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FOREWORD

The authors observe the evolution ¢ € [0,T] — z(t) € .X of
the state z(-) of a system under uncertainty governed by a
differential inclusion

for almost allt € [0,T], 2'(t) € F{t,z(t))
through an observation map H
Yte[0,T], y(t) = h(z(t)) +elt), €t) € Q)

The set-valued character due to the uncertainty leads them to
introduce

Sharp Input-Output map which is the (usual) product
Voo €X, I (x) = (HoSWzo):= | Hiz())

x(+)= ${x0)
Hazy Input- Qutput map which is the square product

Vrg€X, Li(z) = (HOS)zo) = [ Hi(zl))

x{}= 5 (x0}

Recovering the input zg from the outputs /_(xg) or I, (2p) means
that these Input-Output maps are “injective” in the sense that,
locally,

whenever 2, # z3, then I(zy)NI(z;) =9

They provide criteria for both sharp and hazy local observability
in terms of (global) sharp and hazy observabiliy of the variational
inclusion

w'(t) € DF(t,x(t),T(t)){(w(t))

which is a “linearization” of the differential inclusion along a
solution Z(-), where for almost all ¢, DF ({, xr.y)(u) denotes the
contingent derivative of the set-valued map F'(f.-.-) at a point
{z, y) of its graph. They reach these conclusions by implementing
the following strategy:
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. Provide a general principle of local injectivity and observ-
ability of a set-valued map I, which derives these properties
from the fact that the kernel of an adequate derivative of [
is equal to 0.

2. Supply chain rule formulas which allow to compute the

derivatives of the usual product /- and the square prod-
uct I, from the derivatives of the observation map H and
the solution map §.

. Characterize the various derivatives of the solution map $
in terms of the solution maps of the associated variational
inclusions.

. Piece together these results for deriving local sharp and
hazy observability of the origial system from sharp and hazy
observability of the variational inclusions.

5. Study global sharp and hazy observability of the variational

inclusions.

Alexander B. Kurzhanski
Chairman
System and Decision Sciences Program
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Observability of Systems under Uncertainty

JEAN-PIERRE AUBIN & HALINA FRANKOWSKA

1 Introduction

We describe the evolution f € [0,T] — z(t) € X of the state 2(:) of a system
under uncertainty by a differential inclusion

(1) for almost allt € [0,T], 2'(t) € F(t.z(t))

where the set-valued map character takes into account disturbances and/or
perturbations of the system!. This system is observed through an ohser-
vation map H, which is generally a set-valued map from the state space
X to some observation space Y, which associates with each solution to the
differential inclusion (1) an observation? y(-) satisfying

(2) Viel[0,T}], yit) € H(z(t))

Ohservability concepts deal with the possibility of recovering the initial state
zo = 7(0) of the system knowing only the evolution of an observation ¢ €
[0,T] — y(t) during the interval [0, T], and naturally, knowing the laws (1)
and (2). Once we get the initial state z¢, we may. by studying the differential
inclusion, gather information about the solutions starting from z¢, using the
many results provided by the theory of differential inclusions®. Let § := S¢

LA familiar representation of imcertainty is represented in parametrized form

for almost allt € [0,T}, £'(t) = f(t, 2(t)) +g(t.d(t)), d(t) € D)

*generally, given in a parametrized form
vte (0.7, y(t) = hiz(t)) +elt), t) € Qt)
We assume for simplicity that H does not depend of the time t. but we shall provide in
the appropriate remarks the exiensions to the time-dependent case.

*For instance, under an adequate Lipschitz property, we know that for every Z(-) €

S(Zo). r
S(zo) & E(-)+Mf diamF(t,z(t)})dtB
0

where M is a constant independent of Z{:} and B denotes the ciosed unit ball in the
Sobolev space W0, T).



from A to 2(0,7:X) denote the solution map associating with every initial
state 29 € X the (possibly empty) set §(zo) of solutions to the differential
inclusion (1) starting at zo at the initial time t = 0.

In other words, we have introduced an Input-Output system where the

1. inputs , are the initlal states z,

2. outputs, are the observations y(-) € H(z(:)) of the evolution of the
state of the system through H

Inputs A States A Outputs
| | |
X 3 2 ~ z(-) € S(z¢) — y() € Hl(zl())
T , 1 1
Initial States J Z(t) € Flt,2(t)) Observations
| z(0) = z¢

It remains to define an Input-Output map. But, because of the set-
valued character (the presence of uncertainty}, one can conceive two dual
ways for defining composition products of the set-valued maps § from X to
the space C(0,7:X) and H from C(0,7;X) to £(0,7;Y). So, for systems
under uncertainty, we have to deal with two Input-Output maps from
A v £{0,T;Y): the

Sharp Input-Output map which is the (usual) product

Voo €X, I_(zo) = (HoS)(zo):= | J H(z())
x{-}€ §(xo}

Hazy Input-Output map which is the square product
Vag€ X, Li(zo) == (HOS) (o) := [ Hlz())

x(-)€ 8 {x0)

The sharp Input-Output map tracks at least the evolution of a state
starting at some initial state 2o whereas the hazy Input-Output map tracks
all such solutions.

Opinions may differ about which would be the “right”™ Input-Output
map, just because they depend upon the context in which a given problem
is stated. So, we shall study observability properties of both the sharp and
hazy Input-Output maps.



Recovering the input z( from the outputs I_(z¢) or I+ {#¢) means that
the set-valued maps are “injective” in some sense.

When H and S are single-valued maps, the input-output map is called
observable whenever the product [ := H o $ is injective, i.e.,

(3) HS(II) = HS(Tz) = 1 =&

When we adapt this definition to the set-valued case, we come up with
two possibilities: If I stands now for either /_ or I., we can require either
the property

I{zy) = I(z3) = z,= 22

or the stronger condition
I(z))NI{z;) # & =z, =12,

The first way would not be, in general, useful in the framework of uncertain
systems since we often observe just one output y{-) € H §{z¢) and not the
whole set of possible outputs H S(2y). That is why we shall the second
point of view, by saying that the sharp or hazy Input-Output map I/ is
“observabale™ around z( if

(4) whenever z, # 23, then I(z;)NI(z;) =8

If this property holds only on a neighborhood of some zy, we shall say that
I is “locally observable around zq.

This a very pleasant concept, which we shall study for hazy Input-Output
maps.

However, it is a bit too strong for sharp observability, and we shall be
content with the weaker condition that the inverse image I~ (yg) of some
ohservation yo contains at most one input zo:

(3) whenever z; # 2o, then yo & I{z,)

If this is the case, we shall say that the Input-Output map I is “observ-
able”™ at z; , and “locally observable” at z¢ if it holds only on a neighbor-
hood of z¢ (instead of “around™ zg).

In other words, sharp observability at zo means that whenever yg is an
observation of some solution z*(-), i.e., ¥o € H(z*(‘}), then 2*(0) = zo.
Local sharp observability means that the above holds true only for those
2™'s not too far from zg.
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Hazy observability at zy of y; means that yy can be a “comnmon” obser-
vation only for one input zy. In other words, if we (hopefully) observe an
output y. which is a common observation of all solutions z(-) € $(Zp). then
g = Zg.

Actually, the purpose of this paper is to derive local observability of
both the sharp and hazy Input-Output maps from the global sharp and
hazy observability at 0 of “variational inclusions” through a linearization?*
of the Input-Output map.

Here, variational inclusions are “linearizations” of the differential inclu-
sion (1) along a solution Z(-) € $(z¢) of the form

(6) w'(t) € DF(t,(t),Z (1)) (w(t))

where for almost all ¢, DF(t,z,y)(u) denotes an adequate concept of
derivative (the contingent derivative, defined below) of the set-valued map
F(t,-,") at a point (2,y) of its graph. Let us just say for the time that they
are set-valued analogues of continuous linear operators.

(These linearized differential inclusions are called variational inclu-
glons because they extend (in various ways) the classical variational equa-
tions of ordinary differential equations: their solutions starting at some u
provide the directional derivative of the solution to the initial system in the
direction u.)

To say that the variational inclusion is hazily (respectively sharply )
observable at 0 amounts to saying that whenever all (respectively at least
one) solutions w(-) to the variational inclusion {8) starting at » satisfy

(7) Yte[0,T), H'(z(t)w(t)=0

then u = 0.
To reach such conclusions, we shall choose the following strategy:

1. Provide a general principle of local injectivity and observability of a
set-valued map I, which derives these properties from the fact that
the kernel of an adequate derivative of [ is equal to 0.

2. Supply chain rule formulas which allow to compute the derivatives of
the usual product /_ and the square product I, from the derivatives
of the observation map H and the solution map .

