eve ry  so lu f i on  r ( . )  t o  the  di f lerential  i nc lu s ion  
(I) s tar t ing  a t  xo ,  the con t ingen t  var ia t ional  inc lus ions  

( 1 4 )  for almost allt E [O ,T] ,  u l ( t )  E D F ( t . r ( t ) , r l ( t ) ) ( u : ( t ) )  

i s  globally haz i ly  obserciable through H 1 ( r ( . ) )  a.t 0 ,  t h e n  the s y s t em  (1) 
i s  locally haz i ly  observable through H around xo. 

Ohservability properties of sharp Input-Output maps require st<ronger 
assumnptions. We state Cirst the result for a more simple, convcs case. 

Theorem 1.2 Let  u s  a s s u m e  tha t  H i s  l inear and  that  the gra.ph,s o f  the  
set-valued m a p s  F ( l , . )  : X u X are closed and  convez .  If  f o r  s o m e  F ( . )  E 
S ( x o )  the cont ingent  var ia t ional  inc lus ion  (IS) i s  globally e i ~ u r p l y  ohserclnble 
through H a t  0 ,  t h e n  the s y s t e m  (1) i s  globally sharply obseroable through H 
a t  xo.  

A more general case requires some additional assumptions. 

Theorem 1.3 A s s u m e  tha.t F h a s  closed cont:ez ima.ges, i s  con t inuous ,  
deritiable, L ipschi t z  i n  the  second variable wi th  a cons tan t  i ndependen t  of 1 

a n d  that  the growth of F i s  linear wi th  respect t o  the state. L e t  H be a twice 
con t inuous l y  di f lerentiable f unc t i on  from, X t o  another  f ini te  d imens iona l  
vector-space Y .  Cons ider  a n  observa f ion  y* E I - ( zo )  and  a s s u m e  tha t  for  
eve ry  so lu t ion  F ( . )  t o  the  di f lerential  i nc lu s ion  (1) sa t i s fy ing  y'(.) = H ( F ( . ) )  
a n d  for all t E [0 ,  T ]  we harle 

Ker H 1 ( 5 ( t ) )  n ( F ( t , : ( t ) )  - F ( l , F ( t ) ) ) '  = ( 0 1  

If for all T( . )  a s  abocie the  cont ingent  variat ional  inc lus ion  (1.3) i s  globnllp 
sharply  observable through H 1 ( z ( t ) )  around 0, then  the s y r t e m  i1) i s  locally 
sharply  obsert:able through H a t  ( x o ,  y'). 



2 Hazy and Sharp Input-Output Systems 

Let us consider a set-valued input-output, system of the following fonn huilt 
t,hrough a differential inclusion 

(1.5) for almost all t E [O,T], z l ( l )  E F ( t . z ( f ) )  

whose dynamics are described by a set-valued map F from [O.  TI x -1- t,o 
,I-, where ?rT is a finite dimensional vector-space (the s t a t e  space )  and 
0 < T 5 m. It governs the (uncertain) evolution of the state P(.) of the 
system. The i n p u t s  are the initial s t a t e s  zo and the o u t p u t s  are the 
obse rva t ions  y(.) E H ( x ( - ) )  of the evolution of the state of the system 
through a single-valued (or set-valued) map H from X t70 a11 observa t ion  
s p a c e  I ' .  

Let 5 := SF from X' to  C(0, T;,Y) denote the solution map associating 
with every initial state zo E A- the (possibly empty) set S (zo)  of solut.ions 
to  the differential inclusion (15) starting at  za a t  the initial time f = 0. 

One can conceive two dual ways for defining composition products of 
set#-valued maps G from a Banach space X to a Banach space I' and a set- 
valued map H from 1' to  a Banach space Z (which naturally coincide when 
H and G are single-valued): 

Definit ion 2.1 Let X, l', Z be Bnnach spaces and G : .Y .\r Y ,  H : 1' - 
Z be set-valued maps. 

1 .  the usual composition product (called simply the p r o d u c t )  H o G : 
,I' * Z o j  H and G at z is defined by 

f the s q u a r e  p r o d u c t  H G : ,Y - Z o j  H and G' at z is  defined by 

R e m a r k  

1. The ohservability problems that  we address involve the inversion of 
these Input-Out,put maps. 



There are two ways to adapt to the set8-valued case the formula which 
states that the inverse of a product is the product of the inverses (in 
reverse order), since we know that, there are two ways of defining the. 
inverse image by a set-valued map S of a subset Ad: 

We then observe the following forn~ulas of the inverse of composition 
products: 

i) (H 0 S) - l ( y )  = S-(H-'(y))  
\ ii) (Ho S)-'(y) = St (H- ' (y ) )  

This may provide a further justification of t,he introduction of those 
two "dualr composition products. 

2. Recall also that a set-valued map S is upper semicontinuous if and 
only if the inverse images S- of open subsets are open and that i t  
is lower semicontinuous if and only if the inverse images S' of open 
subsets are open. 

3. Observe finally that  square products are implicitely involved in the 
factorization of maps. Let X be a subset, R be an equivalence relation 
on X and d denote the canonical surjection from X onto the factor 
space X/R. If / is a single-valued map from X to Y ,  its factorization 
/": X/R I+ 2' is defined by 

It is non trivial if and only if / is consistent with the equivalence 
relation R, i.e., if and only if / ( 2 )  = /(y) whenever @(z) = &(y). 

When F : X .\~t Y is a set-valued map, we can define its factorization 
k : ,%-/I? ru Y by 

Then we can associate with this system described through state-space 
representation t,wo Input,-Output maps: 

Definition 2.2 Let us consider a systern (F,H) defined t y  the set-valued 
map F deecribing the dynamics o j  the diflerential inclueion and the obser- 
tiation map H. 



Let 5 := sp d~ , t~c , te  the so1vt;on map o j  the differential inclusion. lire 
sho.11 cay fhof 

1. the prodtltf  I- := H 0 5, Iron1 .J- to C(0, T;I-) defined by 

i s  the Sharp Input -Outpt r t  mc.ap. 

2. the "square p r c ~ d u t t -  I+ := H S, /ram -4- to C(0, T; I-) defined by 

is the Hazy Inpt r f -Output  map. 

Remark 

Observe that when the obser~at~ion rnap is single-valued, the use of a non 
trivial hazy Input-Output map requires that all solutions r ( - )  E S (xo) yield 
the same observation y(.) = H(z(-)). Hence we have to study when this 
possibility occurs. by projecting the differential inclusion (15) onto a differ- 
ential equation which "tracks" all the solutions to  the differential inclusion. 
This is the purpose of the next sectmion. 

3 Projection of a System onto the Observation 
Space 

Our first task is to provide conditions implying that  the hazy Input-Output 
map I+ := H 13 S is not trivial, above all when the observation map is 
single-valued. 

V'e shall tackle this issue by "projecting" the differential inclusion given 
in the stsate space S onto a differential inclusion in the observation space 
I' in such a way that solutions to  the projected differential inclusion are 
observations of solutions to the original differential inclusion. 

Let us consider a differential inclusion 



where F : [0, TI x .A- .u -A- is a riontrivial set-valued map and an observation 
map H : .I- .u 1- from X to another finite dimensional vector-space 1'. 

