‘ s International Institute for
e Applied Systems Analysis

[1ASA www.iiasa.ac.at

A Nonlinear Dynamic Interactive
Decision Analysis and Support
System (DIDASS/N)

Grauer, M. & Kaden, S.
IIASA Working Paper

WP-84-023

March 1984

Grauer M & Kaden S (1984). A Nonlinear Dynamic Interactive Decision Analysis and Support System (DIDASS/N). IIASA
Working Paper. IIASA, Laxenburg, Austria: WP-84-023 Copyright © 1984 by the author(s).
http://pure.iiasa.ac.at/id/eprint/2495/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or
opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository @iiasa.ac.at

mailto:repository@iiasa.ac.at

Working Paper

A NONLINEAR DYNAMIC INTERACTIVE DECISION
ANALYSIS AND SUPPORT SYSTEM (DIDASS/N)

USER'S GUIDE (MARCH 1984)

Manfred Grauer
Stefan Kaden

March 1984

WP-84-23

International Institute for Applied Systems Analysis
A-2361 Laxenburg, Austria

NOT FOR QUOTATION
WITHOUT PERMISSION
OF THE AUTHOR

A NONLINEAR DYNAMIC INTERACTIVE DECISION
ANALYSIS AND SUPPORT SYSTEM (DIDASS/N)

USER'S GUIDE (MARCH 1984)

Manfred Grauer
Stefan Kaden

March 1984

WP~-84-23

Working Papers are interim reports on work of the International
Institute for Applied Systems Analysis and have received only
limited review. Views or opinions expressed herein do not
necessarily represent those of the Institute or of its National
Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS
2361 Laxenburg, Austria

PREFACE

The Interactive Decision Analysis group at IIASA has developed a
decision analysis and support system, called "DIDASS". Based on the
Reference Point Approach for rnulticriteria analysis, it is an attempt to
combine the analytical power of the "hard" computer model with the
qualitative assessments of the decision maker.

In general, DIDASS is capable of dealing with both linear and non-
linear problems. Theoretical and practical tests for solving nonlinear
problems of regional water policies in open-pit mining areas have eluci-
dated the need for an especially designed nonlinear DIDASS version.

Following the presentation of the extended nonlinear version,
DIDASS/N is described. DIDASS/N has been developed in collaboration
between the Interactive Decision Analysis Group and the Regional Water
Policies Project at 11ASA.

DIDASS/N has been written in FORTRAN 77. The use of operating-
system-dependent statements or commands has been avoided.

Either comments or suggestions concerning the analysis and sup-
port system or this guide would be welcome--DIDASS is intended to be
useful, useable, and used!

ANDRZEJ WIERZBIEKI CHESTER COOPER

Program Leader Program Leader
Systems and Decision Sciences Institutions and Environmental Policies

-iii-

CONTENTS

1. INTRODUCTION

2. PROBLEM FORMULATION

3. THE DIDASS/N PROGRAM PACKAGE

3.1 OVERVIEW

3.2 DATA REQUIRED FROM THE USER

3.2.1 SPECS-FILE

3.2.2 MODEL-FILE

3.2.3 RFP-FILE

3.2.4 RANGE-FILE

3.2.5 SUBROUTINE OBJECT

3.2.6 SUBROUTINE CONSTR

3.3 INTERACTIVE USE/ERROR MESSAGES

3.4 DATA OUTPUT

3.5 IMPLEMENTATION

3.5.1 IIASA-OPERATING SYSTEM (UNIX)

3.5.2 EXTERNAL USE

4. TEST-EXAMPLES

4.1 SOLVING A PROBLEM WITH LINEAR CONSTRAINTS
AND NONLINEAR OBJECTIVES

4.2 SOLVING A PROBLEM WITH NONLINEAR CONSTRAINTS
AND OBJECTIVES

5. REFERENCES

APPENDIX 1: DIDASS/N - INTERACTIVE CAPABILITIES

APPENDIX 2: SUBROUTINES CONSTR_F AND OBJECT_F
2.1 CONSTR_T.F., OBJECT_T.F '
OBJECTIVE GRADIENTS AUTOMATICALLY COMPUTED
2.2 CONSTR_TC.F, OBJECT_TC.F
OBJECTIVE GRADIENTS PROGRAMED FOR TEST 2

APPENDEX 3 : INPUT AND OUTPUT FOR TEST EXAMPLES
3.1: TEST 1 (SECTION 4.1)
3.2: TEST 2 (SECTION 4.2)

N —

(@)

14
15
16

20

20

22

26

27

31
32

35

40

40
45

A NONLINEAR DYNAMIC INTERACTIVE DECISION
ANALYSIS AND SUPPORT SYSTEM (DIDASS/N)

USER'S GUIDE (MARCH 1984)

Manfred Grauer and Stefan Kaden

1. INTRODUCTION

' DIDASS/N is an interactive multicriteria programming package
designed for decision support. It is an improved version of DIDASS (May
1983)[5], especially designed for nonlinear multicriteria programming
problems, and is based on the reference point approach to multicriteria

analysis.

The basic idea of the reference point method is to rank multidimen-
sional decision alternatives q, defined as points in the #P (p=>2), relative

to a reference point § which reflects the preferences of the user.
The ranking of the decision alternatives is based on a partial order-

ing of the RP:

gl=<9% ql=<q?; i=12.p;qlq%eckRP (1)

-2.

The decision problem is to determine an n-vector z of decision vari-
ables satisfying all given constraints while taking into account the p-
vector of objectives. We will assume that each component of ¢ should be

as small as possible.

A reference point or reference abjective is a suggestion ¢ supplied
by the user which reflects in some sense the “desired level" of the objec-
tive. An achievement scalarizing function s{gq —q) defined over the set of
objective vectors g is then associated with each reference point g [3]. If
we regard the function s(g—g) as the "distance" between the points ¢
and g, then, intuitively, the problem of minimizing this distance may be
interpreted as the problem of finding from within the Pareto set the
point § "nearest” to the reference point §. (However, the function s is
not necessarily related to the usual notion of distance.) With this
interpretation in mind, reference point optimization may be viewed as a
way of guiding a sequence § q"; of Pareto points generated from a
sequence f§ z’j"} of reference objectives. These sequences are generated
through an interactive procedure and should result in a set of attainable
efficient points § §*} of interest to the user. If the sequence § %} con-

verges, the limit may be seen as the solution to the decision problem.

2. PROBLEM FORMULATION

Let us assume that the decision problem can be clarified by analyz-

ing a nonlinear constrained multicriteria problem in the following form:

min f (z) = ¢ > 0" (2)

1) The objective functions have to be defined in such a way that they are not negaﬁvé‘

subject to:
g(:z:nl) <b, (3)
Alznl + Azzl < bz (4)
l<z = ’;"‘] <u (5)
i
where g(z,) = {g 1(Zn)92(z0) O (znl)}T is a vector of nonlinear
constraints and f(z) =[f (z).f2(z). ./ (z)]T in (2) represents the

nonlinear performance criteria. Linear objectives are considered as a

part of these nonlinear criteria, without being especially treated.

The decision variables (x) are divided into two subsets: a vector of
"nonlinear constrainted” variables (:z:,u) and a vector of "linear con-
strainted"” variables (z;). It is clear that when g is nonexistent, formu-
lation (2)-(5) is identical with a linear-constrainted multicriteria non-
linear programming problem. An overview of the various ways in which

the reference point approach can be used in the nonlinear case is
described in [4].