*The linearization techniques based on the differential calculus and inverse function
theorems for set-valned maps has been succestully used in ithe study of local conrenllability
of differential inclusions and control systems with feedbacks. (See [13.10,11.12,20l.)



3. Characterize the various derivatives of the solution map $ in terms of
the solution maps of the associated variational inclusions.

4. Piece together these results for deriving local sharp and hazy observ-
ability of the origial system from sharp and hazy observability of the
variational inclusions.

5. Study global sharp and hazy observability of the variational inclusions®
But, before implementing this program, we have to avoid the trivial case
when the hazy Input-Output map I, takes (locally) empty values.
For doing that, we “ project” the differential inclusion (1) onto a differ-
ential inclusion

(8) for almost all t € [0,7], ¥'(t) € G(t,u(t))
in such a way that the following property

(9) ] V (z0,%0) € Graph(H) all solutions z() to (1) and y(-} to (8)
| satisfy Ve [0,T], y(t) € H(z(t))

holds true. If such is the case, then the hazy Input-Output map I+ is well
defined.

To proceed further, we need to introduce the concept of “contingent®
derivative” of a set-valued map H from a Banach space X" to a Banach space
Y at a point (z,y) of its graph: It is the set-valued map DH (z,y) : X ~ ¥
which associates with any direction u the set DH (z,y)(u) of directions v
satisfying ,

(10) liminf d(?;,H(I-'_hu)-y):O

h—0+,u4' —y h

®This has already been done in |4.5] for time-independant closed convex processes,
where it was shown that sharp observability is a dual concept of controllability and where
various characterizations were provided. See below the comments on the oservability of a
system around an equilibrium.

$The choice of this particular derivative is motivated by the fact that its graph is the
contingent cone to the graph of H at (z,y), where the contingent cone Tk {z)to K < X
at z € K is the set of directions v € X such that

li{n i(r)xf dlz+hv.K)/h = 0

For our purpose. the contingent cone plays a major role compared to other tangent cones.
However, we shall need other tangent cones and associated derivatives.



It is said “derivable™ if for every (z,y) in the graph of F, v belongs to
DF (z,y) () if and only if

lim 4
h—0+

h

We extend the concept of C!-function by saying that H is “sleek™ if and
only if”

Graph(H) 3 (z,y) ~» Graph(DH(z,y)) is lower semicontinuous

(‘v,H(t,z+hu) —y) -0

(See the Appendix for more details on the differential calculus of set-valued
maps).

Returning to the projection problem, we shall say that a set-valued map
G:[0,T]xY ~»Yisa® lipschitzean® square projection™ of the set-valued
map F :[0,7] x X ~ X by H if and only if

(11) i) F x G is lipschitzean around [0,T] x Graph(H)
ii) V(z,y) € Graph(H), G(t,4) C Nyer(e,r) DH (2, y)(¥)

We shall prove that if there exzists a lipschitzean square projection of F by
H, then the hazy Input-Output map [ == HOS has non empty values for
any instial value yo € H (z0).

We state now the observability properties of the hazy Input-Output map
around a solution Z(-) to the differential inclusion (1). We assume that F
satisfies the following assumptions:

" {) Ve € X the set-valued map F(-,z) is measurable
(12) it) Vte[0,T),YVze X, F(t,z) is a closed nonempty set
itt) 3 k(-) € L*(0,T) such that for almost all t € [0, 7
_ the map F(t,) is k(t) — Lipschitzean
Theorem 1.1 Let us assume that H is continuously differentiable, that F

satisfies assumptions (12), that st has linear growth® and that it has a lips-
chitzean square projection G by H.

"In this case, the graph of DF{t,z,y) is a closed convex cone. Maps whose graphs
are closed convex cones, called closed convex processes, are the set-valued analogues of
continuous linear operators, and enjoy most of their properties.

3 This means that

Flt,g) < F(t.y)+kit)||c-yi B

de >0 suchthat [[Flt.z)ij < elljz]+1)



1. If F vs dersvable and sf for some Z(-) € & (xg) the contingent variational
tnclugion

(13) for almost allt € [0,T], w'(t) € DF(t,Z(t),#(t))(w(t))

15 globally hazily observable through H'(Z()) at 0, then the system (1)
i3 locally hazsly observable through H at zg.

IS

If F is sleck and if for every solution z(-) to the differential inclusion
(1) starting at g, the contingent variational fnclusions

(14) for almost allt € [0,7], w'(t) € DF(t,z(t),2"(t))(w(t))

is globally hazily observable through H'(z(-)) at 0, then the system (1)
is locally hazily observable through H around z.

Obhservability properties of sharp Input-Output maps require stronger
assumptions. We state first the result for a more simple, convex case.

Theorem 1.2 Let us assume that H is linear and that the graphs of the
set-valued maps F(t,:) : X ~ X are closed and convez. If for some Z(-) €
S(zo) the contingent variational inclusion (13) is globally sharply observable
through H at0, then the system (1) is globally sharply observable through H
at zg.

A more general case requires some additional assumptions.

Theorem 1.3 Assume that F has closed conver smages, is continuous,
derivable, Lipschitz sn the second varsable with a constant independent of t
and that the growth of F is linear with respect to the state. Let H be a twice
continuously differentiable function from X to another finite dimensional
vector-space Y. Consider an observation y* € I_(x¢) and assume that for
every solution Z(-) to the differential snclusion (1) satisfying y™(-) = H(Z())
and for allt € [0,T] we have

Ker H'(Z(t)) N (F(t,2(t) - F(t,Z(¢)))" = {0}

If for all (-} as above the contingent variational snclusion (13) is globally
sharply observable through H'(Z(t)) around 0, then the system (1) is locally
sharply observable through H at (zg,y").

~X




2 Hazy and Sharp Input-Output Systems

Let us consider a set-valued input-output system of the following form built
through a differential inclusion

(15) for almost all t € [0,T], 2'(t) € Flt.z({))

whose dynamics are described by a set-valued map F from [0,7] x X to
X, where X is a finite dimensional vector-space (the state space) and
0 < T € oo. 1t governs the (uncertain) evolution of the state z(-) of the
system. The inputs are the initial states z; and the outputs are the
observations y(-) € H(z(-)) of the evolution of the state of the system
through a single-valued (or set-valued) map H from X to an observation
space ).

Let § := Sp from X to C(0,7;X) denote the solution map associating
with every initial state 2o € X the (possibly empty) set $(zq) of solutions
to the differential inclusion (15) starting at zo at the initial time { = 0.

One can conceive two dual ways for defining composition products of
set-valued maps G from a Banach space X to a Banach space Y and a set-

valued map H from Y to a Banach space Z (which naturally coincide when
H and G are single-valued):

Definition 2.1 Let X, Y, Z be Banach spaces and G : X ~ Y, H:Y ~»
Z be set-valued maps.

1. the usual composition product (called simply the product) H o G :
Xn+Z of H and G at z ss defined by

(HoG)z) = |J HW)
¥<G(x)

2. the square product HOG : X ~ Z of H and G at x is defined by

(HoG)(z) = (] H(
¥EG (x)

Remark

1. The observability problems that we address involve the inversion of
these Input-Output maps.



There are two ways to adapt to the set-valued case the formula which
states that the inverse of a product is the product of the inverses (in
reverse order), since we know that there are two ways of defining the
inverse image by a set-valued map $ of a subset M:

[ a) $=(M) == {z| S(@)NM #0}
| &) ST@M) = lz| S(z) c M)}

We then ohserve the following formulas of the inverse of composition
products:
[ (Ho$)'(y) = S™(H'(y)
| #) (HoS) y) = ST(H ()

This may provide a further justification of the introduction of those
two “dual” composition products.

2. Recall also that a set-valued map { is upper semicontinuous if and
only if the inverse images S~ of open subsets are open and that it
is lower semicontinuous if and only if the inverse images $* of open
subsets are open.

3. Observe finally that square products are implicitely involved in the
factorization of maps. Let X be a subset, R be an equivalence relation
on X and ¢ denote the canonical surjection from X onto the factor
space X/R. If f is a single-valued map from X to Y, its factorization
f:X/R —Y is defined by

(&) = (fas (e

It is non trivial if and only if f is consistent with the equivalence
relation R, i.e., if and only if f(z) = f(y) whenever ¢(z) = ¢(y).

‘l\" hen F : X ~» Y is a set-valued map, we can define its factorization
F:X/R~Y by

F(e) == (Foe™)(§) o

Then we can associate with this system described through state-space
representation two Input-Output maps:

Definition 2.2 Let us consider a system (F,H) defined by the set-valued
map F describing the dynamics of the differential inclusion and the obser-
vation mayp H.



