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FOREWORD 

In this p a p e r ,  t h e  a u t h o r  look at some quite genera l  optimization prob- 
lems on t h e  s p a c e  of probabil ist ic measures. These problems originated in 
mathematical s ta t is t ics  but  have applications in s e v e r a l  o t h e r  areas of 
mathematical analysis. The a u t h o r  extend previous work by considering a 
more general  form of t h e  const ra ints ,  and develop numerical methods 
(based on s tochast ic  quasigradient techniques) and some duality re la t ions  
f o r  problems of th is  type.  

This p a p e r  i s  a contribution t o  r e s e a r c h  on s tochast ic  optimization 
cur ren t ly  underway within t h e  Adaptation and Optimization Pro jec t .  

Alexander B. Kurzhanski 
Chairman 
System and Decision Sciences 
Program 
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STOCHASTIC OPTIMIZATION TECHNIQUES FOR FINDING 

OPT= SUBMEASURES 

Alexei Gaivoronski 

1. INTRODUCTION 

Optimality conditions based on duality relations were studied in [I] fo r  

the  following optimization problem. 

Find the positive Borel measure H such tha t  

+O(H) = rnax 

with respec t  t o  constraints 

H ~ ( A )  5 H ( A )  ~ P ( A )  

fo r  all Borel A  cYcR" 

where Y- some subset of Euclidean space Rn, + ' ( H ) -  function which 



depends on the measure H, usually some kind of directional differentiability 

and convexity is assumed. Hu and $ a r e  some positive Bore1 measures. 

Stochastic optimization methods fo r  solving (1)-(4) in case  when functions 

(ki (H )  a r e  l inear with respec t  to  H were developed in [I]. In this paper  

such methods a r e  developed fo r  nonlinear functions (ki(H) and fo r  arbi-  

t r a r y  finite measures. Interest  f o r  such a problem is originated from statis- 

t ics where i t  appea r s  in finite population sampling [2,3]. 

Suppose that  w e  have collection D of N objects,  each object is 

described by pa i r  (z* ,yi),i = 1:N. Variables yl are known and variables zf 

can be observed fo r  each par t icular  i in the following way: 

where c;* - random independent variables with zero  mean, and zf - observa- 

tions. It is assumed usually that  relationship between zl and y f  is known up 

to  the s e t  of unknown parameters:  

where h (y ) = (h l(y ), ... ,hl (y )) a r e  known functions and .IP = (.IP1,..., d l )  a r e  

parameters  t o  be determined. 

The problem is to  select  subset d cD consisting of n objects in o r d e r  

to  get in some sense the  best possible estimate of parameters  19. This esti- 

mate is based on observations zl fo r  objects belonging to  d .  

Applying the  usual approach of optimal experimental design [4-61 one 

can substitute the collection (y ,y, ) by measure HU (y ) and subset of 

objects t o  be observed by measure H(y). The variance matrix D of t he  best 

l inear  estimate in case all ol has the same variance becomes a f t e r  such 



substitution proportional t o  matrix M ,  defined as follows: 

and the  problem becomes to  minimize some function + of M ,  such as deter-  

minant, t r ace ,  the  largest  eigenvalue, etc. 

min @(M) 
H 

( 5 )  

with respec t  t o  obvious constraint 

fo r  all Bore1 A CY. Another possible application of the  problem (1)-(4) are 

approximation schemes f o r  stochastic optimization [7,8]. 

The purpose of this paper  is t o  develop stochastic optimization methods 

dealing with such problems. In section 2 the  characterization of solutions 

fo r  quite general classes of measures is obtained. The conseptual algorithm 

fo r  solving nonlinear problems is proposed in t he  section 3, which is applied 

in section 4 t o  par t icular  problems of the  kind (5) - (6) .  In section 5 results 

of some numerical experiments are presented. 

2. CHARACTEKIZATION OF THE OPTIMAL SOLUTIONS 

We shall consider subset Y of Euclidean space Rn and some a-field P on 

it. We shall assume tha t  all  measures specified below are defined on this  a- 

field. 