The decision analysis and support system DIDASS/N is based on a
two-stage model of the decision-making process. In the first stage - the
exploratory stage - the user may get informations about the range of his
alternatives, thus giving him an overview of the problem. In the second
stage - the search stage - the user works with the system in an interac-
tive way to analyze the efficient alternatives } qk; generated by
DIDASS/N in response to his reference objectives § 5"; . The initial infor-
mation for the exploralory stage may be provided by calculating the
extreme points for each of the objectives in (2) separately. A matrix Dg

which yields information on the range of numerical values of each

-4-

objective is then computed. We shall call this the decision support

maltriz.
91 93 g
9} 92 g2
Dg = P P 6)
S g% 9% - qf (
9% 98 - qp

Row i corresponds to the solution vector z; which maximizes objective
g;. The vector with elements qf = ‘Ii.' l.e., the diagonal of Dg, represents
the utopia (ideal) point. This point is not normally attainable (if it were,
it would be the solution of the proposed decision problem), but it is
presented to the user as an upper guideline to the sequence 56"} of
reference objectives. Let us consider column 4 of the matrix Dg. The
maximum value in the column is ‘11’.- Let g be the minimum value,

where

min [qf] =gl (7)
1<j<p
¥We shall call this the nadir value. The vector with elements

g1.92. . .. ,q;,‘ represents the nadir poinf, and may be seen as a lower

guideline to the values of the user’s objectives.

If the range of the objectives is known, instead of computing the

decision support matrix the range of the objectives iqimin; . 1,78 | can

-5

be used and the effort calculating the matrix [J; avoided. This is useful
respectively necessary for dynamic problems with a high number of

objectives.

In the second stage, the reference point optimization, the following
achieverment scalarizing functions are maximized accerding to ¢ and

subject to (3 - 5):

o1 [4 |
s{w) = —plnl;i=1w{’] (8)
s(w) = (L P wp)/e (9)
Pz
with
w; = ____ii _ ‘_I_i . (10)
i %

The solution gives an efficient pointing g = ¢, according to a given set of
reference points g. § is a lower limit to the sequence of reference points
(the utopia point q‘-' respectively qt-min). 7; can be used as weighting fac-

tor and p is an arbitrary coefficientz).

p=p=2 (11)
This type of achievement scalarizing function meets the following
requirements:
-~ They yield scaling factors which make additional scaling of objec-

tives unnecessary.

<) For P=2 we have the Euclidic norm, for p— the Tschebyschev norm.

-6 -

-- They are smoothly differentiable functions which approximate the

nonsmooth function § = max w; .
b

-- They are strongly order-preserving and weakly order-approximating.

The resulting single-criterion programming problems are solved

using the solution package MINOS [1,2].

3. THE DIDASS/N PROGRAM PACKAGE

3.1. Overview

DIDASS/N has been developed in FORTRAN 77. It is structured as a
set of modules (subroutines). One of these modules is
MINOS/AUGMENTED [1,2], for nonlinear single-objective programming. In

Table 1 all used subroutines are assorted

For input and output data as well as data which might be needed in

future model runs, external files are created. Table 2 gives an overview.

In Figure 1 the structure of DIDASS/N with the interrelationship
between modules and external files is illustrated. The internal data
transfer between the subroutines of DIDASS/N including MINOS (GO) is
organized using common blocks. Following parameter statements are

implemented:
character *11
character *8 objnam, rhs, bds
implicit real *8 (a-h, o-z)
common/help/nwcore,rho,rhs,bds,1(80),nrun
common/rfp/nc, objnam (100), gam(100),

* rfp (100), obj (100), dif (100)
common/utopia/objmin (100), objmax (100)
common z {100000)
data nwcore/100000/.

Table 1. DIDASS/N - modules

Name Contents

didass main control program

extrem calculation and output of extreme points
(utopia/nadir) for all objectives

effici calculation of efficient points according to
a given set of reference points

intact interactive correction of data for the
calculation of efficient points

varcon interactive output of variables/constraints for
efficient points

vacose auxiliary subroutine for varcon

readrfp input of reference point file

yn input of yes or no as an alternative of next
program steps

obmima input of the range of objectives

find search of an objective-name

error error output

chrhbd changing of the right-hand-side or bounds
set of the model

go MINOS [1,2]

object calculation of objective functions
(nonlinear)

constr calculation of nonlinear constraints

Consequently, the number of objectives is restricted to 100. If necessary

the dimension (100) of the defined arrays may be changed in the subrou-

tines.

Further, the MINOS-array restriction have to be considered (see, [1,

2]).

195N a3yl Aq pasedaid aq 03
HLSNOD PU® 133rd0

~

» :..O-

HISNOD

103rd0

(SONIW)
09

—p NOJHVA

{SIIBNSUOD N0

]

SILenNsuoD

.

— QaHYHD

{198-5pq/sys
jo abueyn

LOV1NI

s8jqQRIIBA

E

ON

v

dOl1S

2s1uod
1U3121})3 MaN

*

d4H @v3y

WIHLX3

44y

abuey

iH

Sap

e &

YWINEO

{s1ulod awaxe
uonenaje)

_ d4d aQv3d

N/SSvaia

Figure 1. DIDASS/N overview

Table 2. DIDASS/N - file system

unit-number | file name remarks
2 sol DIDASS/N - result file
3 rfp reference point file
4 range ranges for the objective values as an
input or utopia and nadir points as an output
5 specs specification file according to MINOS [1, 2]
'6 out MINOS-output of the actual last
MINGS-run
7 obj values of the objective functions of the
last computed efficient point
g%/ fort-8, scratch-file for MINOS and DIDASS/N (for
help specs-file processing)
9 model problem description in MPS-format
according to MINOS
14 standard usually terminal - display
input, output

3)This file is internally opened and closed, if the program run is finished
normally. In the case of a program exit due to errors, the files should be
removed by the user.

3.2. Data Required from the User

The data preparation is based on the data preparation for the MINOS

system [1, 2]. Following data files are required:

specs -
model —
rip -

range —

specification file (see section 3.2.1)

problem description in MPS-format (see section 3.2.2)
reference point file {see section 3.2.3)

range file for the objective values, if the extreme values for

all objectives shall not be computed (see section 3.2.4).

-10 -

The nonlinear objectives and constraints have to be written as FORTRAN

statements within the subroutines
object - objective functions (see section 3.2.5)

constr - constraints (see section 3.2.8)

3.2.1. SPECS - file

In principle, for the preparation of the specs-file the MINOS-users
guide [1] and -manual [2] should be used. There are no restrictions to
the MINOS capabilities. Certain parameters have to be or may be used by
the user via a list of problem specifications. They are assumed to be a
deck of 80-character card images. Each card contains a sequence of
items produced in free format {i.e., separated by at least one blank or =)
with keywords and numbers. Blank cards are allowed, and comments

may occur after an asterisk (*).

Following a standard specs file for DIDASS/N is given. Values, which

have to be inserted by the user are characterized by < >.

begin <name of the problem>

minimize

nonlinear constraints <m, number of nonlinear constraints>
nonlinear jacobian vars <number of variables {z,]

in nonlinear constraints>
nonlinear objective vars <number of variables {x} altogether>

bounds <name of bounds data set, usually bnd>
rhs <name of right hand-side data set, usually rhs>
rows <over-estimate of number of the number m

of constraints>
columns <over-estimate of number of variables {z}>
elements <over-estimate of the number of

nonzero elements in the linear
constraints §4,,45]>

objective = object

problem no. <problemn number for subroutines
constr and object>

mps file 9

solution yes

-11-

* the following values may be changed by the user
* according to the numerical problem

aijtol

difference interval
dj tolerance
feasibility tolerance
linesearch toler
lower bound
iterations

major iterations
minor iterations
penalty parameter
radius of conver

row tolerance
*

L

superbasics
hessian dimension
jacobian

print level (jflxi)

derivative level

0.000001
1.0e-86
1.0e-8
1.0e-8
0.1

0

1000
10

20

0.1
0.01
1.0e-86

<number of super basic variables, normally
not greater than number of variables + 1>
<nurn25=,r of variables + 1>
dense
<amount of information to file out,
typical value 1>
<3 - objective and constraint
gradients are known
2 - constraint gradients are known>

call funection rountines when optimal

end

4)This determines the manner in which the constraint gradients are
evaluated and stored. For complicated problems with a great number of
variables *sparse’ should be used, for the consequences see MINOS [2].

3.2.2. MODEL - File

The data specifying the constraints (3)-(5) have to be prepared in

standard MPS format. For details see MINOS [1, 2]. The following has to

be considered (compare section 4, examples):

- Nonlinear constraints have to be listed first.