Let § = Sp denote the solution map of the differential inclusion. We
shall say that

1. the product I_ == H o S, from X to C(0,T;Y) defined by

Vzo€ X I_(J.'o) = U H(I())

z()= 5 {xo)

is the Sharp Input-Gutput map.
2. the “square product™ I, == HOS$, from X to C(0,T:Y) defined by

Vzge X, I.{xg) := ﬂ H{z("))

x(~)=§(x0)

15 the Hazy Input-Oulput magp.

Remark

Obhserve that when the observation map is single-valued, the use of a non
trivial hazy Input-Output map requires that all solutions x(-) € S§{ag) yield
the same observation y{-) = H(z(-)). Hence we have to study when this
possibility occurs, by projecting the differential inclusion {15) onto a differ-
ential equation which “tracks” all the solutions to the differential inclusion.
This is the purpose of the next section. 0O

3 Projection of a System onto the Observation
Space

Our first task is to provide conditions implying that the hazy Input-Output
map I, := HDOS is not trivial, above all when the observation map is
single-valued.

We shall tackle this issue by “projecting™ the differential inclusion given
in the state space .X onto a differential inclusion in the observation space
Y in such a way that solutions to the projected differential inclusion are
observations of solutions to the original differential inclusion.

Let us consider a differential inclusion

(10) 2'(t) € Flt,z(t)). =(0) = zo

10



where F : [0, 7] X X ~ X is a nontrivial set-valued map and an observation
map H : X ~+ Y from X to another finite dimensional vector-space }.

We project the differential inclusion (16) to a differential inclusion {or a
differential equation) on the observation space Y described by a set-valued
map G (or a single-valued map g)

(17) ¢t € Git.ww(t)) (or ¥/(t) = g(t.w(t))). ¥(0) = yo

which allows to track partially or completely solutions z(:) to the differential
inclusion (16) in the following sense:

" a/ V {z.y) € Graph(H) there exist solutions z(-) and y(-)
(18)[ to (16) and (17) such that Vt € [0,T], y{(t) € H(z(t))
b/ V¥ (zo,¥0) € Graph(H) all solutions z(-) and y(-)

1 to (16) and (17) satisfy YVt €[0,T), y(t) € H(z(t))

The second property means that the differential inclusion (17) is so to speak
“blind™ to the solutions to the differential inclusion (16). When it is satisfied,
we see that for all zo € H ™ ¥(wp), all the solutions to the differential inclusion
(16) do satisfy

Vtel[0,T]. y(t) € H(z(t))

In the next Proposition we denote by DH (z.y) the contingent derivative of
H at (z,y) (see Appendix for the definition of DH)

Proposition 8.1 Let us consider a closed set-valued map H from X to Y.

1. Let ug assume that F' and G are nontrivial upper semicontinuous set-
valued maps with nonempty compact convez images and with linear
growth. We posit the assumption

(19) V (z,¥) € Graph(H), G(t,y) N (DH(z,y) o F)(t,7) # ¢

Then property (18) a/ holds true.

2, Let us assume that F' X G is lipschitzean on a neighborhood of the graph
of H and has a linear growth. We posit the assumption

(20) V(2,y) € Graph(H), G(t,y}) C (DH(e,y)DF){/,q)

Then property (18) b/ is satisfied.

Proof
It follows obviously from the viability and invariance theorems of the
graph of H for the set-valued map F x G.

11



L. When G{t,y) intersects (DH (2,y)o F)(t.2) = Upzpy.n DH{(z, y) (v},
we deduce that Graph(H) is a viability domain of F x G. Hence we
apply the Viability Theorem (See [14], [1, Theorem 4.2.1, p.180] ).

2. When G is lipschitzean and satisfies (20}, we deduce that Graph(H)
is invariant by F x G. Hence we apply the Invariance Theorem (See
[8], [1, Theorem 4.6.2] ). O

In particular, we have obtained a sufficient condition for the hazy Input-
Output set-valued map I, to be non trivial.
First, it will be convenient to introduce the following definition.

Definition 3.1 Let us consider F : [0,T]XX ~ X and H : [0, T]x X ~ Y.
We shall say that a set-valued map G : [0.T] x Y ~+ Y is a lipschitzean
square projection of a set-valued map F : [0,T]x X ~ X by H if and
only if

J i) F x G is lipschitzean around [0,T] x Graph(H)
| i4) Viz.y) € Graph(H), G(i.y) C (DH(z.y)Q F) (t,2)

Therefore, for being able to use nontrivial hazy Input-Output maps, we
shal use the following consequence of Proposition 3.1

Proposition 3.2 Let us assume that F : [0,T] X X ~ X and H : X A~ Y
are given. If there exists a lipschitzean square projection of F by H. then the
hazy Input-Output map I, := HOS has non empty values for any initial
value yo € H (29).

Remark

When the observation map H is single-valued and differentiable, then
conditions (19) and (20) become respectively

i) Yye H '(z), G(t,y) n(‘UvEF(t,:)H’(T)(”]) 7 @
or Gt,y) N (H(z)o F)(t.2) # 0

i) Yye H ' (2), G(t,y) C Nuzpire H'(2) ()
=: (H'(z)a F}(t,z)

When G = ¢ is a single-valued map, we obtain naturally the following
consequence,

12



Corollary 3.1 Let us consider a closed set-valued map H from X lo Y.

1. Lef us assume that F is a nontrivial upper semicontinuous sel-valued
map with nonempty compact convezr fmages and with linear growth and
that there ezists 18 a continuous selection g with linear growth of the
product

V (z,y) € Graph(H), g(t,y) € (DH(z,y)e F)(t,a)

Then property (18) a/ holds true.

2. Let us assume that F X g ¥s Ispschitzean on a neighborhood of the graph
of H with linear growth. If g satisfies

V (z,y) € Graph(H), g(t,y) € (DH(z,y)O F)(t.2)

then property (18) b/ is satisfied.

Remark

Naturally, these formulas have their analogues when the ohservation
maps are time-dependant.
Conditions (19) and (20) become respectively

I i) V(t z,y)€Graph(H), G(t,y) n(Ut:EF(t.:)DH(tezey)(la'U)) # @
| i) V(t,z,9) € Graph(H), G(t,y) C Nucriry DH(t,2,3)(1,v)

When the observation map H is single-valued and differentiable, then
these conditions can be written in the form

{) V(t,z) € Dom(H),
G(t,v) ﬂ(;%H(t,z)+U,,Ep“',)H;(t,z)w) # @
or G(t,y) N(ZH(t,z)+ (H'(t,2)oF)(t,z)) #
i) Y (t,z) € Dom(H),
G(tay) C %H(tsz) + nvEF(f.:r) H:lr(tsz)‘v
=: 2 H(t,z) + (H'(t,z)Q F)(t,2)

Remark
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We observe that when the set-valued maps 7' and ( are time-indepen-
dant, Proposition 3.1 can be reformulated in terms of commutativity of
schemes for square products.

Let us denote by & the solution map associating to any o a solution to
the differential inclusion (equation) (17) starting at y, (when G is single-
valued such solution is unique).

Then we can deduce that property (18) b/ is equivalent to

Vo € Im(H), ®(v)C (HOS)OH ") (o)
Condition (20) becomes: for all y € Im(H),

Gly) ¢ [ ) DH(z,y)) = (DH(z.y)OF)OH '(y)
rEH" (y) vEF(x)

In other words, the second part of Proposition 3.1 implies that if the
scheme

X & x
H' 1 | DH(z,y)
y & v
is “commutative for the square products”, then the derived scheme
X & C0,T:X)
H |t H? | H
Y & C(0,T;Y)

is also commutative for the square products. 0O

4 Hazy and Sharp Observability

The ohservability concepts deal with the possibility of recovering the input
— here, the initial state —, from the observation of the evolution of the
state. In other words, they are related to the injectivity of the sharp and
hazy Input-Output set-valued maps, or, more generally, to the univocity {or
single-valuedness) of the inverses of those Input-Output maps.

So, we start with precise definitions.

Definition 4.1 Let 7 : X ~+ Y be a set-valued map. We shall say that it
enjoys loecal inverse unlvocity around an element (27,y") of its graph if
and only if there ezists a neighborhood N(z*) such that

{z | suchthat y"€ F(z)} N N(z) = {27}

14



If the neighborhood N (2*) cosneides with the domasn of F, F s said to have
(global) inverse univocity.

We shall say that it is locally injective around z* if and only if there
ezists a neighborhood N(z*) such that, for all 2y # 25 € N(2¥), we have
F(z1) N F(z2) = 0. It is said to be (globally) Injective if we can take for
neighborhood N(z™) the whole domain of 7.

With these definitions at hand, we are able to adapt some of the observ-
ability concepts to the set-valued case.