In this  section, the representat ion of measures H, which are the solu- 

tion of the following problem, will be developed: 



subject  t o  constraint  

The constraint  (8) means t ha t  H1 (E) S H(E) S HU (E) for any E c Z. Define 

HA = P - p. In what follows t he  spaces  L ~ ( Y ,  ?,HA) and L,(Y, P.HA) play 

an important role ,  where L l ( Y , ~ , ~ A )  is the  space  of all HA-measurable func- 

tions g (y ) defined on Y and such t ha t  ! g ( y )  1 dHA < a+, L ,(Y.E.HA) is  the  
r 

space  of all  Hkmeasurab le  and HA-essentially bounded functions g ( y  ), 

defined on Y. In what follows w e  shall  denote by 1 I . 1 1 ,  t h e  norm in the  space  

L ,(Y, E,&), i.e. 

Let us  denote by G the  set of all measures, satisfying (8): 

and by Gb t h e  set of all measures,  satisfying in addition (9): 

Suppose tha t  J' ( y  ) i s  some function defined on Y, c-some number and define 

t he  following sets 

In notations below w e  shall  substi tute in th is  definition instead of 3 various 

par t i cu la r  functions. Take 



and define, as usual, by H-,Hf and 1 H ! positive, negative and total  variation 

of the measure H.  

We shall f i r s t  consider t he  problem in which function 9 ( H )  is linear: 

and describe the  set of all solutions of (10). The following resul t  is general- 

ization of Lemma 1 from [I]. 

THEOREM 1. Suppose t ha t  the  following conditions are satisfied: 

2. For any E E z.H'(E) > 0 exists El€:, El-, such tha t  e i ther  El is 

HA-atom o r  0 < H'(E~) < = 

Then the solution of problem (10) exists and. any such solution has  the  

following representation: 

(i) H' (A ) = H" (A ) f o r  any A EZ, A CZ+(c ' ,g ) 

(ii) H' (A ) = Hi (A ) fo r  any A EZ, A CZ-(c ' ,g ) 

(iii) HU (A ) 2 H' (A ) 2 H1 (A ) fo r  any A EZ, A CZO(c ' ,g ) and 

~ ' ( P ' ( c ' , g ) )  = b -H' (Y) - H ~ ( Z + ( C * , ~ ) )  

Conversely, any measure defined by (i)-(iii) is t h e  solution of the  problem 

(10)' 



PROOF. Let us f i r s t  prove that  the  measure with propert ies  (i)-(iii) exists. 

It is c lear  that  any measure on (Y,:) is defined by its values on subsets of 

- 
Z+(c'  ,g ) ,  Z0(c0 , g )  and Z-(c ' , g )  because these sets belong t o  z due t o  

g ( y )  E L1(Y, l .HA) and Y equals t o  union of these sets.  Therefore i t  is  suffi- 

cient to  show that  among measures satisfying (i)-(ii) exist  measure which 

satisfies also (iii). 

From the definition of Z+(C ,g ) we have: 

and 

for  all c > c z .  This gives 

and therefore 

According to  the condition 4 we have HA(Y\Z-(c ' ,g )) 2 b -Hi (Y) in case if 

c '  = 0. In fact ,  i t  is t rue  f o r  a rb i t r a ry  c ' .  Suppose a t  f i r s t  that  c '  > 0. 

Note that ,  f o r  any c > O  we have H ~ ( Z + ( C , ~ ~ ) < -  because 

g ( y  ) E L l(Y, E v e ) .  Consider now the sequence c, : 

We have 

because 



and 

From the definition of c ' and the  fact  that  c ,  < c * we have: 

which gives 

The case when c * < 0 is t rea ted  in the  same way taking into account the  fact  

tha t  H A ( Z + ( c  ,g )) < = fo r  all  c if c ' < 0. Thus, we obtain 

Now if H A ( Z O ( c  ' ,g )) < = t he  measure H' : 

1 otherwise 

satisfies all conditions ( i ) - ( i i i ) .  

When H A ( Z O  (c * ,g )) = =, condition 2 implies the  existence El C ? ( c  * ,g ) 

such that  e i ther  

o r  HA(E1) = and El is HA-atom. In the  former case H' is  defined simi- 

larly to  (11) using se t  El  instead of Z O ( c ' , g )  and taking H' = H' on 

Z O ( c * , g ) \ E l .  In t he  l a t t e r  case take 



and again H' = & on ZO(c * ,g ) \E l .  All  this proves the  existence of meas- 

u re  H' which satisfies (i)-(iii). Let us prove that  fo r  any measure g E Gb 

which violate (i)-(iii), we have 

Suppose that  fo r  measure H (i) does not hold, i.e., t he re  is  some se t  

E c Z f ( c '  , g )  such tha t  E(E) < H"(Z). This implies the  existence of se t  

El C E  such that  g ( y )  > c >c' for  y € E l  and H8(E1)-g(E1) > 7 > 0. 