-- The ordering of variables must be the same as in the x-array of the

subroutines CONSTR and OBJECT (see below). Variables which occur

in the nonlinear constraints have to be listed first.

-12-

-- All variables should be specified by upper and lower bounds.
-- For constraints ranges should be defined.

-- A set of initial variables should be given.

3.2.3. RFP - File
The reference point file contains for all objectives i=1,p
<name objective i > <reference point g,> <wrighting factor y;>.

In the first line the coefficient p, see section 2, has to be added. The for-

mat is

(2z ,a8,2z ,3f 12.5) .
The last line must contain dots {....) as characters 5-8 {compare section

4, examples).

3.2.4. RANGE - File
The range file contains for all objectivesi=1,p

<name objective i> <qimin> <g/mex>

in the format (2z,a 8, 2f 12.5).

3.2.5. Subroutine OBJECT

The objectives f;(z) have to be programmed in FORTRAN-statements
in the subroutine OBJECT. The following one-dimensional arrays have to

be used.

obj - values of the objective functions

-13 -

X - values of the variables { x(1) corresponds to column 1 in the con-

straints of the model-file, etc.).

Usually the gradients are calculated automatically. Appendix 2.2 shows
the subroutine object for the test examples of section 4. For com-
plecated functions the corresponding gradients may be programmed.

Therefore, the one-dimensional array

g- gradients of objective functions

has to be used. This is demonstrated for the example TEST 2 in Appendix
2.2. There it is also illustrated, how instead of the x-array the original
variable names of the model-file may be used for the subroutines OBJECT
as well as CONSTR. In this case, two additional subroutines OBJGRA and

VALIST (see Appendix 2.2) are needed.

In contrast to MINOS in DIDASS/N it is not allowed to define the
objective functions and their gradients partial in the MPS file {model-

file). because more than one objective function has to be considered.

3.2.6. Subroutine CONSTR
The nonlinear constraints g;(z).i=1,..,m and the corresponding
Jacobian matrix J{z) have to be programmed in FORTRAN-standard in the
subroutine CONSTR. The following arrays have to be used:
one-dimensional:

g - values of the constraints { g{1) corresponds to the row 1 in the con-

straints of the model-file, etc.)

-14 -

x -~ values of the variables { x{1) corresponds to column 1 in the con-

straints of the model-file, etc.).
two-dimensional:;

gj - Jacobian matrix.

A partial specification of the Jacobian matrix in the model-file is
possible (see MINOS[1, 2]). Such a specification is necessary, if the Jaco-

bian matrix shall be stored in "sparse” mode.

In Appendix 2.1 the subroutine CONSTR for the test examples of sec-
tion 4 is demonstrated. In Appendix 2.2 the subroutine CONSTR is shown

using the original variable names of the model-file.

3.3. Interactive Use/Error Messages

The DIDASS/N package has been designed with special regard to its
interactive use. During the program runs the user may change data,
generate different program modes and define the amount of data output.
The interactions are controlled by a sequence of questions, alternatives
and data requirements to be decided by the users. An easy way to get
known with these interactions is the practical test. The system is so
organized, that wrong actions do not lead to program failures. If a reac-
tion to a given request is wrong, this request will be given again. For
instance, if an objective name is input which does not exist in the

model-file, a new objective name is required.

For the interactions special keywords are used. It is possible to type
the complete keywords or their abbreviation (underlined by an asterisk).

Example: enter {yes or no)!
. L 4

-15-

The answer may be y/n but also yes/no. The complete list of all
interactive capabilities is given in Appendix 1, see also the list of exam-
ples of section 4, Appendix 3.

During the DIDASS/N run error messages as indicated in Table 3 are

possible.

Table 3. Error messages

Message Cause/consequence i

+x ERROR missing end data ... in rfp file
incorrect reference point file | /Stop
(.... missing?)

*xxx FRROR missing rhs entry in specs-file

no rhs entry in specs file /Stop

*##+ ERROR mission bounds entry in

no bounds entry in specs file | specs file /Stop

*+++ ERROR number of ranges in range file

not enough ranges less than number of objectives/Stop
**** ERROR order of ranges not adequate to the
wrong order of ranges objective names /Stop

*+x+ ERROR single-objective optimization in MINOS
no solution in MINOS out file | not finished /continue

*#**x ERROR no optimal solution of single-objective
no optimal solution optimization in MINOS/continue

3.4. Data Output
The main results of DIDASS/N are listed on the screen of a terminal
(standard unit). This includes
-- table of the results of the calculation of extreme points for all objec-
tives
-~ table of efficient points (objective values)

-- values of variables and constraints for efficient points.

- 16 -

In the Appendix 3 the terminal output is illustrated for the examples
of section 4.

Additional to the terminal output, following output files are created:

out - MINOS-output depending on the value of print level in the specs

file, see [1,2] and section 3.2.1.

sol - DIDASS/N results, a copy of the terminal output including the
actual data of the DIDASS/N run, see Appendix 3 for the test

examples.
range - Name, utopia and nadir point of all objectives, format {(2x , a8 ,

2g12.5).

The output of results (Values of objective functions, constraints and

variables) is printed in the format g12.5.

That means numbers greater than 0.1 and less than 10% are printed in f-

format otherwise in e-format.

3.5. Implementation

3.5.1. TIASA Operating System (UNIX)

For the internal use at IIASA the DIDASS/N package is available as a

directory including the files, listed in Table 4.

For the compiling, linking and loading the executable files
dida_t.tra respectively dida_tc.tra should be used. For instance

dida_t.tra:

xf7? constr_t.f object_t.f didass.0 nonlp.0

~1xU77) -a dida_t

) Dats, subroutine of the UNIX utility library.

-17 -

Table 4. DIDASS/N - directory

Blocks file-name contents

4 constr_t.f subroutine constr for test 1 and test 2

6 constr_t.0 (Appendix 2.1)

4 constr_tc.f subroutine constr for test 2

7 constr_tc.0 {Appendix 2.2)

088 dida-t* didass/n, loaded for test 1 and test 2

1 dida_t.tra* exectable file for preparing dida__t*

1 dida_tl.run* executable files for program run test 1

1 dida_t2.run* and test 2

988 dida_tc2* didass/n, loaded for test 2, programmed
objective functions gradients

1 dida_tc2.run* executable file for program run test 2/c

1 dida_tc2.tra* executable file for preparing dida_tc*

31 didassn.f didassn programs

47 didassn.0

6 model.t1 model file for test 1 and test 2

7 model.t2

1048 nonlp.0 MINOS/AUGMENTED

1 obj.t1 efficient points of the last

1 obj.t2 session, test 1, test 2, test 2/c

1 obj.tc?

5 object_t.f subroutine object for test 1

5 object_t.0 and test 2 (Appendix 2.1)

8 object_te.f subroutine object for test 2/c

7 object_tc.0 (Appendix 2.2)

28 out.tl

50 out.t2 MINOCS - outfile, test 1, test 2 and test 2/c

74 out.tc?

1 range.tl

1 range.t2 range-file for test 1, test 2 and test 2/c

1 range.tc2

1 rfp.t1 rip-file for test 1 and test 2

1 rfp.t2

3 sol.t1

5 sol.t2 sol-file for test 1, test 2 and test 2/c

7 sol.tc2

2 specs.tl

2 specs.t2 specs-file for test 1, test 2 and test 2/c

2 specs.tc2

-18 -

t1

To start DIDASS/N the executable file dida_ {£2 }. run has to be actual-
tc?

ized, defining the input/output files.s)

didassn 2==_"sol' 3="rip" 4='range’ = 'specs’ 6 ='oubt’ 7

= 'obj' 9 = 'model’ 14 ==,
In this case, the new solution is added to the sol-file. For the filenames,
the actual filenames have to be inserted. For instance dida_t1l.run

dida_t 2 ==_sol.tl 3 = rfp.tl 4 = range.tl 5 = specs.tl 8 = out.tl

= obj.t1 9 = model.tl 14 ==,

6) Usearg, TASA specific subroutine which permits the assignment of files at run time.