Definition 4.2 Assume that the sharp and hazy Input-Output maps are
defined on nonempty open subsets. Let y* € H(S(zo)) be an observation
assocsated with an initsal state xg.

We shall say that the system is sharply observable at (respectively
locally sharply observable at) zy if and only if the sharp Input-Output
map I_ enjoys the global inverse univoesty (respectively local).

Hazily observable and locally hazily observable systems are defined in
the same way, when the sharp Input-Output map s replaced by the hazy
Input-Output map 1.

The system is said to be hazlly (locally) observable around s/ the
hazy Input-Output map I is (locally) injective.

Remark

Several obvious remarks are in order. We observe that the system is
sharply locally observable at z if and only if there exists a neighborhood
N{zo) of zo such that

if #(-) € §(N(zo)) is such that y*(-) € H(z()), then 2(0) = =z

i.e., sharp observability means that an observation y*(-) which characterizes
the input zg.

The system is hazily locally observable at (zo if and only if there exists
a neighborhood N(zy) of zy such that, for all z; € N (zg),

if Vz() € $(x1), v*(*) € H(z(-)), then z, = 29

It is also clear that sharp local (respectively global) observability implies
hazy local (respectively global) observability.

15



We mention that if we consider two systems f; and 73 such that
VzelX, file) C Fila)
then
1. If 7, is sharply locally (respectively globally) observable, so is 7,

2. If 71 is hazily locally (respectively globally) observable, so is 72 O

We shall derive local observability and injectivity of a set-valued map
7 : X ~» Y from a general principle based on the differential calculus of
set-valued maps.

For that purpose, we introduce its contingent and paratingent derivatives
DF{z*,y*) and PF(2",y*), which are closed processes from X to }" (see
Appendix for precise definitions). .

Since 0 € D¥f(2*,y*)(0), we observe that to say that the “linearized
system” D7 (z*,y”) enjoys the inverse univocity amounts to saying that the
inverse image DF (z*,3*)!(0) contains only one element, i.e., that its kernel
KerDJF (2*,y™) is equal to 0, where the kernel is naturally defined by

KerDF (2*,y*) = D7 (z*,3")71(0)

Theorem 4.1 Let 7 be a set-valued map from a finite dimensional vector-
space X to a Banach space Y and (z”,y”) belong to its graph.

1. If the kernel of the contingent derivative DF (2*,y*) of 7 at (2*,y*) s
equal to { 0 }, then there ezists a nesghborhood N (2*) such that

(21) {z suchthat ¥y € F(z)} N N(z¥) = {z7}

to

Let us assume that there exsts v > 0 such that 7 (z*+ 4B) ss relatively
compact and that ¥ has a closed graph.

If for ally € 7 (z*) the kernels of the paratingent derivatives PF (z*,y)
of ¥ at (z*,y) are equal to {0}, then F is locally injective around z*.

Proof

1. Assume that the conclusion (21) is false . Then there exists a sequence
of elements z, # z* converging to z* satisfving

Va20, ¥ € F(z,)

16



Let us set hy, := ||z, — z”||, which converges to 0, and
Uy = (Iﬂ - x')/h'"

The elements u, do belong to the unit sphere, which is compact. Hence
a subsequence (again denoted) u, does converge to some u different
from 0. Since the above equation can be written

V20, v"+h,0 € F(z"+ hyuy)

we deduce that
0 € DF(",y")(u)

Hence we have proved the existence of a non zero element of the kernel
of DF (¢*.y”), which is a contradiction.

. Assume that 7 is not locally injective. Then there exists a sequence of
elements z}.22 € N(z*), 2} # 22, converging to z* and y, satisfying

Va20, y. € F(z)n7(z))
Let us set h, := |z} — 22|, which converges to 0, and
Up = (Q,'ll - .’EZ)/h"

The elements u,, do belong to the unit sphere, which is compact. Hence
a subsequence (again denoted) u, does converge to some u different
from 0.

Then for all large n
Yo EF(2)NF(22) = F(22 + hpu, )N T(22) C F(2* +4B)

we deduce that a subsequence (again denoted) y, converges to some
y € F(2*) (because Graph(7) is closed).

Since the above equation implies that
Y20, yn+h,0 € F(22+hnu,)

and we deduce that
0 € P7(z",y)(u)

Hence we have proved the existence of a non zero element of the kernel
of P¥(z*,y), which is a contradiction. O
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When 7 is convex (i.e., its graph is convex), we have a simple criterion
for global observability:

Proposition 4.1 Let 7 be a conver set-valued map from a Banach space
X to a Banach space Y and (2™,y") belong to sts graph. If the kernel of its
algebrase dersvative'®

DyF(x*,y") 3 equal to 0, then
z #£ = y & F(a)

Proof
If not, there exists  # z* such that y* € F(z). We set u := z — 2.
Equality
y+0 = yr € Flz) = Flz"+u)

implies that u, which is different from 0, does belong to the kernel of
D, F(z*,v"). D

Therefore, by using this theorem for proving sufficient conditions for
sharp and/or hazy observability, we need

1. to have chain rule formulas for composition and square products of
set-valued maps,

2. characterize the derivatives of the solution map in terms of solutions
to the associated variational equations.

The next proposition provides chaine rule formulas for square products
which are needed for estimating the contingent and paratingent derivatives
of the hazy Input-Output map I, in terms of the adjacent and circatangent
derivatives of the map G at (z*,y*) (see Appendix for the precise defini-
tions).

Proposition 4.2 Let us consider ¢ set-valued map G from a Banach space
X to a Banach space Y and a single-valued may H from Y to a Banach
space Z. Assume that G s lipschitzean around z*. If H is differentiabie
around some y* € G(z”), then

1014 is defined by

v € DeF(z,y){u) <= 3h>0 suchthat y+hv € Flz+ hu)

18



o

the contingent derivative of HOG is contained in the square product
of the derivative of H and the adjacent derivative of G: for allu €
Dom(D’G (z~,y™)) we have

DHOG)(z", H(y"))(«) ¢ H'(y")OD'Gle",y"){u)

if H is continuously differentiable around y* then the paratingent deriva-
tive of HOG is contained in the square product of the deriuative of
H and the circatangent derivative of G: ¥ u € Dom (CG(a”,y")) we
have

PHOG)(= H(y))(w) c H'(y)oCG(«"y)(v)

Proof

1.

Let v € Dom D'G(z*,y*) and w belong to D(H OG)(z*, H (v"))(u).
Hence there exist a sequence h, > 0 converging to 0 and sequences of
elements %, and w, converging to u and w respectively such that

Vn20, Hy ) +how, € N H)

y=G(x"+hnun)

Take now any v in D°{G}{2*,y")(u). Since G is lipschitzean around
z*, there exists a sequence of elements v, converging to » such that

Vo220, y"+hov, € Gz*+ hnuy)
Therefore,

V20, Hy )+ hpwy, = H(y" + hnvs)

Since H is differentiable around y*, we infer that
Hy)v = w

Since this is true for every element v of D°G(z".y™)(u), we deduce
that

w € N H@)=H{)oDGE .y) ()
vED Glx*,y*)(x)

19



2. Let « € Dom CG(z*,y*) and w belong to P(HOG){z" . H{y")) (u]}.
Hence there exist a sequence h, > 0 converging to 0 and sequences of
elements (z,,2,) € Graph(H OG), u, and w, converging to (x7.z7),
u and w respectively such that

V20, zo+haw, € N HW

¥yeGan+hnun)

The set-valued map G being lipschitzean, there exists a sequence of
elements y, € G(x,) converging to y*. By definition of the square
product, we know that 2z, = H(y,).

Take now any v in CG(z”,¥*)(«). Since G is lipschitzean around z~,
there exists a sequence of elements v, converging to ¢ such that

VYn2>0, Yn + hyv, € G(l‘n + hnuy)
Therefore,

Ya20, H(yn) + hwy, = H(yn + h, 'vn)

Since H is continuously differentiable around y*, we infer that
H@ ) = w
Since this is true for every element v of CG (2™, vy")(u), we deduce that
we [ HE)w=HE)oCGE )W O

veCGx,y*)(u}

For the usual product, it is easy to check that:
H'(y) e DG(z,y)(v) C D(H oG){(z,H(y))(x)

Naturally, equality holds true for algebraic derivatives: If H € L(Y,Z2)
is a linear operator, we check that

(22) HoDuG(z,y)(v) = Du(H oG)lz,H(y)) ()
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We do not know for the time other elegant criteria implying the chain
rule (39) for the usual composition product of set-valued maps in infinite

dimensional spaces!!.

Estimates of the various derivatives of the solution map $ in terms of the
solution maps of the variational inclusions are provided in the next section.