We project the differential inclusion (16) to a differential inclusion (or a 
differentmid equation) on the observation space IT described by a set-valued 
map C; (or a single-valued map g) 

which allows t o  track partially or completely solutions x(.) t.o the differential 
inclusion (16) in the follouing sense: 

a /  V (so, yo) E Graph(H) there exist solutions z(.) and y(-)  

b/  V (zo,  yo) E Graph(H) all solutions z(.) and y(.) 

to (16) and (17) satisfy V t E [O,T], y(t)  E H ( z ( t ) )  

The second property means that  the differential inclusion (17) is so to  speak 
"blindP t-o the solutions to the differential inclusion (16). When it, is sat.isfied, 
we see that  for all xo E H- ' (yo) ,  all the solutions t,o the differential inclusion 
(16) do satisfy 

V t E 10, TI. y(t) E H ( x ( t ) )  

In the next Proposition we denote by D H ( x .  g )  the contingent derivative of 
H a t  (s, y) (see Appendix for the definition of D H )  

Proposltlon 3.1 Let rrs consider a closed set-valued m a p  H f rom .I- to  I.'. 

1. Let us assume  that F and G are nontrivial  upper sencicontin7lous set- 
cralued m a p s  with n o n e m p t y  compact convez images  a.nd 7r:s'th linear 
growth. W e  posit the assumpt ion 

(19) V (s,  y) E Graph(H),  G(t ,  Y) n ( D H ( ~ , Y )  F) (tl x )  # 0 

T h e n  property ( I S )  a/ holds true. 

2 Let us  assume  that F x G is lipschilzean on a neighborhood of the graph 
of H and has  a linear growth. W-e posit the nesumpl ion 

(20) V ( z , y ) ~ G r a p h ( H ) , G ( t , y ) C  ( D H ( z , y ) ~ F ) ( t , r )  

T h e n  property (1 8 )  b/ is satisfied. 

Proof 
It follows obviously from the viability and invariance theorems of t,he 

graph of H for the set-valued map F x G'. 



1. When G'(f, y )  int,ersects (DH (x,  y )o  F ) ( t , x )  = Ut,EP(l.rl D H ( r ,  y ) ( t  1. 
we deduce that  Graph(H) is a riahilitmy donlain of F x G. Hence wr 
apply the I'iability Theorem (See [14], ( I ,  Theorem 4.2.1. p.1801 ). 

2. When G' is lipschitzean and satislies (20). we deduce t,hat Graph(H) 
is invariant by F x G'. Hence we apply t,he Invariance Tllrorem (See 
[el. [I. Theorem 4.6.21 ). 

In particular, we have obtained a sufficient condition for the hazy Input- 
Output set-valued map I+ to  be non trivial. 

First? i t  will be convenient to introduce the followiilg definition. 

Definition 3.1 Let us consider F : [0, TI x X  - ,A- and H : 10, T ]  x -1- - 2 . .  
IjVe shall say that a set-valued map  G : [O. TI x 1' - Y is a Upschitaean 
square projection of a set-valued m a y  F : [O.T] x ,X - X by H if and 
only if 

i) F x G is lipschitzean around [0, TI x Oraph(H)  
\ ii) V ( 2 , ~ )  E Graph(H),  G(l .y)  C ( D H ( X , Y ) U  F )  (tqx) 

Therefore, for being able to use nontrivial hazy Input-Output. maps, we 
shal use the following consequence of Proposition 3.1 

Propoeition 3.2 Let us assume that F : [0 ,  TI x X ..A A- and H : X - 2' 
are given. If there ezists  a lipschitzean square projection of F b!y H. then the 
hazy  Input-Outpuf  m a p  I+ := H S has non e m p t y  values for any initial 
value yo E H (xo). 

Remark 

When the observation map H k single-valued and differentiable, then 
conditions (19) and (20) become respectively 

i) V Y H 1  Y n u ~ ,  H (  ' # R 
or G ( ~ , Y )  n (H'(z) F ) ( ~ ; x )  # Q) 

i i )  v Y E ( X I ,  a t ,  Y) c nvEp(t,t, HI(Z)  (4 
=: (H1(z) F )  ( t ,  z) 

When G' = g is a single-valued map, we obtain naturally the following 
consequence. 



Corollary 3.1 L e t  ! I S  consider a closed set-r,alned m a p  H from X lo  1'. 

1. Le t  rrs a s s u m e  tha t  F i s  a nontr iv ia l  upper  s emicon t inuous  sel-r:nlued 
m a p  with n o n e m p t y  compar  t eonriez images  and  wi th  l inear growth and 
that  there ez i s t s  i s  a continuous seleetr'on g ~ ~ ~ i t h  l inear growth of the 
produe t 

T h e n  property (1 S j  a/ holds  true. 

2. Le t  71s a s s u m e  that  F x g  i s  l ipschitzean o n  a rreightorhood of the graph 
of H w i t h  linear growth. If g sat is f ies  

then  property ( 1 8 )  b/  i s  satisfied. 

Remark 

Naturally, these formulas have fheir analogues when the observation 
maps are time-dependant . 

Conditions (19) and (20) become respectively 

When the observation map H is single-valued and differentiable, then 
these conditions can be written in the form 

' k) V (t ,  x) E Dom(H), 

G ( ~ . Y )  n ( & ~ ( t . z )  +u,,F,,,*)~:(:(t,z)~l) # 0 
or C( t ,y )  n ( $ H ( ~ , x )  + (H1(t ,z)  0 F)(~ . ,z ) )  # 0 

) V ( t , z ) ~ D o m ( H ) ,  

~ ( t ,  Y) c @(t,  2) + n,E~(t,z, ~ ) t :  

=: & H ( t , z )  + (H1( t , z )o  F ) ( t , s )  

Remark 



We observe tha t  when the set-valued maps F and C: are t,ime-indepen- 
dant,  Proposition 3.1 can be reformulated in terms of commutativity of 
schemes for square products. 

Let us denote by iP the solution map associating to any yo a solution t.o 
the differential inclusion (equation) (17) starting a t  yo (when G iy single- 
valued such solution is unique). 

Then we can deduce tha t  property (18) b /  is equivalent t o  

Condition (20) becomes: for all y E Im(H) ,  

In other words, the  second par t  of Proposition 3.1 implies tha t  if the  
scheme 

F iY - iY 
is Ucomrnutative for the square products', then the derived scheme 

is also commutative for the square products. 

4 Hazy and Sharp Observability 

The observability concepts deal with the possibility of recovering the input 
- here, the initial st,ate --, from the observation of the evolution of the 
state. In other words, they are related to  the injectivity of the sharp and  
hazy Input-Output set-valued maps,  or,  more generally, to  the univocity (or  
single-valuedness) of the  inverses of those Input-Output maps. 

So. we s ta r t  with precise definitions. 

Definition 4.1 Let 3 : S . ~ r  I.' be a set-calued map. We shall say that it 
enjoys local inveree univodty around an element (z', y') of ito graph if 
and only if there ezists a neighborhood 1V(t*) such that 

( x I such t h a t  y* E 3 ( t )  } fl ~V(T*)  = { J ~ }  



I j  the neighborhood K ( x * )  coincides with the domain o j  3, 3 is said to Irnue 
(global) inverse univocity. 

Cl'e shall say that it is locally iqjeetive around x* i j  and o d y  if there 
ezists a neighborhood A-(x') such that, for all xl # rz E Il'(r*), u3e have 
3(r1) n 3(rt) = 0. It is  said to be (globally) idective if we can take for 
neiglbborhood A'(x") the whole domain of 3. 

W ' ~ t h  these definitions at  hand, we are able t80 adapt some of the observ- 
ability concepts to the set.-valued case. 