-19 -

3.5.2. External Use

The current version of the DIDASS/N package has been designed
specifically to be portable, and it has therefore been written completely
in FORTRAN 77, avoiding the use of operating-system-dependent state-

ments or commands.

The DIDASS/N source code including data files for the examples is
normally supplied by IIASA on tape (9-track, unlabeled, ebcdic, upper
case, BOO bpi, block size 800 characters, record length 80 characters)
under the names listed in Table 5.

Table 5. DIDASS/N - source tape

file-name contents

constr_t.f constr for test 1 and 2
constr_te.f constr for test 2/c
didassn.f didass/n package
model.t1 model files for test 1
model.t2 model files for test 2
nonlp.t MINOS/AUGMENTED
object_t.f object for test 1 and 2
object_tc.f object for test 2/c
rfp.t1 rfp file for test 1
rfp.t2 rfp file for test 2
specs.tl specs file for test 1
specs.t2 specs file for test 2
specs.tc2 specs file for test 2/c

To prepare DIDASS/N the user must compile link and load to follow-

ing FORTRAN files:

consr_t.f object_t.f didassn.f nonlp.f

-20 -

The input and output files are presumed under the names of Table 1.
Therefore, in the main program the following file-definitions are

included.
iin = 14 (standard input)
ion = 14 (standard output)
open (2, file = 'sol')
open (3, file = 'rfp')
open (4, file = 'range’)
open (5, file = 'specs’)
open (8, file = 'out’)
open (7, file = "obj')
open (9, file = 'model")
open (14, file = ' /dev/tty’)

This may be changed, if necessary. It has also to be proved, whether a
subroutine date
date (datum)

datum:
24 character string with the current date and time in ascii form

is available. If necessary, the program lines
character*24 datum
call date (datum)
write (2,201) datum

have to be changed in the main program didass.

4. TEST-EXAMPLES
4.1. Solving a Problem with Linear Constraints and Nonlinear Objectives
To demonstrate the use of DIDASS/N, in the first test example test 1
the following quadratic programming problem is described.
(£,-3)2 + (25—2)% + (z5-6)% + (z,-4)% = 0bj 1

min 0.5(zg—4)? + (z4—8)? + (zg-11)% = obj2 (12)

-21-
subject to:

2z +0.5z,—zg+z,; =6
Ttz o~z +x 41 =0
Z3+0.5zg5—2g—2,5=0
0.5z5+zg-z gtz 5 =0
z4+0.525+0.525-2,5 =0
R +T5—Tg—Tqy =0 (13)

3z, —Tstxg—2Z,5 =0
2T +xo+R2z (1 <9

2rg+3z,5,< 13

oz +3z5 < 16

3z, +2z5+3zg< 13

3x1+222 < 14

and
z; =0, i=1,2,...,12 (14)

In Appendix 2.1 the subroutines constr_t.f and object__t.f are

presented {(nprob=1). The corresponding input files

specs.t], model.tl and rfp.t1,

a copy of the terminal input/output as well as the output files
sol.t1 and range.t1
are given in Appendix 3.1.

The consumed computing time (VAX) was 3:18 sec.

.22

4.2. Solving a Problem with Nonlinear Constraints and Objectives

The second example is related to a practical problem--the analysis

of regional water policies in open-pil rmining areas [6]. A simplified test

area had been chosen, which is shown in Figure 2.

WATER

STREAM

| 91

GROUNDWATER RESERVOIR

G +—|—»

92 911

5 e —»

a1p 4J/<<// 1 gq

T USER 1

L Q12

EXPORT

2 N €2

MINE

Q7 «

¥ q3 . 3

WATE=R

913

€3

94

g — flux
¢ — congentration

USER 2

Figure 2. Schematized test area for test example test 2.

The main impacts on the water resources system are:

IMPORT

-~ regional lowering of groundwater table which essential effects the

river flow (infiltration losses) as well as a groundwater-waterwork in

this region;

-23.

-- high mineralized mine drainage water which is needed for river flow

augmentation but effects the downstream water use.

Possible technological alternatives are for instance:

— water import for water supply and/or flow augmentation
-- export of high mineralized water

- selective mine drainage

-- treatment of high mineralized water.

The following nonlineaar static model has been used.
Objective Functions
Minimizing deviation between water supply and demand

obj1 =1000~(gs+g,,+912+73) USER1 (15)
obj2 = 1000—g, USER2

Minimizing costs for water supply USER 1

Minimizing costs for mine drainage

0bj3 = 2 g+gg+1.5¢,0+400.0

Minimizing costs for water supply USER 2

obj5 = 0.01.9,.c5+500.0

Constraints

Fluz balance for river sections

-24 -

1509592 =0 92—96-91,"93=0 g3+99—97-94=0
Groundwater tables (response functions)
= —_ — — 2 2
30 > h; = 50-0.5(gg+q 109)-0.1g5—0.01q,3+0.001{g§5 +9 5)
+0.0002g £ +0.195+0.3g4+0.29 5 (18)

Bank filtration
g5 = 27—20exp(—0.01(g g+g g+gq 10)—0.001¢ ;3+0.002g g+0.01q ;)
gg = 22.2—20exp(~0.02(g g+q g+q 10) —0.002g ;53+0.001g5+0.001g ;)

g, = 44.2-40exp(~0.02(g g+g 9+9 ;0)—0.005¢ ;5+0.001¢ 5+0.002q ¢)

Minieralization

Bounds

0<g, <200, i=1,13 ¢; =20, i=13 (17)
€, < 500 €5 <1000 c4 <200

In Appendix 2, the subroutines constr_t.f and object_t.f are
described (nprob=2). The subroutine object is shown for the case of
automatic computed objective functions gradients (Appendix 2.2) and

programmed objective functions gradients (Appendix 2.3).

The corresponding input files for the last case

-25-
specs.tc?, model.t2 and rfp.t2

and a copy of the terminal input/output are listed in Appendix 3.2.

For one run including the calculation of extreme points and an effi-
cient point the CPU-time on the VAX was 6:48 sec. The program version
with automatic computed function gradients has consumed 86:38 sec.

The numerical results are identical.

-26 -

REFERENCES

[1]

[2]

[3]

[4]

[5]

(6]

B.A. Murtagh and M.A. Saunders, "MINOS/USER'S GUIDE", Techn-
ical Report SOL-77-9 Systems Optimization Laboratory, Stanford
University (1977).

B.A. Murtagh and M.A. Saunders, "Minos/Augmented”, Technical
Report SOL-80-14, Systems Optimization Laboratory, Stanford
University (1980).

A, Wierzbicki, "A mathematical basis for satisficing decision
making', pp. 465-485 in Organizations: Multiple Agents with
Multiple Criteria, Ed. J.N. Morse, Springer-Verlag, Berlin, New
York (1981).

M. Grauer, "Reference point optimization - the nonlinear case",
pp. 126-135 in fssays and surveys on Multiple Criteria Decision
Making, Ed. P. Hansen, Springer-Verlag, New York {1983).

M. Grauer, "A dynamic interactive decision analysis and support
systemn (DIDASS), user’s guide {(May 1983)", WP-83-60, IIASA, June
(1983).

S. Kaden, "Analysis of regional water policies in open-pit mining
areas - a multicriteria approach”, presented at the IIASA
Workshop on Interactive Decision Analysis and Interpretative
Computer Intelligence, Laxenburg, 20-23.9.1983.

-27=

APPENDIX 1: DIDASS/N - INTERACTIVE CAPABILITIES

The interactive capabilities are characterized in form of
a flow scheme. Following symbols are used:

> < text or result-output of the terminal

terminal input

< > name or value for the input

+¢
A

-

-

1

>text<
enter the problem name (<1 line, 80 char.)