5 Variational Inclusions

We now provide estimates of the contingent, adjacent and circatangent
derivatives of the solution map § associated to the differential inclusion

(23) Z'(t) € F(t,z(t))

We shall express these estimates in terms of the solution maps of adequate
linearizations of differential inclusion (23) of the form

w'(t) € F'(t,z(t),2'(t))(w(t)

where for almost all t, F’(t,z,y) (%) denotes one of the (contingent, adjacent
or circatangent) derivatives of the set-valued map F(t,-,-) at a point (z,y)
of its graph (in this section the set-valued map F is regarded as a family of
set-valued maps z ~» F(t,z)) and the derivatives are taken with respect to
the state varsable only).

These linearized differential inclusions can be called the variational
equations, since they extend (in various ways) the classical variational
equations of ordinary differential equations.

HLet us mention however the following result involving the co-subdifferential
DG(zo0,y0)"", which is the closed convex process from I'* to X~ defined by

p€ DG(z,¢)°"(g) if and only if
v {z',y') € GraphlG), <p,z' —z2><<q¢y -y >

Let us assume that H is a continuous linear operator H = Z{¥. Zj from ¥ to Z. Equality

D(H =G)(zo, Byo)(v) = H=DGlzo.po)(u)

holds trueif A and I’ are reflexive Banach spaces and the co-subdifferential of G at (20, po|
satisfies
Im(H") + Dom|(DG{zo,30)"") = ¥~

Furthermore, this condition implies that the kernels of D{H o G)(z¢,Byo} and
H c DG|(zo.yo) are equal to {0} {see |7] ).

21



Let 7 be a solution of the differential inclusion (23). We assume that F
satisfes the following assumptions:

' {) Vz €X the set-valued map F(-,2) is measurable
J i) Vtel[0.T),VeeX. F(t.z) is a closed set
(24) l iii) 33 >0, k() € L}(0,T) such that for almost all ¢t € [0, T]
the map F(t.-) is k(t) — Lipschitz on Z(t) + 3B

Consider the adjacent variational inclusion, which is the “linearized”
along the trajectory Z inclusion

) [ w'(t) € D'F(t,z(t).Z(t))(w(t)) ae. in [0.7]

(25) : -
l w(0) = u

where « € X. In Theorems 5.1, 5.2 below we consider the solution map $

as the set-valued map from R" to the Sobolev space W11(0,T:R") .

Theorem 5.1 (Adjacent variational inclusion) If the assumptions (24)
hold true then for all w € X, every solution w € WH(0,T:X) to the lin-
earized inclusion (25) satisfies w € D°S(Z(0),7)(u)

In other words,
{w(-)| w'(t) € D'F(t,&(t), 2 (t)) (w(t)), w(0) =u} C D5 (Z(0),%)(u)

Proof

Filippov's theorem (see for example [1, Theorem 2.4.1, p.120] ) implies
that the map u — §(u) is lipschitzean on a neighborhood of Z(0). Let
hy > 0, n = 1,2,... be a sequence converging to 0. Then, by the very
definition of the adjacent derivative, for almost all t € [0,T] ,

F{t,2(t) + hnw(t)) -7 () | _
i ) =0

(26) lim d (w'(t),

Moreover, since #' () € F(t,z(t)) a.e. in [0,T], by (24) , for all sufficiently
large n and almost all t € [0, T]

d (T (t) + how'(t), F (6. F() + haw (1)) < hn (o’ (t) ) + k() [ ) ])

This, (26) and the Lebesgue dominated convergence theorem yield

(27) /OT d(Z(t)+ haw'(t), F{t,T(t) + haw(t))) dt = o(hn)
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where lim,, o ¢(hn)/hy = 0. By the Filippov Theorem (see for example
[1, Theorem 2.4.1, p.120]) and by (27) there exist A/ > 0 and solutions
Un € S(Z(0) + h,u) satisfying

lvn =2 = b0y € Molhy)

Since (y,(0) — Z7(0))/hn = u = w(0) this implies that

‘ = f _—l
Jim 225 = in C(0.T50): lim ¥—= = w’ in L}(0.7:)
Hence S(Z(0) + hou) — T
1imd(w.,“("( At _z)=0
n—oc hn

Since u and w are arbitrary the proof is complete. O
Consider next the circatangent variational inclusion, which is the
linearization involving circatangent derivatives:

| w'(t) € CF(t,2(t),7(t))(w(t)) ae. in [0,T]

(28] lw(O) = y

where v € X.

Theorem 5.2 (Circatangent variational inclusion) Assume that con-
ditions (24) hold true. Then for allu € X, every solution w € W1(0,T; X)
to the linearized inclusion (28) satisfies w € CS(Z(0),7)(u).

In other words,
{w() | «'(t) € CF(t,Z(t),2'(t)) (w(t)), «(0) = u} C C5((0),7)(u)

Proof

By Filippov’s theorem the map u — S(u)} is lipschitzean on a neigh-
borhood of Z(0). Consider a sequence 2, of trajectories of {23) converging
to 7 in W11(0,7;X) and let A, — 0+ . Then there exists a subsequence
Tj= 2, such that
(29) lim 2'(t) = 23 (t) a.e. in [0, 7]

J—oc

Set Aj = h,;. Then, by definition of circatangent derivative and by (29}, for
almost all t € [0, T]

(30) lim d (w,(t)’ F(toz;(t) + \juw(t) — 25(t) ) iy
J—ex

Aj




Moreover, using the fact that 2%(t) € F(t.z;(t)) a.e. in [0,T], we obtain
that for almost all + € [0, T]

d (2} (1) + Ay (1), F (1, 25(8) + Aw(t)) ) < Ay (' ()] + k(0) [l (6)])
This, (30) and the Lebesgue dominated convergence theorem yield
T .
(31) /0 d (zg(t] + A (t), F(t, z;(t) + Ajw(t))) dt = o(A;)

where lim;_,, o(X;)/A; = 0. By the Filippov Theorem and (31), there exist
M 2 0 and solutions y; € S(z;(0) + A,u) satisfying

v~ & = M ju'| < Molh))

Since (y;(0) — 2{0))/X; = uw = w(0), this implies that

. — . i ’. — z,.
lim Y% — oy in C(0,T;X); lim o Bl R in LY(0, T3 X)
J—roe ny Jok ny
Hence P
(0) + Ry ) — 2
(32) lim d (w, (=5(0) ;4 -"-’J) =0
j—ee | hn;

Therefore we have proved that for every sequence of solutions z, to (23)
converging to Z and every sequence k, — 0+, there exists a subsequence
Tj= 2y, which satisfies (32). This yields that for every sequence of solutions
z, converging to ¥ and A, — 0+
"~ S(z,(0)+ h,u) — 2
limd('w, (1()-;; ﬂ) ")=0
n

n—oo

Since u and w are arbitrary the proof is complete. O

We consider now the contingent variational inclusion

| w'(t) € eDF(t,Z(t),(t)){w(t)) ae.in [0,T]
(33) [ w(0) = wu

Theorem 5.8 (Contingent variational inclusion) Let us consider the
solution map § as a set-valued map from R" to WL (0,T:R") supplied with
the weak-% topology and let Z(-) be a solution of the differential inclusion (23)
starting at zo. Then the contingent derivative DS (zqo,7(-)) of the solution
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map s contained in the solution map of the contingent variational inclusion
(38), in the sense that

ay | DSzt c
| L) | w'(t) € @DF (7). 2 (1)) (w(t). w(0)=u)
Proof
Fix a direction v € R" and let w(-) belong to DS (z¢.Z(-)) (u). By defini-
tion of the contingent derivative, there exist sequences of elements h,, — 0+,
U, — u and w,(-) — w(-) in the weak-+ topology of W 1>(0,7:R") and
¢ > 0 satisfying

J’ i) |lwht)]| € ¢ ae. in [0,7]
(35) i) T(t)+ houl(t) € F(.Z() + hpw,(t)) ae. in [0.T]
l, 1) wy(0) = wu,

Hence

30) | i) wn(-) converges pointwise to w(:)
( | %) w} () converges weakly in L'(0,7:R") to w'(:)

By Mazur’s Theorem and (36) ii), a sequence of convex combinations

0

tm(t) = 3 abub(t)

=
converges strongly to w'(-) in L*(0.7;.X). Therefore a subsequence (again
denoted) v, (-) converges to w’(-) almost everywhere. By (35) i), ii) for all
p and almost all t € [0, 7]

wylt) € (hLF(t,E(t)+hpwp(t))—E’(t))ncB
P

Let ¢t € [0,T] be a point where v,,(¢{) converges to u’(t) and 2z’'(t) €
F(t,z(t)). Fix an integer n > 1 and ¢ > 0. By (36) i), there exists m such
that by, < 1/ and ||wp(t) — w(t)|| < 1/n for all p > m.