Definition 4.2 A s s u m e  that the sharp and hazy Input-Output maps are 
defined on nonempty  open subsets. Let y* E H(S(xo ) )  be an  observation 
assc,ciated with a n  initial state s o .  

U'e shall say that the syste7n is sharply observable at (respect;vely 
locally sharply observable at) r o  i f  and only i j  the sharp Input-Output 
m a p  I- enjoys the global inverse univocity (respecticrely local). 

Hazily observable and locally hazily observable systems are defined in  
the same way, when the sharp Input-Output m a p  is replaced by the hazy 
Input-Output m a p  I+. 

The  sys tem i s  said to  be haaily (locally) observable around i f  the 
hazy  Input-Outpu t m a p  I+ is (locally) injective. 

Remark 

Several obvious remarks are in order. We observe that t,he system is 
sharply locally observable at xo if and only if there exists a neighborhood 
N ( r O )  of s o  such tha t  

if 3 (.) E S (N(xo)) is such that  y*(.) E H (x(.)), then x(0) = xo 

i.e., sharp observability means that  an observation y*(.) which characterizes 
the input s o .  

The system is hazily locally observable at (20 if and only if there exists 
a neighborhood N ( r o )  of ro such that, for all x1 E n'(ri), 

if V r ( . )  E S(x l ) ,  y*(.) E H(x(.)) ,  then z l  = s o  

It is also clear that  sharp local (respectively global) obsenrability implies 
hazy local (respectively global) ob~ervabilit~y. 



We mention tha t  if we consider two systems J1 and J2 such that  

then 

1. If J2 is sharply locally (respectively globally) observable. so is 31 

2. If Ti is hazily locally (respectively globally) observable, so is 72 

We shall derive local ohservability and injectivity of a set-valued rrlap 
3 : ,Y r, I -  from a general principle based on the differential calculus of 
set,-valued maps. 

For tha t  purpose, we introduce its contingent and paratingent derivatives 
D 3 ( r r ,  Y*)  and P.?(x*, Y*) ,  which are closed processes from S to I -  (see 
Appendix for precise definitions). 

Since 0 E D 3 ( x * ,  y*)(O), we observe that  to  say that  the "linearized 
system" D7(3*, y*) enjoys the inverse univocity amounts to  saying that  the 
inverse image D.?(x*, y * ) - l ( ~ )  contains only one element. i.e., that its kernel 
E;erD3(x*? y*) is equal to 0, where the kernel is naturally defined by 

Theorem 4.1 Let 3 be a set-valued map from a f in i te  dimensiona.1 ciector- 

space .I- to a Banach space Y and (z*, y*) belong to its graph. 

1. I j  the kernel of the contingent derivative D ~ ( x * ,  yt )  c?f 3 at (re, Y*) is 

equal to { 0 ), then there ezists a neighborhood N ( e * )  such that 

(21) { z  such that  y* E 3 ( x )  } n N(z*)  = {r*} 

2. Let us assume that there ezits 7 > 0 such that 3 ( r * +  yB) is relatively 

compact and that 3 has a closed graph. 
I j j o r  a l l y  E 3(r*) the kernels c) j  the paratingent dericatioes P 3 ( r ' , y )  
c ~ j  3 at (r*, y) are eqtlal to { 0 ) ,  then 3 is locally injective around r'. 

Proof 

I ,  Assume that  the conclusion (21) is false . Then there esists a sequence 
of elements z, # x* converging to z* satisfving 



Let us set h,, := IIx,, - 2*1(, wlLich converges t o  0, and 

The elements ((I, do belong t,o the unit sphere, which is compact. Hence 
a subsequence (again denoted) u, does converge to some u different 
from 0. Since the above equation can be written 

we deduce tha t  
0 E D 3 ( r * ,  y') ( u )  

Hence we have proved the existtnce of a non zero element of the kernel 
of 03 (r*.  y'), which is a contradiction. 

2. Assume t h a t  3 is not locally injective. Then there exists a sequence of 
elements zf,. z: E N(z*) .  zf, # z i ,  converging t o  x* and y, satisfying 

Let us set h, := IIzf, - z: 1 1 ,  which converges to  0, and 

The elements u, do belong t o  the unit sphere, which is compact. Hence 
a subsequence (again denoted) u,, does converge to some u different 
from 0. 

Then for all large n 

we deduce t h a t  a subsequence (again denotled) y, converges t o  some 
y E 3(x*)  (because Graph(3 )  is closed). 

Since the above equation implies t ha t  

and we deduce t h a t  
0 E P 3 ( z * , y ) ( u )  

Hence we have p r o ~ e d  the existence of a non zero element of the kernel 
of P3 (x*. y), which is a contradiction. 



When T is convex (i.e., its graph is convex), we have a simple criterion 
for global ohsenrahility : 

Proposition 4.1 Le 
S t o  a B a n a c h  space 
algebraic deri t~atr ' i le '~ 

t 3 be a convez  s e f - va l t~ed  m a p  from a B a n a c h  space 
1.. and (x*, y*) belong to  i t s  graph. If the ke rne l  of i t s  

D,F(x*, y*) is equal t o  0, t hen  

Proof 
If not, there exists s # x* such that y" E 3(x) .  We set .u := x - 2%. 

Equality 
y * + o  = y* E 3 (x )  = 3(r* + u )  

implies t,hat IL, which is different from 0, does belong to  the kernel of 
Da3(z* ,y*) .  

Therefore, by using this theorem for proving sufficient. conditions for 
sharp and/or hazy observability, we need 

1. to have chain rule formulas for composit.ion and square products of 
set-valued maps, 

2. characterize the derivatives of the solution map in terms of solutions 
to the associated variational equations. 

The next proposition provides chaine rule formulas for square products 
which are needed for estimating the contingent, and paratingent derivatives 
of t,he hazy Input4-Output map I+ in terms of the adjacent and circatangent 
derivatives c;f the map C a t  (z*,y*) (see Appendix for the precise defini- 
tions). 

Proposition 4.2 L e f  u s  cons ider  a set- t~alued m a p  G' from n B a n n c h  space 
S t o  a B a n a c h  space Y a n d  a single-valued m a p  H from I' t o  a Barrach 
space Z .  Ass t rme  t h a f  C: is l ipschi f zean  around x'. If H is d i f lerent in t ie  
around some  y* E C(x*) ,  t hen  

''It is defined by 

t- E D . T ( z , y ) ( u )  t, 3 h  > 0 suchthat y + h v  E T ( z t h u )  



1, t h e  r o n f i n g e n t  d e r i i i n f i v e  of  H oG' i s  cc7nfnined in f h e  sqrlnre prodtrrt  
o f  t h e  derdr a f i r  e  of H a n d  the  a d j a c e n t  d e r i v n f i t  e  o j  C;: f o r  a l l  ri E 
~ o m ( D % ( x " ,  y n ) )  u e  ttat.e 

2. i j H  i s  c o n t i n u o u s l y  d i f l e r e n t i a b l e  a r o u n d  y* t h e n  t h e  p a r a t i n g e n t  d e r i o n -  
t i v e  of  H G' is c o n t a i n e d  i n  t h e  square  produr t  o j  t h e  der' 's .nti~.e o j  
H  a n d  t h e  c i r c a t a n g e n t  d e r i v a t i v e  e j  G: V u E Dom (CG(x*,y*))  we 
hatre 

Proof 

1. Let u E Dom DbG'(x*, y*) an d ~j belong t o  D(H G)(x* .  H ( y * ) )  ( u ) .  
Hence there exist a sequence h, > 0 converging t o  0 and sequences of 
elements u, and s, converging tlo u and u. respectively such t>hat 

Take now any v in Db(C')(x", y*)( .u) .  Since G  is lipschitzean around 
z*, there exists a sequence of elements v, converging t o  1; such tha t  

Therefore, 

Since H is differentiable around y*, we infer t ha t  

Since this is t rue for every element v of D T ( z * . y X ) ( . u ) .  we deduce 
that  



2. Let u E Dom CG(x*.y*) and u belong LO P ( H n G ) ( r * . H i y W ) ) ( r r j .  
Hence t(I1ere exist a sequence h ,  > 0 converging t,o 0 and sequences of 
elements (x,. z , )  E Graph(H q G) .  u ,  and u ,, converging to  (3". 2 ' ) .  

u and v1 respectively such tha t  

The set-valued map C: being lipschitzean, there exists a sequence of 
elements y, E G ( x , )  converging t o  y*. By definition of the square 
product,  we h o w  t,hat t, = H(y, ,) .  