<problem name>

j -
IR

calculation of extreme points?

enter (yes or no)!
* *

>results of calculation of extreme points
for all objectives<

input of ranges from unit 4
>text<

you can now:
list the reference point file, enter (list)
*

exit from editing status, enter (exit)
*

change the reference point file, enter (rfp)
%*

copy last efficient points, enter (copy)
*

change the scale coefficient, enter (scal)
*

change the control coefficient, enter (rho)
* ok

-

1
’-’:S

-

—

_—_I___;1

— B

-28~

>table of actual reference points<

rfp

enter obj.name or (*), if exit

<obj.name>

enter new rfp. value

<new rfp. value

>0l1ld value, new value<

previous solution copied as rfp.
>table of actual reference points<

enter obj.name or (*), if exit

<obj.name>

enter new scale coefficient

<new scale coef.>

>old value, new value<

enter new value for rho

[<new rho>

>01d- value, new value<

enter (list | copy | scal | rho | rfp | exit)!

* * * * %

change the rhs and/or bounds set?
enter (yes or no)!
* *

*

*

-29-

enter name of rhs-set or (*), if exit

1 <name of rhs-set in model-file>
_?—ﬂ enter name of bds~set or (*), if exit
[0

1 <name of bds-set in model-file>

recalculation of extrem points?
enter (yes or no)!

[Bo * *
[=)

>results of calculation of extreme
points for all objectives<

>results of calculation of extreme
points (values of objective functions)<

output of variables and constraints?

enter (yes or no)!
* *

yes

output of all constraints?
enter (yes or no)!
*

*
>name, value, upper and lower bound of
all constraints<

E\]—% -enter name of constraint or (*), if ex1tq)

[‘ <name of constraint>

-«

l

i
f 1 >name, value, upper and lower bound
of constraint<

output of all variables?
enter (yes or no):
} * *

-30-

7)

YA
>name, value, upper and lower bound of
all constraints<
— |yes
ﬁ,— — . . . 7)
——0 enter name of variable or (*), if exit
4 <name of wvariable>
T >name, value, upper and lower bound
L of variable<
J output of variables, constraints finished?
g enter (yes or no)!
C * *
Hno Je—
+ yes
S calculation of efficient points with edited data
1 enter (yes or no)!
* *
yes—0

STOP

The search for variables and constraints is done in the same
order as the values are stored, that means for instance x (1)
would not be founded after a search for x(2), etc. In such a
case, the output of variables/constraints may be started again
and x(1) be searched.

-31-

APPENDIX 2: SUBROUTINES CONSTR.F AND OBJECT.F

2.1: CONSTR T.F, OBJECT T.F
GRADIENTS AUTOMATICALLY COMPUTED
2.3: CONSTR_TC.F, OBJECT _TC.F
OBJECTIVE FUNCTION GRADIENTS PROGRAMMED

In the listings those program lines are signed which have to
be prepared by the user.

~32-

APPENDIX 2.1: CONST_T.F, OBJECT T.F

OBJECTIVE FUNCTION GRADIENTS AUTOMATICALLY
COMPUTED

subroutine constr(mode,m,n,njac,x,y,gj,nstate, nprcb)

c
c *** nmode - if mode=-1 termination
c **% -~ number o©f nonlinear constraints
c *%* p - number of nonlinear variables nl
c *** pijac - m*n
c *kk y - values of nonlinear variables
C *** g - constraints
c *** g5 - Jacobian matrix of constraints
c *** pnstate - status parameter
c *** nprob - problem number
c
implicit real*8(a-h,o-z)
real*8 x(n),g{m),gj(m,n)
goto (200,100),nprob
e
c ***x tesgt2
c
100 do 1 i=1,m
Go 1 j=i,n
gj(i, j)=c.0
1 continue
g(1)=C.5*{x(6)+x(7))+0.1*x{5)+0.01*x (8)
* ~G.001*(x(6)**2+4x (7)**2) ~0.0CC2*x (5)**2
* -0.1*x(2)-0.3*x(3)-0C.2*x(4)
gj(l,2)=-0.1
93(1,3)=—0-3
gj(l,4)=-0.2
g3(1,5)=0.1-0.00C4*x(5)
g3i(1,6)=0.5-0.002*x(6)
gj(1,7)=0.5-0.002*x(7)
g3(1,8)=0.01
c

d=x(5)+x(6)+x(7)

c=exp(-0.01*d-0.0C1*x(8) +C.002*x(3)+C.001*x(4))
g(2)=x(2)+20*c

gj(2,2)=1.0

gj(2,3)=0C.04*c

gj(2,4)=0.02%*c

gj(2,5)=-0.2%c

gj(2,6)=gj(2,5)

g3(2,7)=gj(2,6)

gj(2,8)=-0.02*%*c

-33-

c=exp(-0.02*d-C.C{2*x (8, +0.001*x(2)+0.001*x (4))
g(3)=x(3)+20*c

gj(3,2)=0.02*c

gj(3,3)=1.0

gj(3,4)=g3j(3,2)

gj(3,5)=-0.4*c

gj(3,6)=g3j(3,5)

gj(3,7)=gj(3,6)

gj(3,8)=-0.04*c

c=exp(-0.02*d-0.005*x(8)+0.0C1*x (2)+0.002*x (3))
g(4)=x(4)+40*c

gj(4,2)=C.04*c

g3(4,3)=0.08*c

93(414)=l°0

gj(4,5)=-0.8*c

gji4,6)=gj(4,5)

gj(4,7)=gj(4.6)

gj(4,8)=-C.2%c

g(5)=x(1)*x(10)-x(6)*x(9)
gj(5,1)=x(10)
gj(5,6)=-x(9)
gji15,9)=-x(6)
gj(5,10)=x(1)

200 return
end

subroutine object(mode,n,x, f,g,nstate,nprob)

*** calculation of objective functions

*** mode
* k% n

* %k % X

if mode=-1 termination

- number of nonlinear variables
- values of nonlinear variables
**x* f - objective function

k% - gradient vector

*** nstate status parameter

*** nprob - problem number

nononoaooao0n

implicit real*8 (a-h,o-z)
dimension x(n),g(n)
character*1 1
character*8 objnam, rhs, bds
common/help/nwcore, rho, rhs,bds, 1(80), nrun
common/rfp/nc,objnam(100),gam(100),
* rfp(100),0b3(100),dif(100)
common/utopia/objmin(100), objmax(100)
common z(100000)
c
c *** Tnsert here the criteria functions in FORTRAN-statements.
c

goto (1,2),nprob

* kK
* k&

H0OOOOn

%* % %
* k%

NO0O O

w NN

* % %
* %%k

nnonao

10

c *kx

20

30

40

50

c *k*%

60

70

-34-

This is the testproblem testl with guadratic criteria
functions and linear constraints.

obj(1)=((x(1)=-3)**2+(x(2)-2)**2+(x(6)-6)**2+(x(7)-4)**2)

obj(2)=(0.5*(x(3)-4)**2+(x(8B)-6)**2+(x(9)-11)**2)

obj(3)=((x(4)-1)**2+(x(5)-8)**2+(x(11)-4)**2
+(x(12)-1)**2+(x(10)~8)**2)

goto 3

This is the testproblem test2 with nonlinear criteria
functions and nonlinear constraints

obj(1)=1000.0-x(5)-x(8)-x(13)-x(15)

obj(2)=1000.0-x(1)
obj(3)=(1.0+0.01*x(14))*x(5)+x(8)+x(13)+1.5*x(15)+500.0
obj(4)=2*x(5)+x(6)+1.5*x(7)+400.0
obj(5)=0.01*x(1)*x(10)+500.0 \

if (nstate .eq. 2) return
if (nrun .ne. 1) goto 20

quadratic scalarizing function is used for the calculation
of the decision support matrix.