Then, by setting

®(y,h) = (%F(t.z(t] + hy) — 5'“'(1‘)) NcB




we obtain that

vm(t) € K, := co U ®(y.h)
helo,Llyewlt)+ LB

nl

and therefore, by letting m go to oo, that

«'(t) € @ U ®(v.h)

.hE]O.a].yEw(t)r‘;B

Since this is true for any n, we deduce that w’(t) belongs to the convex
upper limit!?:

w'(t) € ()@ U & (y. k)

nZ1 AK€, L yEwiti+ L B

Since the subsets ®(y,h) are contained in the ball of radius ¢, we infer
that «'(t) belongs to the closed convex hull of the Kuratowski upper limit!?:

w'it) € @ ) U d(y,h) + B

>0n2l A gejo,dlyewit)+ LB

12Let K, be a sequence of subsets of a Banach space X. We say that the set
co-limsup, _, K, := m o U K,
N>0 n>N

is the convex upper limit of the sequence K,. Recall that the Kuratowski upper
limit of the K,'s is defined by

limsup A, := m ﬂ U (K + eB)

n=oo e>ON>0n>N

It is clear that the convex upper limit is closed and convex. Moreover since 70 | J, ., o (A'n+
¢B) = |, ..x Kn + ¢B we obtain

co-limsup,, .o An = m m o U (Kn + eB)
«ON>0 n>N
Hence the convex upper limit contains the closed convex hull of the Kuratowski upper
limit.
'3The convex hull of an upper limit and the convex upper limit are related by the
following

Lemma B.1 Let us coneider o sequence of subsete K, conlained (n ¢ bounded subset of o
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We observe now that

N U d(y.h)+eB| c DF(t.z(t).7(t))(x(t))

«>0.n>1 .hego.%]‘yeu,(t)+1;3
to conclude that w(-) is a solution to the differential inclusion

| w'(t) € E@DF(t.7(t).7(t))(w(t)) ae. in [0.7]
] w(0) = wu

Since w € DS (2,7(-)){u) is arbitrary we proved (34). 8]

6 Local Observability Theorems

We piece together in this section the general principle on local inverse uni-
vocity and local injectivity (Theorem 4.1), the chain rule formulas (Propo-
sition 4.2) and the estimates of the derivatives of the solution map in terms
of solution maps of the variational equations (Theorems 5.1, 5.2 and 5.3)
to prove the statements on local hazy and sharp observability we have an-
nounced.

Througout the whole section we assume that H is differentiable and F
has a linear growth. We impose also some regularity assumptions on the

finite dimenasonal vector-apace X. Then

co-limsup,, An = co(limsupK,)
n-—-—oo
Proof
Since an element z of co-limsup,_ . K, is the limit of a subsequence of convex com-
binations v~ of elements of Un>NK,. and since the dimension of X is an integer p,
Carathéodory’s Theorem allows to write that

P P
AN N
UN =) aj N where Y aj =1, a}VZO
A

Lo X

o

J=0

.

where N; > N and where zx,; belongs to Kn; The vector a" of p+ 1 components
aj-" contains a converging subsequence {again denoted) a™ which converges to some non
negative vector a of p+ 1 components g; such that E::o a; = 1.

The subsets A, being contained in a given compact subset, we can extract succes-
sively subsequences {again denoted) zn; converging to elements z;, which belong to the
Kuratowski upper limit of the subsets K,. Hence z is equal to the convex combination
3 " _.ajz; and the lemma is proved. [0

Lwy=0



derivatives of F. In the next theorem it is assumed that F is derivable
in the sense that its contingent and adjacent derivatives do coincide (see
Appendix for the definition of derivability}.

Theorem 6.1 Let us assume that F is derivable, satisfies assumptions (12).
that it has a lipschitzean square projection G by H. Let Z() € S(xq). If the
conlingent variational snclusion

(37) for almost all t € [0,T]. «'(t) € DF({t,z(t),7 (1)) (v (t))

is globally hazily observable through H'(Z(-)) at O, then the system (23) is
locally hazily observable through H at zq.

Proof

We apply the general principle (Theorem 4.1) to the hazy Inpui-Output
map /. = HOS, which is defined since we assumed that there exists a
square projection G (see Definition 3.1 and Proposition 3.2). We have to
prove that the kernel of the contingent derivative DI, (zg,yo) of 1. {where
vo = H(Z("))) is equal to 0. By Filippov’s Theorem. the solution map &
is lipschitzean around zy. Then we can apply Proposition 4.2 which states
that for all « € Dom(D"$ (20.Z(+)))

; \

DI (zo.w0)(v) € (H'(Z())O D" $(20,2(})) ) (u)

By Theorem 5.1, we know that for any u € X, the set $(u) of solutions
to the adjacent variational inclusion (25) starting at u« is contained in the
adjacent derivative of $:

C®(u) = {w()|w'(t) € DF(,Z(1),7 (1) (w(t)) & w(0) = u)
(38 ={w()|w'(t) € DF(t,Z(t).7 (t))(w(t)) & w(0) = u}
- C D*§(z0,Z)(u)

We also know that for all (z,y) € Graph(F(t,:)), the contingent deriva-
tive DF(z,y) is k(t)—Lipschitz (see Appendix). Hence, by the Filippov
theorem ([1, Theorem 2.4.1, p.120]) for every u € R the contingent vari-
ational inclusion (37) has a solution starting at uw. Therefore, by (38),
Dom(D’§ (29.F(-))) is equal to the whole space. This yiedls

YVueR", DI (zo,%)(x) C (H'(Z)O®)(u)

so that the kernel of DI, (z¢, yo) is contained in the kernel of H'(Z) 0 ®. But
to say that the kernel of H'(Z) O ® is equal to 0 amounts to saying that the
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linearized system (37) is hazily globally observable at 0 through H'(z()).
Hence the kernel of DI, {z¢.yg) is equal to 0. and thus. the inverse image of
hazy Input-Output map contains locally a unique element. B

Remark

The above result remains true if instead of derivability of F' we assumne
that Dom(D’$ (20.7(-)) ) = R". O

In the next theorem we assume that F is sleek, so that its contingent
and circatangent derivatives do coincide (see Appendix).

Theorem 6.2 Let us assume that F is sleek, has convex images, satisfies
assumptions (12), and that st has a lipschitzean square projection G by H. If
Jor allZ(-) € $(zo) the contingent varsational snclusion (37) ss globally hazsly
observable through H'(Z(-)) at 0, then the system (28] is hazily observable
through H around z¢.

Proof

We apply the second part of the general principle on local injectivity
{(Theorem 4.1) to the hazy Input-Output map I := HO S, which is defined
since we assumed that there exists a square projection G. We have to prove
that the kernels of the paratingent derivatives PI,(zg,v) of I. are equal
to 0 (where y(:) := H(Z(:)) and F(-) € $(zp)) . In the way similar to
(1, Theorem 2.2.1, p.104], we prove that for all 4 > 0 the set §(z¢ + vB)
is compact in C(0,T:R"). Hence I (29 + vB) is relatively compact in
C(0,T;R"). By Filippov's Theorem, the solution map ¢ is lipschitzean
around zo. This and compactness of S(z¢ + 4B) imply that Graph(/.) is
a closed set. Then we can apply the second part of Proposition 4.2 which
states that for all v € Dom(C $ (20, Z(")))

Pl (20,y)(uv) C (H'(z(-))DCS (20,2())) (u)

By Theorem 5.2, we know that for all u, the set ®(u) of solutions to the
circatangent variational inclusion (24) starting at u is contained in the cir-
catangent derivative of S:

[[#() = ful) [ wl) € CFEO,ZO)w) & wl0) = w)
= (x() |+'(1) € DF(F0.Z@)(x(1) & v(0) = )
| ¢ cSenn
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But from the proof of Theorem 6.1 we know that Dom(®$) = R". Therefore,
PLi(zo.¥)(v) C (H'(Z)O®) (u)

so that the kernel of PI,(z0,y) is contained in the kernel of H'(Z) 0 %. But
to say that the kernel of H'(Z) 0 &, is equal to 0 amounts to saying that the
linearized system (37) is hazily globally observable through H'(Z). Hence
the kernel of P/, (2y,y) is equal to 0, and thus, the hazy Input-Output map
is locally injective. O

We consider now the sharp Input-Output map.

Theorem 6.8 Let us assume that the graphs of the set-valued maps F(t,") :
X A X are closed and convez. Let H be a linear operator from X to another
finite dimensional vector-space Y. Let T(-) be a solution to the differential
inclusion (23). If the contingent variational inclusion (87} is globally sharply
observable through H arcund 0, then the system (23) is globally sharply
observable through H around zy.