Take now any P: in C G ( r * ,  y*) (u). Since G is lipschitzean around x " .  
there exists a sequence of elements PI, converging t o  71  such t , I~at  

Therefore, 

Since H is cont~inuously differentiable around y', we infer t,hat 

Since this is true for every element 1 of C G ( r * ,  y*)(,u),  we deduce tha t  

For the usual product,  i t  is easy t.o check that :  

Kat,urally, equality holds t rue for algebraic derivatives: If H E i (I,', 2 )  
is a linear operator, we check tha t  



R e  do not know for the time other elegant criteria itxiplying the chain 
rule (39) for the usual composition product of set,-valued maps in infinite 
dimensional spaces". 

Estimates of the various derivatives of the solution map S in term of the 
solution maps of the variational inclusions are provided in the next section. 

5 Variational Inclusions 

We now provide estimates of the contingent. adjacent. and circatangelit 
derivatives of the solution map S associated t,o the differential inclusion 

We shall express these estimates in terms of the solution maps of adequate 
linearizations of differential inclusion (23) of the form 

where for almost all t. F'(t , x ,  y) (u) denotes one of the (contingent, adjacent 
or circatangent) derivatives of the set8-valued map F ( t ,  -, - )  at  a point (2. y) 
of its graph (in this section the set-valued map F is regarded as a family of 
set-valued maps r - F ( t , z ) )  and the deric~atives are taken with respect to 
the rtate vario.ble only) .  

These linearized differential inclusions can be called the variational 
equations, since they extend (in various ways) the classical variational 
equations of ordinary differential equations. 

"Let us mention however the following result involving the co-subdifferential 
DG(+o, yo)**, which is the closed convex process from I" to X' defined by 

p E DG(z ,  v)0'(9) if and only if 
'd(z ' ,yl]  €Graph(G),  < ~ , z ' - z > < <  9 , ~ ' - y  > 

Let us assume that H is a continuous linear operator H 5 Z j  from I' to Z. Equalixy 

D(H ?G) (zo ,  Bvo)(u) = H c DG(zo.yo)(u) 

holds true if X and I' are reflexive Banach spaces and the cr~subdifferenxial of G' at  (zo, yo j 
satisfies 

I m ( g )  +Dom(DG(zo,yoJo*) = Y *  

Furthermore. this condition implies that the kernels of D(H o G)(zo,Byo)  and 
H cDG(z0.  yo) are equal to (0) (see 171 ). 



Let x be a solut,ion of the differential inclusion (23). R'e assume tliat F 
satisfies fhe followhg assumptions: 

Vx E S the set-valued map F (., x )  is measurable 
i 4 )  V ~ E [ O . T ] , V X E . Y .  F ( t . x )  i sac losedse t  
i i i)  33 > 0. A ( . )  E L1(O,T) such that for almost all t E [O.T] 

the map F ( t .  .) is k (t ) - Lipschitz on r(t ) + BB 

Consider the a d j a c e n t  var ia t ional  hlclusion,  which is t,lie 'Llinearized" 
along the t#rajectory Z inclusion 

(35) 
1 ~ ' ( t )  E DDF(t,z(t).z'(t))(u;(t.)) a.e. in [O. TI 
1 w(0) = 21 

where ti E S. In Theorems ,5.1. 5.2 below we consider the solution map $ 
as the set#-valued map from En to the Sobolev space LT,"*'(o, T : R n )  . 
T h e o r e m  5.1 (Adjacen t  va r i a t iona l  inclusion) If the assumpt ic~ns  (24) 
hold true then for all u E S, every  solution a1 E Ct-'~'(0. T:,Y) to the lin- 
earked inclusion (2.5) satisfies u. E DD,C(F(0), F )  ( u )  

In other words, 

P r o  of 
Filippov's theorem (see for example [I, Theorem 2.4.1, p.1201 ) implies 

that  t,he map u -+ S ( u )  is lipschitzean on a neighborhood of ~ ( 0 ) .  Let 
hn > 0, n = 1,2,  ... be a sequence converging to 0. Then, by the very 
definition of the adjacent derivative, for almost all t E [0, TI , 

Moreover, since 2 (t ) E F (t, ~ ( t  ) ) a.e. in [0, TI, by (24) , for all sufficiently 
large n and almost all t E [O, TI 

d ( $ ( t )  + h,,w'(t), F ( t . ~ ( t )  + h,ui(t))) 5 h,, ( ; i ~ ' ( t ) ; ~  + k ( t )  IIu~(t)l)) 

This, (26) and the Lebesgue dominated convergence theorem yield 



where lirn,,,, o(h,,)/h,, = 0. By the Filippov Theorem (see for example 
(1, Tlleorenl 2.4.1, p.1301) and by (27) there exist A/ 2 0 and solut.ions 
yn E S (F(0) + h,, u) satisfying 

Since ( ~ ~ ( 0 )  - 5(0))/h,, = u = u!(O) this implies that 
- 

Yn - Y' - 3  lim - = w. in C(0, T ;  x); lim = ~c in L' (0. T ;  S) 
n-" hn "-" h,, 

Hence 

Since u and u> are arbitrary the proof is complete. 
Consider next the circatangent variational inclusion, which is the 

linearization involving circatangent derivatives: 

(28) 
w'(t)  E C F  ( t ,  m(t) ,  ~ ' ( t , ) )  ( u ; ( t ) )  a.e. in [O? TI 

\ W ( O )  = u 

where ?L E X. 

T h e o r e m  5.2 (Circatangent variational inclusion) Assume thaf con- 
ditions (24) hold true. Then lor all u E ,Y, every aolution WI € CT-'~'(O, T ;  S) 
to the linearized inclusion (28) satisfies w E CS(J(O), z) (u) .  