Notice that  H ' ( A ) ~ ~ ( A )  f o r  A c Z f ( c ' , g )  and H ' ( A ) ~ ; ( A )  f o r  

A c 2-(c '  , g  ) due to  definition of H'. This gives 

This inequalities lead to the  following estimate: 

+ c ' (H' - ~ ) ( Y \ E , )  

Thus, if i E Gb violates (i) i t  cannot be the solution of (10). Other 



possibilities a r e  considered in the same way. Therefore ,  any optimal meas- 

u r e  has  representation (i)-(iii). I t  follows from definition t ha t  all  measures 

satisfying (i)-(iii) has the  same value of 

and therefore  a r e  optimal. Proof is complete. 

REMARK. I t  is clear tha t  in t he  characterization of optimal measures 

any c" can be taken instead of c '  such that  

C '  5; < S U P  tc: ~ ~ ( z + ( c , g )  r ~ - H ~ ( Y ) {  

Note tha t  if measure HA has bounded variation conditions 2 and 4 a r e  

satisfied automatically. For such measures the  s t ruc ture  of solutions can 

be studied using general duality theory [9]. 

Let us now consider in more detail the  s e t  G*. If the  measure d has 

finite variation w e  have the  following representation f o r  a r b i t r a r y  H E Gb : 

H = HL + (H-HL) 

where measure H - H L  is finite. positive and continuous with respec t  t o  

measure HA. If HA is a-finite w e  can use Radon-Nycodym theorem [lo] and 

fo r  a rb i t r a ry  H E Gb obtain t he  following representation: 

H(E) = H' (E)  + f h H ( y ) d ~ A  VE E Z 
E 

where hH E L l ( Y , Z , ~ A )  and this representation i s  unique. For a rb i t r a ry  

E E Z w e  have: 



and therefore  0 5 hg(y) S 1 HA-everywhere. Consider now the  se t  

Kb c L 1 ( ~ ,  z,+): 

Each function from this set defines measure HA from Gb : 

Hh(E) = F+ (E)  + Jh ( y ) d ~ A .  E EE 
E 

Therefore ( 1 3 ,  (14) defines isomorphism between se ts  Gb and Kb such tha t  

t he  problem (7)-(9) is equivalent t o  the following one: 

max T ( h  ) (15) 

subject t o  constraints 

where the  function T(h ) = *(HA). Optimal values of problems (15)-(17) and 

(7)-(9) a r e  the  same and each solution of (15)-(17) defines solution of (7)-(9) 

through (14) and vice versa.  This equivalence together with cer tain con- 

vexity assumptions lead t o  solution representation f o r  problems (7)-(9) 

similar to theorem 1: 

THEOREM 2. Suppose that  the  following assumptions a r e  satisfied: 

1. Measures HL and HU have bounded variation, 

&Y) 5s b ,  P ( Y )  2 b 



2 .  Jr(H) is concave and finite fo r  H€Gb ,, = Gb +Gc 

where G , = fH,: 1 H, 1 ( Y )  5 E ,  Hc is HA-continuous j f o r  some E > 0. 

Then 

1) For each H1 E G b  exists g ( y  , H I )  E L ,(Y, : ,HA) such tha t  

fo r  all  H2 E Gb 

2 )  The solution H e  of problem (7 ) - (9 )  exists. 

3) For any E E ~  and any optimal solution H' of the  problem ( 7 ) - ( 9 )  w e  

have the  following representation: 

H " ( E )  f o r  E c Z f ( c * , g ( y  , H a ) )  

$ ( E )  fo r  E c Z -(c * ,g ( y  , H a  )) ( 1 9 )  

&(E)SH(E)W(E) fo r  E c ~ ~ ( c * , g ( y , H ' ) )  

where 

c' = inf )c : H*(z+(c ,g (y , H * ) )  5 b -18 M j 

and 

fo r  all  H E Gb . Conversely, if f o r  some HI EGb exists 

g ( y  , H I )  E L ,(Y, I ,  HA)  such tha t  (18) is  fulfilled and Hl can be 

represented according to ( 1 9 )  then H1 is  the  optimal solution of t he  

problem ( 7 ) - ( 9 ) .  