£f=0.0
do 10 k=1, nc
c=rfp(k)

if{dabs(c).1lt.1l.) c=1.
c=gam(k)*obj(k)/c
f=c*c+f

continue

return

The automatic scaled achievement variables are calculated.

if (nstate.ne.l) goto 60

do 30 i=1,nc
if (rfp(i) .le. objmin(i)) goto 40
dif(i)=.5*objmin(i)

continue

goto 60

continue

do 50 i=1l,nc
dif(i)=.5*rfp(i)

continue

The achievement scalarizing function has to be inserted

s=.0

do 70 i=1,nc
w=((dif(i)-obj(i))/(dif(i)-rfp(i)))*gam(i)
s=s+w**rho

continue

s=s/nc

goto (80,90),nprob

-35-

C

c *** testl

c

c

c *** The logarithmic scalarizing function is used

80 f=(dlog(s))/rho
return

c

c *** test2

c

90 f=s**(1/rho)
return
end

APPENDIX 2.2: COWST TC.F, OBJECT_TC.F
OBJECTIVE FUNCTIONS GRADIENTS PROGRAMMED

subroutine constr(mode m,n, njac, x,g,gj,nstate, nprob)

c
c *** nmode - if mode=-1 termination
c *x* g - number of nonlinear constraints
c *** p - number of nonlinear variables nl
c *** pnijac - m*n
c *kx y - values of nonlinear variables
c *** g - constraints
c *** g5 - Jacobian matrix of constraints
c *** pnstate - status parameter
c *** nprob - problem number
c
implicit real*8(a-h,o-z)
real*8 x(n),g(m),gj(m,n) v(10)
equivalence [(v(1),a4d),(v(2),c5),(v(3),g6),{(v(4).,q7),
* (v(5),48),(v(6),92),(v(7),ql0),{(v(8),ul3),
* (v(9),c2),(v(10),c3)
C
c *** tegt?
c

call valist(1G,x,v)
do 1 i=1, m
do 1 j=1, n
gj(i, j)=0.0
1 continue

~36-

C

c *** gwtabl

C
g(l)=0.5*(q9+q10)+0.l*q8+0.01*q13
* —0.001* (g9**2+ql0**2) ~0.0002*%y8%* 2
* -0.1*g5-0.3*g6-0.2*q7
gj(1,2})=-0.1
gj(ll3)=_o'3
gj(l,4)=-0.2
gj{1,5)=0.1-0.0004*y8
g3j(1,6)=0.5-0.002%49
g93(1,7)=0.5-C.002%q10
gj(1,8)=0.01

c *** pafill

d=g8+q9+4l0
c=exp(-C.01*d-0.0C1*ql3+0.062%y6+C.001*q7)
g (2)=g5+20*c

93(2,2):-1-0

gj(2,3)=0.04*c

gj(2,4)=0.02*c

gj(2,5)=-0.2*%c

gj(2,6)=g3(2,5)

g3(2,7)=gj(2,6)

gj(2,8)=-0.02*c

c *** bhafil2

c=exp(-0.02*d-0.002*q13+0.001*q5+0.001*g7)
gi3)=g6+20*c

g3j(3,2)=0.02%*c

gj(3,3)=1.0

g3j(3,4)=g3(3,2)

gj(3,5)=-0C.4*c

93{(3.6)=g3(3,5)

g3j{3,7)=g3(3,6)

gj(3,8)=-0.04%c

c *** hbafil3

c=exp(-0.02*d~0.005*q13+C.001*q5+0.002%6)
g(4)=gq7+40*c

gj(4,2)=0.04*c

gj(4,3)=0.08*c

gj(4,4)=1.0

gj(4,5)=-0.8*c

gj(4,6)=gj(4,5)

gj(4.,7)=gj(4,6)

gi(4.,8)=-0.2*%c

c *** gualil

g(5)=g4*c3-g9*c2
gj(5,1)=c3
gi(5,6)=-c2
gj(5,9)=_q9
gj(5,10)=g4

20¢C return
end

nNoOooooooaaoaoaan

nonNonooon

0

o000 nN

-37-

subroutine obﬁect(mode,n,x,f,g,nstate,nprob}

¥** calculation of objective functions

*** mode - if mode=-1 termination

**kx n - number of nonlinear variables
falala B - values of nonlinear variables
*kx f - objective function

*r*x g - gradient vector

*** nstate - status parameter

*** nprob

problem number

implicit real*8 (a-h,o-z)

dimension x(n),g(n),v(15)

character*l 1

character*8 ob3jnam, rhs, bds

common /help/nwcore, rho, rhs, bds, 1 (80), nrun
common /rfp/nc, objnam(100),gam(100),

* rfp(100),0ob3j(10C),dif (10C)
common /utopia/obimin(100), objmax(100)
common z (100000)

equivalence [(v (1), 04) (v(2), qS),(v(), 4g6), (v{(4),q7)},

* (V(S (V())I(v(7) qu/,(V(B):al3).
* \V(9) c2) (V(10),C3),RV(11) 3),(v(12) .42,
* (V\l3) (ill)r(() Clll(v(ls)lL_‘ 2)

*** Tnsert here the criteria functions in FORTRAN-statements.

*** This is the testproblem test2 with nonlinear criteria
*** functions and nonlinear constraints

call valist(n,x,v)

obj(1)=1000.0-g8-qll-gl2-gl3

obj(2)=1060.0-g4
ob3j(3)=(1.0+4C.01%*c1l)*¢q8+4qll+1.5*%*g12+513+500.0
obj(4)=2*g8+y9+1.5*g10+400.0
ob3(5)=0.01*y4*c3+500C.0

if (nstate .eq. 2) return

do 1 i=1l,n
g(i)=qQ.

continue

if (nrun .ne. 1) gotc 20

do 2 i=1l,nc
if(gam(i).gt.0.00C1) k=i

continue

*** cuadratic scalarizing functicn is used for the calculation
*** of the decisicn support matrix.

c=rfp(k)
if(dabs{c).lt.1.) c=1.
f=obj(k)/c

-38-

c
c *** computation of gradients
C
d=2.*f/c
call objgra(n,k,d,x,q)
C
f=f*f
return
c
c *** The gutomatic scaled achievement variables are calculated.
c
20 if (nstate.ne.l) goto 60
do 30 i=1l,nc
if (rfp{i) .le. objmin(i)) goto 40
dif(i)=.5*objmin(i)
30 continue
goto 6C
40 continue
do 50 i=l,nc
dif(i)=.5*rfp(i)
50 continue
c
c *** The achievement scalarizing function has to be insertecd
c
60 s=.0
do 7C i=1,nc
d=gam(i)/(dif{i)-rfp(i))
w=(dif (i)-obj({i))*a
s=s+w**rho
d=~-rho*w** (rho-1)*d
c
c *** computation of gradients
c
call objgra(n,i,d,x,qg)
c
7C continue
s=s/nc
f=s**(1/rho)
d=s**(1/rho-1)/rho/nc
do 8C i=1,n
g(i)=g(i)*d
8C continue
return
end
c
C kkkdhkhhkkhhkkit
c
subroutine valist(n,x,v)
c
c *** agsociation of actual variables
c
real*8 x(n),v(n)
do 1 i=1l,n
v(i)=x(1i)
1 continue

return
end

nnNonoooononan

HOOO wnnao N0 n0n =000 nonononan 0

v an

[e))

&k %

k& %

k&

* ¥ &
L2 23
k%

* k&
L 2 X

% % &

*k &

*k &k

&k &

* k&

-39~

subroutine objgra(n,k,d,x,qg)

calculation of objective gradients

- number of nonlinear variables
- index of actual objective
factor

- values of nonlinear variables
- gradient vector

a M xS
1

implicit real*8 (a-h,o-z)

dimension g(n),x(n),vf{1I5)]

equivalence [{v(1),qg4), (v(2),95),(v(3),q6),(vi{d),q7),
(v(5),q8),(v(6),q9),(v(7),gl0), (v(B),ql3),
(v(9).c2),(v(10),c3),(v(11),q3),(v(12),q2),