In other words, 

Proof  
By Filippov's theorem the map u - S ( u )  is lipschitzean on a neigh- 

borhood of Z(0). Consider a sequence z, of traje~t~ories of (23) converging 
t o  ?i in Ct"ql(O, T ; . y )  and let h, -+ 0+ . Then there exists a subsequence 
z j  = x,, such that  

(29) lim xj(t )  = xb(t) a.e. in 10, TI 
j- , 

Set X j  = hnj. Then, by definition of circatangent derivative and by (29), for 
almost all t E (0, T ]  



Moreover. using the fact that z J ( t )  E F ( t , r , ( t ) )  a.e. hi [ 0 ,  TI ,  we obtain 
that  for al~nost  all f E [O. TI 

This, ( 30 )  and the Lebesgue dominat,ed convergence theorem yield 

where hjd, o ( X j ) / X j  = 0 .  By the Filippov Theorem and (311, there exist. 
A4 1 0  and solutions yj E S ( x  j ( O )  + Xju) satisfying 

Since ( y j ( Q )  - z j ( 0 ) ) / X j  = u = u1(0), this implies that  

Hence 
S ( z j ( 0 )  + h n j u )  - zj 

(32)  
J'X hn j  

Therefore we have proved that  for every sequence of solutions z , ,  to  ( 2 3 )  
converging to  Z and every sequence h,  - O+, there exists a subsequence 
z j  = x, , ,~  which satisfies ( 3 2 ) .  This yields that  for every sequence of solutions 
z ,  converging to 3 and h ,  - O+ 

Since ,u and a are arbitrary the proof is complete. (3 

We consider now the contingent variational inclusion 

Theorem 5.3 (Contingent variational inclusion) Le f us consider the 
rolution m a p  S a s  a set-valued map  from 8 "  to C t 7 ' l W  ( 0 .  T :  8 " )  supplied uith 
the weak-a topology and let z(.) be a solution of the d i f e renf ia l  inclusion (?3) 
start ing a t  2 0 .  Then the contingent derivative DS ( z o , ~ ( . ) )  of  the solution 



rnnp  i s  ron fa ined i n  the so lu t ion  map the ront i r igent  t3arint;onal in r l i ss ion  

(331, in  the sense that 

Proof 
Fix a direction 21 E Rn and let ub( . )  belong t o  D.5 (ro. z(.)) (u). By defini- 

tion of the  contingent derivative, there exist sequences of elements hn - O+. 
u,, - u and cn (.) -+ u (.) in the wealis* topology of CT".w(O, T;Rn) and 
c > 0 satisfying 

1 i) Ils:.(t)11 < c a.e. in [ O ,  TI 
(35) ii) ? ( t )  + h ,  u:, ( t )  E F ( t ,  z(f)  + h,u),, ( t ) )  a.e. in  [ O .  T ]  1 iii) w. ( 0 )  = 7~8, 

,i) 20, (.) converges point$wise t o  v (.) 
1 ii) v.: (.) converges weakly in L1 ( 0 ,  T ;  Rtl) t o  w i t ( - )  

By hlazur's Theorem and (36)  ii), a sequence of convex combinations 

converges strongly t o  w'(.) in L1(O.T; .Y). Therefore a subsequence (again 
denot'ed) r,,(-) converges to w t ( . )  almost everywhere. By (35) i). ii) for all 
p and almost all t  E [0 ,  T ]  

Let t  E (0 ,  T ]  be a point, where v m ( t )  converges t o  u.'(t) and x'(t) E 
F ( t ,  x ( t ) ) .  Fix an integer 92 2 1 and 6 > 0.  By (36 )  i ) ,  there exists m such 
t h a t  hp < 1/n and Ilu,(t) - ~ ( f )  11 < l / n  for all p 2 m. 

Then,  by setting 



and therefore, by let'ting rm, go t,o m, that' 

Since this is true for any n ,  we deduce that u! ' ( t )  belongs to the convex 
upper limit12: 

Since the subsets @(y, h.) are contained in the ball of ra,dius c,  we infer 
that ui l ( t )  belongs t,o t,lle closed ronvex hull of the Kuratowski upper limitlt: 

''Let K, b e  a sequence of subsets of a Banacll space X. We say that the set 

C ~ - ~ ~ S U ~ . - , ~  := n u h-. 
N>O n > N  

is the convex upper limit of the sequence K,. Recall that  the Kuratowski upper 
limit of the Kn's is defined 1)s 

I t  is clear tha t  the convex upper limit is closed and convex. Moreover since EU,,,~(K.+ - 
cB) = wU,,,, Kn + EB we obtain - 

cc+limsupn-, hmn := n n w U (K, + rB)  
c>ON>O n>hr 

Hence the convex upper limit contains the  closed convex hull of the Kuratowski upper 
limit. 

''The convex hull of a n  upper limit and the ronvex upyer limit are related by t h e  
follo\r.ing 

Lemma 1.1 t a t  ur conrides a requence 01 rubretr I(, contained in a bounded rubret o/ a 



We observe now that 

to conclude that  ul(.) is a solution to the differential inclusion 

Since U J  E DS (zo,f(.))(u) h arbitrary we proved (34). 

6 Local Observability Theorems 

We piece t,ogether in this section the general principle on local inverse uni- 
vocit,y and local injectivity (Theorem 4.1), the chain rule formulas (Propo- 
sition 4.2) and the estimates of the derivatives of the solution map in terms 
of solution maps of the variational equations (Theorems 5.l? 5.2 and 5.3) 
to  prove the statements on local hazy and sharp observability we have an- 
nounced. 

Througout t8he whole section we assume that H is differentiable and F 
has a linear growt,h. We impose also some regularity assumptions on the 

finite d i m e ~ i o n a l  vector-apace X .  Then 

- 
CO-1imsupn,,Kn = co(1im sup Kn ) 

n-m 

Proof 
Since an element z of co-limsuyn-, K, is the limit of a subsequence of convex corn- 

hinations t , ~  of elements of Un,N hTn and since the dimension of X is an integer p, 
Carath60doryas Theorem allows to  write that 

where nJ ,1 N and where zK, belongs to KN, The vector oh' of p + 1 components 
a: contains a converging subsequence (again denoted) a" which converges to  some non 
negative vector a  of p + 1 components o j  such that r7=o a j  = 1. 

The subsets Kn being contained in a given compact subset, we can extract sncces- 
sively subsequences (again denoted] z~~ converging to elements 2,. which belong to the 
Kuratowski upper limit of the subsets Kn. Hence z is equal to the convex combination 

a j z j  and the lemma is proved. 



derivati~e.; of F.  In the next theorem it is assumed that F is derivable 
in the sense t<hat its contingent and adjacent derivatives do coincide (see 
Appendix for t,he definition of derivahility). 

Theorem 6.1 Let us  assume that F is deri~lable.  satisfies nss t~mpt;oi t s  (1 2). 
that it has a lipschitzenn square projection G by  H .  Let I(.) E S(xO) .  I j  the 
corltingenf oariational inclusion 

is  globally hazily observable through H1(5(.)) at 0, then the system (:?.3/ is 
lorolly hazily obrervable through H at 2 0 .  

Proof 
n'e apply the general principle (Theorem 4.1) to the hazy Input-Output 

map I+ := H q S ,  which is defined since we assumed that there exists a 
square projection G (see Definition 3.1 and Proposition 3.2). n'e have to 
prove that  the kernel of the contingent derivative DI+ (xO. yo) of I+ (where 
yo := H(F(.)))  is equal to  0. By Filippov's Theorem. the solut,ion map 2 
is lipschitzean around s o .  Then we can apply Proposition 4.2 which states 
tha t  for all u E Dom(Db S ( s o ,  Z(.))) 