PROOF. The previous argument shows that under assumptions of the  

theorem problem (7)-(9) is equivalent t o  the  problem (15)-(17) and t h e r e  is 

isomorphism between s e t  G b , ,  a s  defined in condition 2, and the,following se t  

Function P ( h )  from (15) is  concave on the s e t  Kb,., which is &-vicinity of Kb 

in L ,(y,2,HA). Therefore  fo r  each L E Kb exists subdifferential of concave 

function q ( h )  [ l l ,  121, which in this case is  l inear  continuous functional 

f E L; (Y, L, HA) such tha t  

Taking into account representation of L ;  (y ,z ,HA) [ l o ]  w e  get: 

where 

which together  with (12) implies 

fo r  all H,H1 E Gb where g (y  ,H) = i ( y  ,AH). Thus, (18) is proved. Note 

tha t  w e  may consider function g (y ,HI) from (18) (possibly non-unique) a s  

subdifferential of t he  function *(H) a t  point HI. 

N o w  observe that  t h e  s e t  Kb is weakly sequentially compact in 

L ,(Y, Z, HA) because H A ( v  < and 



uniformly fo r  h E Kb (see [ l o ,  p.2941). Let us prove tha t  i t  is also weakly 

closed. Consider t he  sequence h (y ) ,  h €& and 

fo r  some h E L ~ ( Y , ~ , H ~ )  and all g E L,(Y,I,H~). In par t icular ,  w e  have 

/ hS(y)df fA +/ h ( y ) a A  
E E 

fo r  all E E E because t h e  indicator function of the  set E E I clearly 

belongs t o  L , ( Y , ~ , H ~ ) .  This gives 0 S h (y  ) S 1 ~ ~ e v e r ~ w h e r e .  Taking 

g ( y )  = 1 w e  have.also 

which gives 

Thus, h E Kb and Kb is  weakly closed. 

It follows from (20) tha t  fo r  any sequence h E K b ,  h -, h weakly, 

h E Kb w e  have 

This together with sequential compactness and closeness of Kb implies 

existence of h * such tha t  

Thus, solution of t he  problem (7)-(9) exists. 



The general resul ts  of convex analysis [ I l l  now imply that  under 

assumption 2 of the  theorem fo r  any solution H* of the  problem ( 7 ) - ( 9 )  

exists subdifferential g (y , H a )  of t he  function * (H)  at point H* such that  

fo r  all H  E Gb o r ,  in o the r  words H* is  one of the  solutions of t he  following 

problem: 

This problem is exactly of t he  type ( 1 0 )  and i ts  solutions are character ized 

by the  Theorem 1 .  Conversely, if f o r  some H' E Gb exists subdifferential 

g ( y , ~ ' )  such tha t  H' is  the  solution of the  problem ( 2 1 )  then H' is the  

optimal solution of t he  original problem. Proof is  now completed by using 

theorem 1 .  Some related resul ts  were obtained fo r  a special  kind of func- 

tion \ k ( H ) ,  atomless probability measure HU and 9 = 0 in [2]. 

Theorem 2 shows tha t  solutions of the  problem ( 7 ) - ( 9 )  can be  viewed as 

indicator functions of some sets. Therefore many problems involving selec- 

tion of optimal set [13] can be  reformulated as problems of finding optimal 

measures. 

3. STOCHASTIC OPTIMIZATION METHOD 

Using the  resul ts  of the  previous section w e  can construct numerical 

methods fo r  solving problem ( 7 ) - ( 9 ) .  From now on w e  shall assume that  func- 

tion * ( H )  is concave and finite on some vicinity of the  set G and possess 

cer ta in  differentiability properties:  

* ( H 1 + a ( H 2 - H 1 ) )  = * ( H 1 ) + a  f g ( y  . H ~ ) ~ ( H ~ - H ~ ) + O  ( a )  
Y 



where o ( a ) /  a --, 0 as a --, 0 f o r  all H l , H 2  E G .  This means tha t  subdif- 

ferential  g ( y  , H I )  from ( 1 8 )  is  unique fo r  all in ter ior  points of G and w e  can 

assume tha t  g ( y  , H ' )  from ( 1 9 )  satisfies also ( 2 2 ) .  