Proof

We apply Proposition 4.1 to the sharp Input-Output map - := Ho §.
We have to prove that the kernel of the algebraic derivative D I_ (2. yo) of
I_ (where yo := H (7)) is equal to 0. Consider § as a map from R" to the
Sobolev space W!(0,T;R").

Since the graph of the solution map $§ is convex (for the graphs of the
set-valued map F' is assumed to be convex), and since the map H is linear,
we know that the chain rule (22) holds true:

(39) DI_(z0,30)(u) = (H o Dg$(20,7("))) (u)

It remains to check that the algebraic derivative D, S(z0,%))(u) of S is con-
tained in the subset W,(u) of solutions to the algebraic variational inclusion
starting at u:

| DaS(z0,7(){w) C ¥alu) =
| {w()|w'(t) € DJF(Z(t),2(t))(w(t)) & w(0) = u}

Since the algegraic derivative of a convex set-valued map is contained in the
contingent derivative, then the set ¥,(u) is contained in the subset ¥ (u) of
solutions to the contingent variational inclusion (34) starting at u. Hence
the kernel of DI_(zo,yo) is contained in the kernel of H o ¥. But to say
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that the kernel of H o ¥ is equal to 0 amounts to saying that the contingent
variational inclusion system (37) is sharply globally observable through H.
Therefore the kernel of D7_ (2g, yo) is equal to 0. and thus, the inverse image
of sharp Input-Output map contains a unique element. This concludes the
proof. 0O

Remark

We do not know for the time other elegant criteria implying the chain
rule (39) for the usual composition product of set-valued maps in infinite

dimensional spaces!?.

If we assume that the chain rule holds true, we can state the following
proposition, a consequence of the general principle (Theorem 4.1} and of
Theorem 5.3 on the estimate of the contingent derivative of the solution
map.

Proposition 6.1 Let us assume that the solution mayp of the differential
inclusion (23) and the differentiable observation map H do satisfy the chain
rule

DI_(20,30)(w) = (H'(Z) o $(0,7())) (u)
If the contingent varsational snclusion
for almost all ¢ € [0, T], «'(t) € coDF(t,z(t),Z (t))(w(t))

15 globally sharply observable through H'(Z(:)) around O, then the system
(23] s& locally sharply observable through H around zo. O

4Let us mention however the following result involving the co-subdifferential
DGi{zo,y0)"", which is the closed convex process from ¥ * to X~ defined by

p € DGz, y)°(g) i and only if
Vv {(z',y') € Graph(G), <p, 2 —z><<¢, ¢ -y >

Let us assume that H is a continuous linear operator H £ 2(¥, Z) from ¥ to Z. Equality

D{H < G){z0,Byo){t) = H oDG{zo,y0)(x)

holds true if X and Y are reflexive Banach spaces and the co-subdifferential of G at {zo, yo)
satisfies

Im{H") + Dom{DG(z0.40)°") = ¥~
Furthermore. this condition implies that the kernels of D{(H o G){zo,Byo) and

H < DG{z0. yo) are equal to {0} {see ||).
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However, we can bypass the chain rule formula and attempt to obtain
directly other criteria of local sharp observability in the nonconvex case.

Theorem 6.4 Assume that F has closed convez images, 1s conlsnuous, Lip-
schilz in the second variable with a ronstant independent of t and that the
growth of F is linear with respect to the state. Let H be a twice continuously
differentiable function from X to ancther finite dimenssonal vector-space Y.
Cansider an observation y* € I_(zy) and assume that for every solution
Z(-) to the differential inclusion (23] satisfusng ™ (-) = H(Z(-)) and for all
t € [0,T] we have

(40) (Ker H'(2(t))) < (F(t.Z(t)) - F(t.2(t)))~
If for all T as above the contingent variational inclusion
(41) for almost allt € [0, 7], w'(t) € co DF(t,z(t),Z (t))(=(t))

is globally sharply observable through H'(Z(t)) around 0, then the system
(23) s8 locally sharply observable through H at (z,y*).

Proof

Assume for a moment that the inclusion (23) is not locally sharply ob-
servable through H at (z¢.y"). Then there exists a sequence zfj # x¢, zj —
zo such that y* € I_(z}). i.e., for some z, € §(z3)

(42) y" = H(za ("))

Taking a subsequence if needed and keeping the same notations, we may
assume that 2, — T weakly in W1 (0, T;R"). Then (42) yields

(49) v = HE(): H'EOEE) = H(2a(t)2) (1)

We shall prove that the convergence is actually strong and even more, that
there exists a constant ¢ > 0 such that

(44) zh(t) =7 (t)] < < |lza(t) = Z(t)]] a-e.in [0,T]

Indeed otherwise there exist sequences t; and n; such that
] z:u (tx) € Flteozag(te)) s T'(ts) € F(ts,Z(tx))

1 f#h, (e =70l 2 & 2w, () — 2(t4)]
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Taking a subsequence and keeping the same notations. by continuity of F,
we may assume that for some t € [0,T|, p € F(t.Z(t))

(45) th — t: ZT(ty) — p

Let p denote the Lipschitz constant of F' with respect to x and let y(tx) €
F(tr.%, ) be such that

ng
(46) lulte) =2, ()] < o llan, (t6) = Z(t)]

Since H' is locally Lipschitz and :r:,} are equibounded, from the last inequal-
ity and (43) we deduce that for some constants M, A, > 0

|2 (F(t)) (y(te) = F(t))]

| < llH’(-T(tk))(‘rn,((A) = Zitp)] + o [H @) 20, (te) = Z(t4)]]

l < \H (2n, (tr)) 20, (tx) — H'(2(t))7 (fA)"'*'M llza, (ts) — Z(tg)l “-Tn (tk)”
+ o |H' @) llzne (t6) — Z(ts)] <Ml lzn, (£6) = Z(t6)]l

(47)

From (46) and the choice of {5, we obtain

ly(te) = 2 (t6)l

"-Tug(tk) - E(tk)“

(48) — o¢ when kb — ¢

It is also not restrictive to assume that for some u of |u|| =

(49) wy = y(te) = F(ts)

ly(ts) =2 (t4)]

Then (47), (48) yield
u € Ker H'(Z(t))

On the other hand uy is contained in the space spanned by F(tx, ZF(tx)) —
F(tx,Z(tx)) and, by continuity of F, u is contained in the space spanned by
F(t,7(t)) — F(t,Z(t)). Since u # 0 this contradicts (40) and therefore (44)
follows.

From the Gronwall inequality and (44) we deduce that for some M; > 0

2 (t) = Z()| < MMy l2a (0) - Z(0)]
Setting hy, = ||2§ — o[ we obtain

||a',, —T" W 1,000,T) < Msh,
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Taking a subsequence and keeping the same notations we may assume that

Ty — T

hin

— w weakly in W1*(0,7)

By Theorem 5.3, w is a solution of the contingent variational inclu-
sion (33). Hence w is a solution of (41). Moreover w(0) = u # 0. Since
H(z,()) = H(Z(-)) taking the derivatives we obtain that for every t €
[0,T], H'(Z(t))w(t) = 0. This contradicts the assumption (40) of theorem
and completes the proof. 0O

Example: Observability around an Equilibrium

Let us consider the case of a time-independent system (F, H): this means
that the set-valued map F : X A+ X and the observation map H : X ~+ Y
do not depend upon the time.

We shall observe this system around an equilibrium Z of F, i.e., a solution
to the equation
(50) 0 € F(z)

For simplicity, we shall assure that the set-valued map F is sleek at
the equilibrium. Hence all the derivatives of F' at (%,0) do coincide with the
contingent derivative DF (Z,0), which is a closed convex process from X to
itself.

The theorems on local observability reduce the local observability around
the equilibrium Z to the study of the observability properties of the varia-
tional inclusion
(51) w'(t) € DF(&,0)(w(t))

through the observation map H'(z) around the solution 0 of this variational
inclusion.

We mention below a characterization of sharp observability -of the vari-
ational inclusion in terms of “viability domains” of the restriction of the
derivative DF(2,0) to the kernel of H'(z).

Recall that a subset P C ker H'(Z) is a “ viability domain” if

YweP, DF(z,00(w)NnTp(w)# 8
where Tp(w) denotes the “contingent cone to P ar w € P".

Proposition 6.2 Let ue assume that F i sleck at ste equslibrium Z and
that H s differentiable at 2. Then the varsational snclusion (51) ss sharply
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observable at 0 sf and only if the largest closed viability domain of the
restriction to ker H'(Z) of the contingent derivative DF (z,0) ss equal to zero.