By Theorem 5.1, we h o w  that for any u E -4-, the set @(u)  of solutions 
to  the adjacent ~ar ia t~ional  inclusion (25) starting a t  u is contained in t,he 
adjacent derivative of S: 

+(u) := { K ( . )  J u j l ( t )  E ~ ~ ~ ( t , ~ ( t ) , ~ ' ( t ) ) ( u j ( t ) )  & ?I@) = U )  
d ( t )  E D F ( t , ~ ( t ) , 2 ( t ) ) ( u ~ ( t ) )  k ~ ( 0 )  = u,) 

c 0" ( s o .  z) (u) 

We also know tha t  for all (2, y) E Graph(F (t, a ) ) ,  the contingent deriva- 
tive DF (2, y) is k(f ) -Lipschit2 (see Appendix). Hence, by the Filippov 
theorem ([I .  Theorem 2.4.1, p.1201) for every u E EL" the contingent \-ari- 

ational inclusion (37) has a solution starting at u. Therefore. by (38). 
Dom(DDS (xO.l;(.))) is equal to  the whole space. This yiedls 

V u E ELn. DI+ ( s o ,  yo)(u) C (H1(z) q CP) ( u )  

so tha t  the kernel of DI+ (so l  yo) is contained in the kernel of H 1 ( ~ )  q CP. But 
to say that  the kernel of H1(5) 09 is equal to  0 amounts t80 saying that, the 



linearized systern (37)  is liazily globally observable a t  0 througli HI (? ( . ) ) .  
Hence the kernel of DI l ( ro .yo )  iq equal to 0. and t01us. the inverse image of 
hazy Input%-Output map contains locally a unique element. 

R e m a r k  

The  above resuIt remains true if instead of deri~abilit~y of F we assume 

t,hat. ~ o r n ( ' ~ ' 5   so.^(-))! = R'. 
In the nest t,heorem we assume that, F is sleek, so tha t  its contingent, 

and circatangent der i~a t ives  do coincide (see Appendix). 

T h e o r e m  6.2 Let tls nsstlrne thot F is sleek, has convez images,  sntisfies 
assumptions (12) .  and that it has a lipscfiitzean square projection G by H. If 
for all;?(.)  E 5 ( s o )  the contingent variational inclusion ($7) i s  globnllg hazily 
observable through H1(5(.)) at 0 . then the sys tem (23) is ha-ily observable 
tfirov~gh H a r o u n d  ro. 

P r o o f  
We apply the second part  of the general principle on local injectivity 

(Theorem 4.1) tmo the  hazy Input-Output  map I+ := H S ,  which is defined 
since we assumed t,hat there exist8s a square projection G. We have t o  prove 
tha t  the kernels of the  paratingent derivatives P I + ( z o , y )  of I, are equal 
tfo 0 (where y(.) := H ( r ( . ) )  and F ( . )  E 5 (so)) . In the way sirnilar t o  
(1 ,  Theorem 2.2.1, p.1041, we prove that for all 7 > 0 the set $ ( s o  + 7 3 )  

is compact in C(0 ,T :R7 ' ) .  Hence I,(zo + 7 3 )  is relatively compact in 
C ( 0 ,  T; En). By Filippov's Theorem, the solution map  S is lipschitzean 
around 20. This and compactness of S ( z o  + 73) imply t h a t  Graph( I+ )  is 
a closed set. Then we can apply the second part of Proposition 4.2 which 
states t ha t  for all u E D o m ( C S ( z o , ~ ( . ) ) )  

P I +  (30, Y) ( 1 ~ )  C (HI@(-)) C S  (zo, ~ 0 ) ) )  (u)  

By Theorem 5.2, we know tha t  for all u, the set Q(u)  of solutions to  the  
circat.angent ~ a r i a t ~ i o n a l  inclusion (24) starting at u is cont,ained in the cir- 
catangent derivative of S : 



But from the proof of Theorem 6.1 we Sr~low that Darn(@) = En. Therefore. 

so tha t  the kernel of PI+ (so, y) is contained in the kernel of H1(q cP. But 
to  say t,hat the kernel of HI@) cPo is equal t o  0 amounts t,o saying t,hat t,he 
linearized syst,em (37) is hazily globally observable through H1(ii). Hence 
the kernel of P I , ( ro ,y )  is equal to  0, and thus, the hazy Input-Output map 
is locally injective. 13 

We consider ilow the sharp Input-Output map. 

Theorem (5.3 Let us assume that the graph,s of the set-valued maps F ( t , . )  : 
,I- + ,Y are cloned and convez. Let H be a linear operator from X to another 
finite dimensional vector-space Y .  Let P ( . )  be a solution to the dlflerential 
inc1us;on (25'). If the contingent oariational inclusion IS?) is globally sharply 
obseroable through H around 0, then the syrrtem (29) is globally rrharply 
observable through H around 2 0 .  

Proof 
We apply Proposition 4.1 to the sharp Input-Output map I- := H o S . 

We have to  prove tha t  the kernel of the algebraic derivative D,I- (zo ,  yo) of 
I- (where yo := H (Z)) is equal t o  0. Consider S as a map from En to  the 
Sobolev space W1?'(O, T: En). 

Since the graph of the solution map S is convex (for the graphs of the 
set-valued map F is assumed to  be convex), and since the map H is li~lear, 
we know that  the chain rule (22) holds true: 

I t  remains to  check that  the algebraic derivative DaS(xo ,F) ) (u )  of S is con- 
tauled in the subset @ a  ( u )  of solutions to the aIgebraic variational inclusion 
starting a t  u: 

Since the algegraic derivative of a conves set-valued map is ~ont~ained in tahe 
contingent derivative, then the set 9, (u.) is contained in the subset @ (u) of 
solutions t o  the contingent. variational inclusion (34) starting at, u. Hence 
the kernel of DI - (zo ,  yo) is contained in the kernel of H o @. But to say 



t ha t  the  kernel of H o \k is equal to 0 amounts t o  saying tha t  the contingent 
variational inclusion syst>em (37) is sharply globally obsenable through H. 
Therefore t,he kernel of D,I- ( l o ,  yo) is equal to 0. and  thus: the inverse image 
of sharp Input-Output  map contains a unique element. This concludes the 
proof. 

Remark 

We do not know for the  time other elegant criteria implying the  chain 
rule (39) for the usual composition product of set-valued maps in infinite 
dimensional 

If we assume t h a t  the chain rule holds true, we can state  t he  following 
proposition. a consequence of the general principle (Theorem 4.1) and of 
Theorem 5.3 on the  estimate of the contingent derivative of the  solution 
map.  

Proposition 6.1 Let us assume that th,e solution map 01 the differential 
inclusion (23) and the differentiable obserimtion map H do satisjy the chain 
rule 

DI-(TO.YO)(U)  = (H'(3) O S(zo ,z( . ) ) )  (4 
11 the contingent variational inclusion 

for almost all t E [O,T], u, ' ( t )  E ~ D F ( t , z ( t ) , $ ( t ) ) ( u ! ( l ) )  

i s  globally sharply otseri~able through H 1 ( z ( . ) )  around 0, then the system. 
(23j i s  locally sharply observable through H around zo. 

"Let us mention however the following result involving the co-rubditferential 
DG(z0,  yo)"-, which is the closed convex process from I" to X' defined by 

p E  D G ( ~ , y ) ~ ' ( g j  i fand only if 
V (z', yl) E Graph(G), < p,zl  - z >_<< g, y' - y > 

Let us assume that H is a continuous linear operator H E L(Y, 2)  from I' to 2. Equality 

D ( H ~ G ) ( ~ O , B V O J ( U )  = HoDG(zo,uo)(u)  

holds true if X and I' are reflexive Banach spaces and the co-subdifferential of G a t  (20. yo J 
satisfies 

I r n ( g )  -t Dom(DG(z0, yo)"') = 1'' 

Furthermore, this condition implies that the kernels of D ( H  o G)(zo,Byo) and 
H c D G ( a ,  yo) are equal to  10) (see I!). 



However, we can bypass the chain rule formula and attempt to  obtain 
directly other crit,eria of local sharp observability in the no~lco~~vex  case. 