* (v(13),q911),(v(14),cl), {v(15),4l2)

call valist{n,x,v)

programing of gradients in the following form:
g(i)=g(i)+(partial object. funct. over partial v(i))*d

goto (1,2,3.4,5).,k
objl

g(5)=g(5)-1.*a
g(8)=g(8)-1.%*d
g(13)=g(13)-1.*d
Gilsi=yiiz)=1.%

goto ©
obj2

g(l)=g(1)-1.*d
goto 6

obj3

)+(1.0+C.01l*c1)*d
Y+1.*8

13)+1.%*G
14)+0.01*g8*a
15)+1.5*3

=g

(e YTo Mo ToRToN1s]

goto

obj4

g(5)=g(5)+2.*3

¢(6)=g(6)+1.*a

g(7)=g(7)+1.5*qd
goto 6

obj5

g{l)=g(1l)+0.01*c3*d
g(10)=g (10)+0.C1l*g4*d

return
end

-40-

APPENDIX 3: INPUT AND OUTPUT FOR TEXT EXAMPLES
3.1: TEST1 (Section 4.1)
3.2: TEST2 (Section 4.2)

APPENDIX 3.1: TEST1

% more specs.tl

begin -Lml'
minimize
nonlinear constraints 0]
nonlinear jacobian vars 12
nonlinear objectiv vars 12

bou bnd
rhs rhs
rows 20
columns 20
elements 100

objective = object

problem no. 1
mps file 9
solution yes
aijtol 0.000001
difference intervall 1.0e-06
dj tolerance 1.0e-6
feasibility tol 1.0e-5
linesearch toler 0.1
lower bound 0.
iterations 1000
major iterations 10
minor iterations 20
penalty parameter 0.1
radius of conver 0.01
row tolerance 1.0e-6
superbasics 12
hessian dimension 12
jacobian dense
print level (jflxi) 1
derivative level 2

call function routines when optimal

end

$ more rfp.tl
objl™ 25.0 1.000 24.0
obj2 50.0 1.000

ob3j3 45.0 1.000

-41-

% more model.tl
name testl

rows
e gll
e gl2
e gl3
e gl4
e gls rhs
e glé rhsl gll
e qgl7 rhsl ugll
1 ugll rhsl ugl?2
1 ugl2 rhsl ugl3
1 ugl3 rhsl ugl4g
1 ugl4 rhsl ugl5
1 ugls rhs gll
columns rzs Ugié
x1 1 . rns ug
%1 312 5.8 rhs ugl3
x1 ugll 2.0 rhs ugld
x1 ugl5 3.0 rhs ugls
%2 gll 0.5 bounds
X2 gl2 2.0 up bndx x1
x2 ugll 1.0 up bndx x2
x2 ugls 2.0 up bndx x3
x3 gl3 1.0 up bndx x4
%3 gl4 0.5 up bndx x5
x4 gl5 1.0 up bndx x6
x4 glé6 2.0 up bndx x8
x4 gl7 3.0 up bndx x11
x4 ugl3 5.0 up bndx x12
x4 ugl4 3.0 up bnd x1
x5 gl5 0.5 up bnd X2
x5 glé 1.0 up bnd x3
x5 gl7 -1.0 up bnd x4
x5 ugl3 3.0 up bnd x5
x5 ugld 2.0 up bnd x6
x6 gll -1.0 up bnd x8
x6 gl3 0.5 up bnd x11
%6 gla 1.0 up bnd x12
x6 ugl2 2.0 fx initial = x1
x7 gl2 1.0 fx }n%t}al X2
x8 g13 -1.0 fx }n}t}al x3
%8 gl5 0.5 fx initial x4
x8 gl6 -1.0 fx %n%tial x5
x8 g17 1.0 fx %n%t%al x6
%8 ugl4 3.0 fx initial x7
%9 gla 1.0 fx %n%t+al x8
x10 gls -1.0 fx }nltlal x9
x11 gll 1.0 fx initial x10
x11 912 1.0 fx initial x11
x11 glé -1.0 fx initial x12
x11 ugll 2.0 endata
x12 gl3 -1.0
x12 glé 1.0
x12 gl? -1.0
x12 ugl?2 3.0

loNoNeoNoNoNoNoNoNeNoNoNe]

HHHNMHOANOHFHOMFFHFHFHWMdMALUOUITWDAIJWNDWWADNDNWON
[eNoRGN Yol N NS -SNF R-NoNoNoNoNeloNoNoNoNoXoNoNoNoNo o N oo

~42-

% more sol.tl
testl, linear constrained quadratic programming problem
Fri Jan 6 10:25:23 1984

calculation of efficient points

objective scale reference efficient utopia nadir
names point point point point
objl 1.0 25.000 31.642 24.019 42.50¢
obij2 1.0 50.000 63.693 38.312 128.00
obj3 1.0 45.000 59.463 48.863 108.99
name value lower limit upper limit

end constraints

name value lower limit upper limit
x1 2.3117 0. 3.00000
x2 0. 0. 7 .00000
x3 3.2332 0. 4.00000
x4 0.78898 0. 3.00000
x5 2.4928 0. 5.00000
X6 0.81169 0. 5.00000
x7 4.5000 0. none
x8 1.8825 0. 4.00000
x9 4.1849 0. none
x10 2.9766 0. none
x11 2.1883 0. 4.00000
x12 1.7566 0. 3.00000
rhs -1.00000 -1.00000 -1.00000
end variables
S
%
2
2 more range.tl
objl 24.019 42.500
obj2 38.312 128.00
obj3 48.863 108.99

P 00

dida tl.run
didass
a dynamic and interactive
decision analysis and support system

nonlinear version Jjan. 12984
khkkhkkhkkkhkkhkhkhkhhkkdkkhkkkkkhkkhkkkhkkkkkkk

enter the problem name (< 1 line, 80 char.)
testl, linear constrained quadratic programming problem
calculation of extreme points ?

enter (yes or no) !
* *

-43-

selfish-optimization for all objectives
* decision support matrix *
-the diagonal represents the utopia point-

i objnam(i) obj(1)

1 objl | 24.019 | 82.699 | 92.138

2 obj2 | 38.563 | 38.312 | 108.99 |
3 obj3 | 42.500 | 128.00 | 48.863 I

generation of efficient points

- ——— — ——— o — ———— . ———— T ————— o ——

You can now:
list the reference point file, enter (list)

exit from editing status, enter (exit)
*
change the reference point, enter (rfp)
*
copy last efficient points, enter (copy)
*
change the scale coefficients, enter (scal)
*
change the arbitrary coeff., enter (arbi)
*
1
objective reference scale rho
names points
objl 25.000 1.0 24.0
obj2 50.000 1.0
obj3 45.000 1.0
enter (list | copy | scal | arbi | rfp | exit) !
* * * *x * *
e
change the rhs and/or bounds set?
enter (yes or no) !
* *
n
calculation of efficient points
objective scale reference efficient utopia nadir
names point point point point
obijl 1.0 25.000 31.642 24.019 42.500
obj2 1.0 50.000 63.693 38.312 128.00
obj3 1.0 45.000 59.463 48.863 108.99
output of variables and constraints?
enter (yes or no) !
* *
Y

output of all constraints?
enter (yes or no) !
* *

YT

name value lower limit upper limit

enter name of constraint or (*), if exit
*

output of all variables?
enter (yes or no) !

* *
Y
name value lower limit upper limit

x1 2.3117 0. 3.00000
X2 0. 0. 7.00000
x3 3.2332 0. 4.00000
x4 0.78898 0. 3.00000
x5 2.4928 0. 5.00000
X6 0.81169 0. 5.00000
x7 4.5000 0. none
x8 1.8825 0. 4 .00000
x9 4.1849 0. none
x10 2.9766 0. none
x11 2.1883 0. 4.00000
x12 1.7566 0. 3.00000
rhs -1.00000 -1.00000 -1.00000

output of variables/constraints finished?
enter (yes or no) !
* *

Y
calculation of efficient points with edited data?
enter (yes or no) !
* *
n
21.4u 11.8s 19:45 2% 102+52k 247+217io 239pf+0w

APPENDIX 3.2: TEST2

t more specs.tc2

begin test2
minimize
nonlinear constraints 5
nonlinear jacobian vars 10
nonlinear objectiv vars 15
bounds bnd
rhs rhs
TOWS 20
columns 20
elements 100
objective = object
problem no. 2
mps file 9
solution yes
verify yes
aijtol 0.000001
difference intervall 1.0e-06
dj tolerance 1.0e-6
feasibility tol 1.0e-6
linesearch toler 0.1
lower bound 0.
iterations 1000
major iterations 19
minor iterations 29
penalty parameter 0.1
radius of conver 0.01
row tolerance l1.0e-6
superbasics 12
hessian dimensicn 12
jacobian dense
print level (jflxi) 1
derivative level 3

call function routines when optimal

end

¢ more rfp.t2

okt jl 9G0.
cbj2 200.
ob3i3 60C.
obi4 6CO.

ck3i5 6 CO.