Consider now the  mapping r ( c  J )  from RXL,(Y, Z, H') t o  G :  if 

H  = r ( C , f )  then 

H U W )  fo r  E c z C ( c J )  
H ( E )  = I H ' ( E )  f o r  E C Y \ Z + ( C J )  

fo r  any E E r. 

First  of all w e  shall give an  informal description of t he  algorithm. Sup- 

pose tha t  some HS E G is  the  cu r r en t  approximation to  t he  solution of the  

problem ( 7 ) - ( 9 ) .  According to  ( 2 2 )  local behavior of + ( H )  around H S  is  

approximated by l inear  form: 

and if H f  is the  solution of the problem 

then direction Hs-HS will be  the ascent direction at point  P. Therefore 

w e  can take  as the  next approximation to  the  optimal solution 

HS +' = HS + a ( E  -HS ) ( 2 5 )  

f o r  some a > 0. Consider now the  problem of finding E o r  suitable approxi- 

mation t o  it. 

Suppose tha t  w e  know the  function g (y , H S )  exactly, Then, according 

t o  theorem 1 ,  all  the  possible H.S are fully described by pair  ( c *  ,g  (y , HS )), 

where c  ' is t he  solution of the  problem 



Observe now tha t  function 

is nonincreasing and therefore  solving (25)-(26) is equivalent to solving 

C 

max W S  (c ), W S  (c ) = / Wt(t  )dt 
c T 

for some T and W f ( c )  can be  considered as subgradient of t he  function 

W S  (c) .  Therefore w e  can use subgradient method f o r  finding c ' :  

However, computation of Wf(c k ,  according to (28)  involves multidimensional 

integration over  complex regions and this may b e  too complicated from the  

computational point of view. In this situation stochastic quasigradient 

methods [14] can be used. In such methods t he  statist ical  estimate of W: 

is implemented in (29) instead of w:. 

Once c ' is determined the measure r(c'  ,g  ( y  ,HS) )  defined in (23) ,  may 

be  a reasonable approximation t o  the  solution H,S of the  problem (24) and 

can be used in algorithm (25) .  However, precise  estimation of c' from (29)  

requires  infinite number of i terations and to  make algorithm implementable, 

i t  is necessary t o  avoid this. I t  appears  tha t  under cer ta in  assumptions 

about stepsizes in (25) and (29) ,  w e  may take in (29)  k = s and perform only 

one i teration in (29)  p e r  i teration in (25)  using as approximation t o  Hf the  

measure f iS  = r ( c S  ,g (y , I f S ) ) .  Thus, along with sequence Hs w e  obtain also 



the  sequence of numbers cS. Note now tha t  although 3 i s  quite simple, 

measure HS would be  excessively complex even for small s. However, HS is 

only needed for getting gradient g (y ,HS) and in par t icular  cases  some 

approximation j' (s , y ) t o  g (y ,HS) can be obtained using only $ in t he  so r t  

of updating formula similar t o  (25). 

Once sequence j' (s ,y ) with property I f ( s ,  y )  - g(y , H S )  I - 0 is 

obtained together  with sequence c =': VS (c ) - max (c ) - 0, t he  optimal 
C 

solution of problem (7)-(9) is defined by Theorem 2 through accumulation 

points of these sequences. The s t ruc tu re  of optimal solution is close t o  

(23). 

Now w e  shall define t he  algorithm fo r  solving (7)-(9) formally. 

1. At the beginning select  initial approximation to  solution HO, function 

j' (0, y ) and number cO. 

2. Suppose tha t  a t  t he  s tep  number s w e  get measure HS , function j' (s , y )  

and number cS. Then on the  next s tep w e  do t he  following: 

2a. Pai r  (c ,j' (s , y )) defines measure 3 according to  (23): 

3 = F(cS ,P(s ,Y )) 

N e w  approximation to  solution is obtained in the  following way: 

HS +l = (I-as)HS + a, 2' (30) 

2b. Now number c +' is obtained: 

C S  +l = C S  
+ P, CS 

where 



i.e., the function Vs ( c )  is defined similarly t o  W S  ( c )  with the 

difference tha t  j' ( s  , y ) is used instead of g ( y  , HS ). 