Theorem 6.4 i l s s u n ~ e  th,af F has  closed convez  images ,  is con t innc~us ,  Lip- 
srh i t :  in the second clariaLle w i th  a rons tnn t  i ndependen t  o f t  and  that  the 
growth  of F  i s  l inear w i t h  respect t o  the state. Le t  H he a t~l \ ice ront in7~o11s ly  
di f lerentiahle f u n c t i o n  f r o m  X t o  another  finite d i m e n s i o n n l  vertor-space 1'. 
C'onsider a n  o l s e r t n t i o n  y* E I - ( s o )  a n d  a s s u m e  that  f o r  eee ry  sc~lut;c,rl 
F ( . )  t o  the di f lerential  iriclusion (93) satisfying y*(.) = H ( F ( - ) )  and  for all 
t E [O. TI we h a r e  

( 40 )  ( I  H t ) ) )  c ( F  ( t ? z ( t ) )  - F ( t ,  s ( t ) ) ) -  

I f  for a l l  if a s  a b m e  the con t ingen t  cariat ional  inc lus ion  

( 4 1 )  for almost all t  E [0, TI,  u: ' ( t )  E D F ( t , % ( t ) . d ( t ) ) ( u . ( t ) )  

i s  globally sharply c,bsertatle through H t ( 3 ( t ) )  around 0 ,  t h e n  the s y s t em  
(23) i s  locally sharply observable through H  a t  ( z o , y * ) .  

Proof 
Assume for a moment that the inclusion ( 23 )  is not locally sharply ob- 

servable through H  at ( x o .  y*). Then there exists a sequence zg # ro .  xi - 
ro such that  y* E I - ( r : ) .  i.e.. for some x n  E S ( 2 : )  

Taking a subsequence if needed and  keeping trhe same notations, we may 
assume that  X ,  - T urealrly in %".K(O,  T ; R n ) .  Then (42)  yields 

R-e shall prove that the convergence is actually strong and even more, fhat  
there exists a constant c > 0  such that  

( 4 4 )  
-4 

x ( t )  - x ( t )  j c llzn ( t )  - ~ ( t )  1 1  a.e. in [ O ,  TI 

Indeed otherwise there exist sequences t k  and n k  such that  



Taking a suhseq~~ence  and keeping the same n ~ t ~ a t i o n s .  1)). continuity of F ,  
we may assume t,hat for some t  E [O. TI. p E F ( t  . ; r ( t ) )  

Let p den0t.e tshe Lipschitz constant of F with respect t o  x and let. I J ( ~ ~ )  E 
F ( t 'k .  zit) he  such that  

Since HI is locally Lipschitz and  r',, are equibounded, from the last, inequal- 
ity and ( 4 3 )  we deduce that,  for some const.ant,s M, Adl > 0 

1 l l H 1 ( ~ ( t k ) l  ( ~ ( ~ k )  - $ ( t ~ . )  111 
< I ~ H ' ( F ( ~ . ~ ) ) ( x ~ , ~  ( t k )  - ~ ( t k ) ) ] '  + p l l H 1 ( ~ ( t k ) ) l l  l1xtbt ( t , k )  - z ( t k ) l l  

< H , , ~  - 1 + - ( 1  - 5(t1.111 iir;it ( t k )  i i  
- 1. + p ' I \ H ' ( T ( ~ ~ ) ) I I  l lrnt  ( t k )  - x( tA-]I[  < A i l  llxnt ( t k )  - ~ ( t k ~ l l  

(37)  
From ( 4 6 )  and the  choice of t k !  we obtain 

l l ~ ( t k )  - g(tk)l/ - cc when k - x 
11x11~ ( t k )  - z ( t k )  1 1  

It is also not  restrictive t o  assume that  for some u of llull = 1 

Then ( 4 7 ) ,  ( 4 8 )  yield 
u E Ker H 1 ( s ( t ) )  

O n  the  otxher hand ul; is c ~ n t ~ a i n e d  in the  space spanned by F ( t k , ~ ( t . ~ ) )  - 
F ( t k , ~ ( t , k ) )  and, by continuity of F ,  u is contained in the space spanned by 
F ( t ,  ~ ( t ) )  - F  ( t ,  z ( t  )). Since i~ # 0 this contradicts ( 4 0 )  and therefore ( 4 4 )  
follows. 

From the Gronwall inequality and ( 4 4 )  we deduce tha t  for some h& > 0 

Setting h,, = llz: - xoll we obtain 



Taking a subsequence and keeping the same notations we may assume that 
- 

2 ,  - 2 - WI weakly in R ' ' ~ ~ ( o , T )  
h n 

By Theorem 5.3, v is a solution of the contingent variational inclu- 
sion (33).  Hence w is a solution of (41). Moreover w ( 0 )  = u # 0 .  Since 

H ( z n  (-)) = H  (5(.)) taking the derivatives we obtain that for every t  E 

10, TI, H 1 ( z ( t ) ) w ( t )  = 0 .  This contradicts the assumption (40) of theorem 
and completes the proof. 

Example: Obeervabillty around an Equilibrium 

Let us consider the case of a time-independent system ( F ,  H): this means 
that the set-valued map F  : A' .u A' and the observation map H : - I' 
do not depend upon the time. 

We shall observe this system around an equilibrium z of F ,  i.e., a solution 
to the equation 

(50) 0  E F ( z )  

For simplicity, we shall assume that the set-valued map F  is eleek at 
the equilibrium. Hence all the derivatives of F  at (5,O) do coincide with the 
contingent derivative D F ( s , O ) ,  which is a closed convex process from X to 
it self. 

The theorems on local observability reduce the local observability around 
the equilibrium z to the study of the observability properties of the varia- 
tional inclusion 

(51) w l ( t )  E DF (5,O) (w ( t ) )  
through the observation map H 1 ( z )  around the solution 0  of this variational 
inclusion. 

We mention below a characterization of sharp observabaty of the vari- 
ational inclusion in terms of "viability domainsn of the restriction of the 
derivative DF (z, 0 )  to  the kernel of H 1 ( z ) .  

Recall that a subset P C k e r H 1 ( z )  is a " viability domainn if 

where T p ( w )  denotes the "contingent cone to P ar UI E Pn. 

Proposition 6.2 Let us assume that F  is sleek at its equilibrium Z and 
that H  is differentiable at 2.  Then the variational inclusion (51) is sharply 



observable at 0  i/ and only i/ the largest closed viability domain o/ the 
restriction to ker H t ( z )  o/ the contingent derivaticje DF ( x .  0 )  is equal to zero. 

Proof 
Let us denote by E the restiction of the contingent derivative DF(x, 0) 

to  the kernel of H t ( z )  defined by: 

E ( u )  := I DF ( z ,  0 )  ( u )  if u E ker H t ( x )  
1 0  if u 4 kerHt (? )  

We consider the associated differential inclusion 

(53) ult(t) E E ( w  ( t ) )  

We know that  the largest closed viability domain of the closed ron- 
vex process E  is the domain of the solution map of the associated differential 
inclusion (53 ) .  (See [ 6 ] ) .  

But  if we denote by R the solution map of the variational inclusion (51) 
and by B the set of functions x ( - )  such that  

we observe tha t  the solution map of the differential inclusion (53) is the 
set-valued map u  .u R ( u )  n 8 .  Hence its domain is the set R - ( 8 ) .  Since 

we infer that  the largest viability domafn of E is the kernel of the 
nharp Input-Output map H t ( z )  o 2 .  

Consequently, the variational inclusion (51) being sharply observable if 
and only if the kernel of H t ( z ) o R  is equal to zero, our Proposition ensues. 