Proof
Let us denote by £ the restiction of the contingent derivative DF(z,0)
to the kernel of H'(Z) defined by:

| DF(2,0)(x) if u€kerH'(2)

(52) E(u) ] @ if ué¢kerH'(z)

We consider the associated differential inclusion
(53) v'(t) € E(w(t))

We know that the largest closed viabllity domain of the closed con-
vex process E is the domain of the solution map of the associated differential
inclusion (53). (See [8]).

But if we denote by R the solution map of the variational inclusion (51)
and by 8 the set of functions z(-) such that

Vte[0,T], z(t) € ker H'(2)

we observe that the solution map of the differential inclusion (53) is the
set-valued map v ~» R(u) N 8. Hence its domain is the set R~ (8). Since

R™(B) = ker(H'(z)oR)

we infer that the largest viabllity domain of F is the kernel of the
sharp Input-Output map H'(z) o R.

Consequently, the variational inclusion (51) being sharply observable if
and only if the kernel of H'(Z)o R is equal to zero, our Proposition ensues. O

Remark

In the same way, the variational inclusion (51) is hazily observable if and
only if the kernel of H'(Z) O R is equal to zero.

There are also some relations between the kernel of the hazy Input-
Output map H'(Z)O R and invariance domains of the restriction of the
derivative to the kernel of H'(z). First, we remark that

RT(8) = ker(H'(z)DR)
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i.e.. that the kernel of H'(z) 0 R is the largest set enjoying the “invariance
property”: for any u € ker H'(z), all solutions to the differential inclusion
(53) remain in this kernel.

When E is lipschitzean in a neighborhood of ker H'(z), any closed subset
P C ker H'(z) which is “invariant” in the sense that

YweP, DF(z0)(w)C Tp(w)

enjoy the invariance property. The converse is true only if we assume that
the domain of DF (#,0) is the whole space.

Then, if such is the case, the variational inclusion is hazily observabie sf
and only if the largest closed invariance domain of the restriction to ker H'(z)
of the derivative DF (z,0) is equal to zero. O

Remark

We have proved in [4] that under some further conditions, the sharp ob-
servability of the variational inclusion at 0 is equivalent to the controllability
of the adjoint system

(54) -o'(t) € DF(2,00*(pt)) + H'(2)"u(t), u(t) € ¥~

Proposition 6.3 We posit the assumptions of Proposition 6.2, we assume
that DF (2,0)(0) = 0 and we suppose that

(55) ker H'(z) + Dom(DF (2,0)) = X

Then the concepts of sharp and hazy observability of the variational inclusion
cotncide and are equivalent to the controllabslity of the adjoint system

(About eleven characterizations of this property are supplied in [4] ).

Proof

Assumption (55) implies that the transpose E* of the restriction E of
the closed convex process DF(z,0) to ker H'(2) is given by the formula

(56) (DF(2,0)|xer #(2))" = DF(2,0)* + Im(H'(2)")

(see |7, Corollary 3.3.17, p.142] )

We also know (see [4, Proposition 1.12, p.1198] ) that if the domain
of the transpose E* of E is the whole space, then a vector subspace P
is an invariance domain of E if and only if its orthogonal P+ is a viability
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domain’® of E*. Since the domain of E~ is equal to the domain of DF {7.0)"
(thanks to formula (56), this condition is equivalent to DF(z.0) = 0).

Hence the variational inclusion (51) being sharply observable at 0 if and
only if the largest closed viability domain of E is equal to 0 {by the above
Proposition 6.2). we deduce that this happens if and only if the smallest
invariance domain of £ is equal to 0, i.e., if and only if the adjoint system
(54) is controllable.

The assumption that DF(Z,0)(0) = 0 implies that the restriction!®
DF(2,0)|ker u'iz) of DF(2,0) to the kernel of H'(Z) is single-valued. (and
thus, a linear operator), so that both concepts of sharp and hazy observ-
ability do coincide.

Therefore, our statement follows from [4, Theorem 5.5., p1207]. O

7 Appendix: Derivatives of Set-Valued Maps

Definition 7.1 Let {2,y) belong to the graph of a set-valued map F : X ~r
Y from a normed space X to another Y. Then the contingent derivative
DF(z,y) of F at (z,y) is the set-valued may from X to Y defined by

. e+ hd') — gy
v €DF(z,y)(v) = liminf d (v, M—y) =0
h—0+,u'—u h

and the paratingent!’ derivative PF(z,y) of F at (z,y) is the set-valued
map from X toY defined by

v € PF(z,y)(u) <

F _I h N — ot
limi .(v, (o + h) y)=0
h—0+,(2 3') = F (z,y).%' —u h

where —p denotes the convergence in Graph(F)

When F is lipschitzean around z € Int(Dom(F}), the above formulas
become

) h ve DF(-’tay)(“) <= liminf; o4 d ('U, F!.ﬁ—}l:u!—&’) =90
i) v €PF(z,y)(s) == Lminfyos (2 g)mpimg & (0. DL ) =0

13 This is also true when the domain of E is the whole space. But this does not apply
to our case, since the domain of E is the kernel of H'(z).

1®this does not require that DF(z,0}{0} = 0 is single-valued on its domain when the
Iatter is not a vector subspace.

7see [?] for the study of paratingent cones and the applications of Choquet’s Theorem.
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Moreover if & denotes the Lipschitz constant of F at z, then for every v €
F(z) the derivative DF(z,y) has nonempty images and is % —lipschitzean
(see [13] ).

Despite the fact that both adjacent and circatangent derivatives can be
defined for any set-valued map F, the formulas are simpler when we deal
with lipschitzean set-valued maps. Since we use them only in this context
in this paper, we provide their definitions in this limnited case.

Definition 7.2 Let (z,y) belongs to the graph of a set-valued may F : X ~-
Y from @ normed space X to another Y. Assume that F ss lipschitzean
around an element ¢ € Int( Dom (F)), then the adjacent derivative
D°F(z,y) and the circatangent derlvative CF(z,y) are the set-valued
maps from X toY respectively defined by

v € D'F(z,y)(x) < Lim (U,M) =0
h—0+ h

and

o Fl& +hu) — ¢

€ CF(z, u) > lm d( ) =0
v (:15 y)( ) h=0+,(2,¢'}—=r(x,y) h

Several remarks are in order. First, all these derivatives are positively ho-
mogeneous and their graphs are closed.
We observe the obvious inclusions

CF(z,y)(v) C D'F(z,y)(v) C DF(z,y)(u) C PF(z,y)(u)

and that the definitions of contingent and adjacent derivatives on one hand,
the paratingent and circatangent derivatives, on the other one, are symmet-
ric. When F := f is single-valued, we set

Djf(z) = Dfl(z, f(2)). D'f(z):=D"f(z,f(z)), Cflz):=Cfl(z,f(2))
We see easily that

Df(z)(v) = /f'(z)u if fis Gateaux differentiable
D’ f(z)(u) = f'(z)u if f is Fréchet differentiable
Cf(z)(u) =f'(z)u if fis continuously differentiable

The choice of these strange limits is dictated by the fact that the graph
of each of these derivatives is the corresponding tangent cone to the graph
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of F at (z,y). (The graphs of the circatangent derivatives are the Clarke
tangent cones to the graphs, which are always convex.)

This allows also to define and use derivatives of restrictions F := f|g of
single-valued maps f to subsets K C X, which are defined by

flal(z) = { g(m) gj;ﬁ

If f is continuously differentiable around a point z € K, then the deriva-
tive of the restriction is the restriction of the derivative to the
corresponding tangent cone.

The most familiar instance of set-valued maps is the inverse of a non
injective single-valued map. The derivative of the inverse of a set-
valued map F is the inverse of the derivative:

P(F)—l(yem) = PF(z,y)_l
D(F)~'(y.2z) = DF(z,y)™"
D'F) Yy,2) = D'F(z,y)7!
C(F)'(y.2) = COF(z,y)™"

and enjoy a now well investigated calculus.

The circatangent derivatives are closed convex processes, be-
cause their graph are closed convex cones, i.e., they are set-valued anlogues
of the continuous linear operators. We refer to [21], [2, Chapter 7] for various
properties of closed convex processes.

We say that a set-valued map F is derivable at (z,y) € Graph(F) if
DF(z,y) = D'F(z,y) and that it is derlvable if it is derivable at every
point of its graph.

We say that a set-valued map F is sleek at (z,y) € Graph(F) if
Graph(F) 3 (2’,3") ~ Graph(DF)(z',3') is lower semicontinuous at (z,y)

and it is sleek if it is sleek at every point of its graph. In this case, we can
prove that the contingent, adjacent and circatangent derivatives
coinelde.
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