2c. N e w  function j '(s + l , y )  is obtained in such a way as t o  approxi- 

mate g ( y  ,HS 'l). The precise way of achieving this can be speci- 

fied only a f t e r  considering particular ways of dependence g (y .H)  

on H. One quite general case is considered in the  next section. 

Here w e  shall only assume that  

a s  s - =. The method of achieving this in par t icular  situation will 

be described in the next section. 

Before stating convergence results f o r  algorithm (30)-(31), two exam- 

ples of calculating <' from (31) a r e  presented. 

(i) Measures Hu and H' have piecewise-continuous densities G ( y )  

and $ ( y )  respectively with respect  to  Lebesque measure. Then 

w e  have 

where 

u ( H ' , ( Y )  -m otherwise 

and p(Y) is  Lebesque measure of Y. Therefore we can take 



where  wS i s  d is t r ibuted uniformly o v e r  Y. 

(ii) Measures HU and & are defined by fini te number of p a i r s  

In th i s  c a s e  

where  

There fo re  

P = N ~ ~ t ( c ~ ) p ~ ,  + N ( ~ - Y ~ ~ ( ~ ~ ) ) P ~ ,  - b  

where  w S  assumes value i , 1 s i S N with probabi l i ty  1 / N 

Let us  now investigate convergence of algorithm (30)-(31).  In al l  state- 

ments concerning convergence of measures from t h e  set G w e  shal l  use t h e  

weak-L convergence,  used a l ready  in t h e  proof of Theorem 2: 

HI - H  iff J g(y)dXL -+ J g ( y ) d H  
Y Y 

f o r  all g E L ,(Y,z,H*), and topology, induced by th i s  convergence will b e  

used without f u r t h e r  r e f e r e n c e .  

We shall  assume t h a t  random var iables  tl, . - . , tS , .. . are defined on 

some probabil i ty s p a c e ,  t h e r e f o r e  c S  ,HS ,is from (30)-(31) depend on event  



o of this space. For simplicity of notations this dependence will be  omitted 

in formulas. Convergence, boundedness, e tc .  will be considered almost 

everywhere with respec t  t o  this probability space. I t  should be s t ressed 

tha t  w e  a r e  primarily interested in convergence proper t ies  of the  

sequences cS and f' (s , y ). The following theorem gives resul ts  in this direc- 

tion. 

THEOREM 3. Suppose that  t he  following assumptions a r e  satisfied: 

1. Measures H1 and have bounded variation, 

H1(Y) 9 b ,  P ( Y )  2 b 

2. 'k(H) is finite concave function fo r  H E G + G ,  where 

G ,  = IH,: IH,I(Y) 9 E ,  H, is HA-continuous{ 

fo r  some E > 0, and satisfies (22) fo r  H1,H2 E G. 

3. Ilg(y,Hlt)  - g ( y , ~ ) l i , - - . ~  if Hlt --.H; 

1 1  g (y , H ~ )  - g (y ,H" +I)  1 I, 9 b s  -4 o a s  s --. 0.  
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6. One of the  following conditions is satisfied: 

(ii) as  > 0  and 

Then 

1) 'k(HS ) - max +(H), H S ( Y )  + b and all accumulation points of the  
HEG 

sequence HS belong t o  t he  set 

Q = f H :  H € G , ' k ( H )  =max +(H)j 
HEG 

2) For any convergent subsequence c S k  - c' exists measure H' E 9 such 

that  

I H + ( A  > fo r  A c Z + ( c  * ,g ( y  , H I  )) 

H ' ( A )  = H - ( A )  fo r  A  c Z  -(c ' ,g ( y  ,H* )) 
H - ( A ) # ( A ) # + ( A )  f o r  A  c z O ( c  ' ,g ( y  ,H' )) 

and 

where sL is  some subsequence of t he  sequence sk . 

Condition 4 of t h e  theorem means tha t  i t  is possible t o  use approxima- 

tions t o  gradient g ( y  ,H) and it  is necessary tha t  precision of these approx- 

imations increase as s - a. Condition 6 is  necessary t o  assure  H S ( Y )  + b 

although ES (Y) from ( 3 0 )  may not be  equal t o  b .  In case if 3 (Y) = b ,  i.e. 

A O s  H  ( Z  ( c  J (S , y  ))) = 0 star t ing from some s ,  condition 6 is  not necessary. 






























