In the same way, the variational inclusion (51) is hazily observable if and 
only if the kernel of H t ( z )  R is equal to zero. 

There are also some relations between the kernel of the hazy Input- 
Output map HI(%) R and invariance domains of the restriction of the 
derivative to the kernel of H t ( z ) .  First, we remark that  



i.e.. that the kernel of Hf (x )  R is the largest. set enjoying the 'invariance 
propertyr: for any u E kerHf(z) .  all solutions to  the differential inclusion 
(53) remain in this kernel. 

When E is lipschitzean in a neighborhood of ker Hf (x),  any closed subset 
P c kerHf(z )  which is "invariant" in the sense that  

enjoy the invariance property. The converse is true only if we assume that 
the domain of D F ( x ,  0) is the whole space. 

Then, if such is the case, the variational inclurion ie hazily observable i j  
and only i j  the largest closed invariance domain oj the restriction to kerHf (3) 

oj the derivative D F ( x ,  0) i s  equal to zero. 

Remark 

We have proved in [4]  that under some further conditions, the sharp ob- 
sewability of the variational inclusion at  0 is equivalent to the controllability 
of the adjoint system 

Proposltlon 6.3 We posit the atsumptions oj Proposition 6.2, we assume 
that DF (z,O) (0) = 0 and we suppose that 

Then the concepts oj sha,rp and hazy observability oj the variational inclusion 
coincide and are eqt~ivalent to the controllability oj  the adjoint system 

(About eleven characterizations of this property are supplied in (41 ). 
Pro of 
Assumption (55) implies that. the transpose E* of the restriction E of 

the closed convex process DF(z, 0) to kerHf(z )  is given by the formula 

(see [?, Corollary 3.3.17, p.1421 ) 
We also know (see [4, Proposition 1.12, p.11981 ) that if the domain 

of the transpose E* of E is the whole space, then a vector subspace P 
is an invariance domain of E if and only if its orthogonal P' is a viability 



domain15 of E'. Sinre the domain of E' is equal to the domain of DF(2 .0 ) '  
(thanks to formula (.56), this condition is equivalent to  DF (x. 0) = 0) .  

Hence the variational inclusion (51) being sharply observable at 0 if and 
only if the largest closed viability domain of E is equal to 0 (by the above 
Proposition 6.2). we deduce that this happens if and only if the smallest 
invariance domain of E* is equal t o  0. i.e., if and only if the adjoint system 
(54) is controllable. 

The assumption t h a t  D F ( z ,  O)(O) = 0 implies that the restrictionl6 
D F ( x ,  0) lk,, HI(*) of DF (it, 0) to the kernel of HI(?) is single-valued. (and 
thus, a linear operator), so that both concepts of sharp and hazy ohserv- 
ability do coincide. 

Therefore, our statement follows from [4, Theorem 5.5., ~12071. 

7 Appendix: Derivatives of Set-Valued Maps 

Definition 7.1 Let (2, y) belong to the graph of a set-valued m.ap F : A- * 
I' from a normed space to another Y. Then the contingent derivative 
D F ( z ,  y) of F at (2, y) is the set-valued map from. X to I' defined b y  

and the paratingent'' derivative PF (2, y) of F at (2, y) is the set-valued 
map from A' to Y defined b y  

where +,v denotes the convergence in Graph(F) 

When F is lipschitzean around r E Int(Dom(F)),  the above formulas 
become 

i i) u € D F ( z , y ) ( u ) U  l imin lh+o+d(a .F(r+~u) -a )=O 
( v ,  F b l + h u ) - ~ l  ii) v E PF(Z, y)( .u)  ~ i n f h + o + , ( j , g 1 ) + ~ ( ~ , y )  ,I ) = o  

 his is also true when the domain of E is the whole space. But this does not apply 
to our case, since the domain of E is the kernel o f  H 1 ( t ) .  

"this does not require that D F ( 2 , 0 ) ( 0 )  = 0  is single-valued on its domain when the 
latter is not a vector subspace. 

I7see I?! for the study of paratingent cones and the applications of Choquet's Theorem. 



Moreover if k denotes the Lipschitz constant of F at r ,  then for every y E 
F ( x )  the derivative D F ( x ,  y)  has nonempty images and is k-lipschitzean 
(see [13] ). 

Despite the fact that  both adjacent and circatangent derivatives can be 
defined for any set-valued map F ,  the formulas are simpler when we deal 
with lipschitzean set-valued maps. Since we use them only in this context 
in this paper, we provide their definitions in this lirnit,ed case. 

Definition 7.2 Let ( x ,  y) belong8 to the graph o/ a set-valued m a p  F : .Y + 
I' from a norrned space A- to another I ' .  Assume that F is lipschitzean 

around an element x E Int( Dom ( F ) ) .  then the adjacent derlvatlve 
~ " ( z ,  y) and the circatangent derlvatlve CF ( 2 ,  y) are the set-valued 
maps from A- to Y respectively defined by 

and 

e E CF (x, y) (u )  - lim ) = O  
h+O+,(tJ,y')-~ (+,Y) h 

Several remarks are in order. First, all these derivatives are positively ho- 
mogeneous and their graphs are closed. 

We observe the obvious inclusions 

and tha t  the definitions of contingent and adjacent derivatives on one hand, 
the paratingent and circatangent derivatives, on the other one, are symmet- 
ric. When F := j is single-valued, we set 

We see easily that' 

D j ( z )  (u) = j l ( z ) u  if j is GBteaux differentiable 

Db j (z) (u) = j l ( z ) u  if j is Frdchet differentiable 
C j ( z )  (u) = j l (x )u  if j is continuously differentiable 

The choice of these strange limits is dictated by the fact that  the graph 
of each of these derivatives is the corresponding tangent cone to  the graph 



of F at  (r, y). (The graphs of the circatangent derivatives are the Clarke 
tangent cones to the graphs. which are always convex.) 

This allows also to d e h e  and use derivatives of restrictions F := f J A -  of 
single-valued maps f to subsets K C ,Y: which are defined by 

If / is continuously differentiable around a point a: E K ,  then the deriva- 
tive of the restriction is the restriction of the derivative to the 
corresponding tangent cone. 

The most familiar instance of set,-valued maps is the inverse of a non 
injective single-valued map. The derivative of the inverse of a set- 
valued map F is the inverse of the derivative: 

P(F) - ' (y . z )  = P F ( 2 ,  y)-' 
D(F)- ' (y.2) = DF (z,  y)-' 
D ~ ( F ) - ~ ( ~ , Z )  = D ~ F ( Z ,  y)-l 
C(F) - '  (y. z )  = CF (z, y)-' 

and enjoy a now well investigated calculus. 
The circatangent derivatives are closed convex processes, be- 

cause their graph are closed convex cones, i.e., they are set-valued anlogues 
of the continuous linear operators. We refer to  [2:1.], [2, Chapter 71 for various 
properties of closed convex processes. 

We say that  a set-valued map F is derivable a t  (z,y) E Graph(F)  if 
DF (z, y) = Db F (z, y) and that  it is derivable if i t  is derivable a t  every 
point of its graph. 

We say that  a set-valued map F is sleek a t  (z,  y) E Graph(F)  if 

Graph(F)  3 (z', y') ru Graph(DF)  (zl,y') is lower semicontinuous at  ( z ,  y) 

and it is sleek if it is sleek a t  every point of its graph. In this case, we can 
prove that  the contingent, adjacent and circatangent derivatives 
coincide. 
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