-45-

o

.0CC
-.G0o0
000
.000C
- 000

%

% more model.t2
name

rows

gwtabl
bafill
bafil2
bafil3
gualil
flubal
fluba2
fluba3
gwtab?2
quali?2

test?2

qualil
fluba3
gwtabl
bafill
bafil2
bafil3
flubal
gwtab?2
gwtabl
bafill
bafil?2
bafil3
fluba?2
gwtab2
gwtabl
bafill
bafil2
bafil3
fluba3
gwtab?2
gwtabl
bafill
bafil2
bafil3
gwtab?2
guali2
gwtabl
bafill
bafil2
bafil3
qualil
fluba3
gwtab?2
quali3
gwtabl
bafill
bafil2
bafil3
gwtab?2
quali3

-46-

1

.0

-0.01

-1

.0

-0.02

-]1.

0

-0.03

—

N

N =

rhs

rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs
rhs

bounds

up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
lo
1o
lo
lo
lo
lo
lo
lo
lo
lo
lo
lo

bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd
bnd

gwtabl
bafill
bafil?2
bafil3
gwtab?2
qualil
quali3
gualil
fluba3l
fluba?2
flubal
fluba?2
fluba2
quali?

gwtabl
bafill
bafil2
bafil3
qualil
flubal
fluba2
fluba3
gwtab?2
quali?
quali3

20.0
27.0

(&)
oNoNoNoNoNeoNa]

200.
200.
200.
200.
200.
200.
200.
200.
1000.
200.
200.
200.
200.
500.

N
o
o

ololoNeoNoNoNoNoNoNoNoNe)
;DEDOOOOC)OOOODOOOODOOOOOODDOO

loNeoleNoNoNe) o

-47-

lo bnd qll 0.0
lo bnd cl 0.0
lo bnd gl2 0.0
fx initial g4 100.0
fx initial g5 20.0
fx initial g6 20.0
fx initial q7 40.0
fx initial g8 30.0
fx initial q2 60.0
fx initial gqglo 20.0
fx initial gl3 30.0
fx initial c2 216.0
fx initial c3 130.0
fx initial a3 80.0
fx initial g2 130.0
fx initial qll 30.0
fx initial cl 103.0
fx initial gl2 0.0
endata

-

2 dida tc2.run

didass
a dynamic and interactive
decision analysis and support system

nonlinear version Jjan. 1984
kkhkhkkkhkkhkhkkhkhkkhhkkkkrhkkxkkkhkrkkkxkkkkxx

enter the problem name (< 1 line, 80 char.)
test2, nonlinear constraints and nonlinear objective functions
calculation of extreme points ?
enter (yes or no) !
* *

Y
selfish-optimization for all objectives
* decision support matrix *
~-the diagonal represents the utopia point-

objnam (i) obj(1)

1 oo

1 objl | 578.31 | 975.78 | 1211.3] 799.91 | 548.43
2 obj2 | 920.14 | 800.00 | 631.35| 668.98 | ©0J.00
3 obj3 | 1000.00 | 879.63 | 500.00| 699.65 | 647.38
4 obj4 [931.70 | 847.88 | 568.301 482.15 | {4.24
5 obj5s | 807.68 | 1000.00 | 810.35| 712.69 | 5C3.00

generation of efficient points

You can now:
list the reference point file, enter (list)

exit from editing status, enter (exit)
*

change the reference point, enter (rfp)
*

copy last efficient points, enter (copy)
*

change the scale coefficients, enter (scal)

change the arbitrary coeff., enter (arbi)

-48-

1
objective reference scale rho
names points
objl 900.00 1.0 2.0
ob3j2 900.00 1.0
obj3 600.00 1.0
obj4 600.00 1.0
objs 600.00 1.0
enter (list | copy | scal | arbi | rfp | exit) !
* * * * * *
a
enter new value for rho
24
old val. 2.0000 new val. 24.000
enter (list | copy | scal | arbi | rfp | exit) !
* * * * * *
r
enter obj.name or (*),if exit
obijl
enter new rfp. value
850
old val. 900.00 new val. 850.00
enter obj.name or (*),if exit
*
enter (list | copy | scal | arbi | rfp | exit) !
* * * * * *
1
objective reference scale rho
names points
objl 850.00 1.0 24.0
obj2 900.00 1.0
obi3 600.00 1.0
obj4 600.00 1.0
obi5 600.00 1.0
enter (list | copy | scal | arbi | rfp | exit) !
* * * * * *
e
change the rhs and/or bounds set?
enter (yes or no) !
* *
n
calculation of efficient points
objective scale reference efficient utopia nadir
names point point point point
objl 1.0 850.00 891.85 578.31 1000.00
obj2 1.0 900.00 209.70 800.00 1000.00
obj3 1.0 600.00 612.04 500.00 1211.3
obj4 1.0 600.00 488.96 482.15 799.91
obij5 1.0 600.00 58¢.1¢9 500.00 200.0¢C

-49-

output of variables and constraints?
enter (yes or no) !
* *

b4
output of all constraints?
enter (yes or no) !
* *

Y
name value lower limit upper limit

gwtabl 20.000 20.00000 none
bafill 27.000 27.00000 27.00000
bafil?2 22.200 22.20000 22.20000
bafil3 44.050 44.05000 44.05000
gualil 0. 0. none
flubal 150.00 none 150.00000
fluba?2 0. 0. none
fluba3 0. 0. none
gwtab?2 20.000 none 20.00000
quali?2 100.000 100.00000 none
quali3 200.00 200.00000 none

output of all variables?
enter (yes or no) !
* *

Y
name value lower limit upper limit

q4 20.305 0. 200.00000
g5 17.363 0. 200.00000
gb 17.963 0. 200.00000
q7 37.225 0. 200.00000
a8 0. 0. 200.00000
q% 41.554 0. 200.00000
qlo 31.604 0. 200.00000
gl3 71.669 0. 200.00000
c2 214.63 0. 1000.00000
c3 98.764 0. 200.00000
q3 85.975 0. 200.00000
g2 132.64 0. 200.00000
qll 28.699 0. 200.00000
cl 100.000 0. 500.00000
gl2 7.7843 C. 200.00000
rhs -1.00000 -1.00000 -1.00000

output of variables/constraints finished?
enter (yes or no) !
* *
b4
calculation of efficient points with edited data?
enter (yes or no) |
* *

-50-

generation of efficient points

You can now:
list the reference point file, enter (list)

exit from editing status, enter (exit)
*

change the reference point, enter (rfp)
*

copy last efficient points, enter (copy)
*

change the scale coefficients, enter (scal)

change the arbitrary coeff., enter (arbi)

c
previous solution copied as rfp

objective reference scale rho
names points

obijl 891.85 1.0 24.0

obj2 909.70 1.0

obj3 612.04 1.0

obj4 488.96 1.0

ob3j5s 589.19 1.0

enter (list | copy | scal | arbi | rfp | exit) !
* * * * * *

e
change the rhs and/or bounds set?
enter (yes or no) !
%* *
n
calculation of efficient points
objective scale reference efficient utopia nadir
names point point point point
objl 1.0 891.85 903.94 578.31 1000.00
obj2 1.0 909.70 892.08 800.00 1000.00
ob3j3 1.0 612.04 604.90 500.00 1211.3
obj4 1.0 488.96 491.00 482.15 799.91
obj5 1.0 589.19 579.55 500.00 900.00
output of variables and constraints?
enter (yes or no) !
* *
n

82.9u 14.0s 8:47 18% 142+116k 215+535io 1%4pf+0w

