

A Nonlinear Dynamic Interactive Decision Analysis and Support System (DIDASS/N)

Grauer, M. & Kaden, S.
IIASA Working Paper
WP-84-023

March 1984

Grauer M & Kaden S (1984). A Nonlinear Dynamic Interactive Decision Analysis and Support System (DIDASS/N). IIASA Working Paper. IIASA, Laxenburg, Austria: WP-84-023 Copyright © 1984 by the author(s). http://pure.iiasa.ac.at/id/eprint/2495/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

Working Paper

A NONLINEAR DYNAMIC INTERACTIVE DECISION ANALYSIS AND SUPPORT SYSTEM (DIDASS/N)

USER'S GUIDE (MARCH 1984)

Manfred Grauer Stefan Kaden

March 1984

WP-84-23

International Institute for Applied Systems Analysis A-2361 Laxenburg, Austria

NOT FOR QUOTATION WITHOUT PERMISSION OF THE AUTHOR

A NONLINEAR DYNAMIC INTERACTIVE DECISION ANALYSIS AND SUPPORT SYSTEM (DIDASS/N)

USER'S GUIDE (MARCH 1984)

Manfred Grauer Stefan Kaden

March 1984

WP-84-23

Working Papers are interim reports on work of the International Institute for Applied Systems Analysis and have received only limited review. Views or opinions expressed herein do not necessarily represent those of the Institute or of its National Member Organizations.

INTERNATIONAL INSTITUTE FOR APPLIED SYSTEMS ANALYSIS 2361 Laxenburg, Austria

PREFACE

The Interactive Decision Analysis group at IIASA has developed a decision analysis and support system, called "DIDASS". Based on the Reference Point Approach for multicriteria analysis, it is an attempt to combine the analytical power of the "hard" computer model with the qualitative assessments of the decision maker.

In general, DIDASS is capable of dealing with both linear and non-linear problems. Theoretical and practical tests for solving nonlinear problems of regional water policies in open-pit mining areas have elucidated the need for an especially designed nonlinear DIDASS version.

Following the presentation of the extended nonlinear version, DIDASS/N is described. DIDASS/N has been developed in collaboration between the Interactive Decision Analysis Group and the Regional Water Policies Project at IIASA.

DIDASS/N has been written in FORTRAN 77. The use of operating-system-dependent statements or commands has been avoided.

Either comments or suggestions concerning the analysis and support system or this guide would be welcome--DIDASS is intended to be useful, useable, and used!

ANDRZEJ WIERZBIEKI

CHESTER COOPER

Program Leader

Program Leader

Systems and Decision Sciences

Institutions and Environmental Policies

CONTENTS

1. INTRODUCTION 2. PROBLEM FORMULATION	1 2
3. THE DIDASS/N PROGRAM PACKAGE	_
3.1 OVERVIEW	6
3.2 DATA REQUIRED FROM THE USER	9
3.2.1 SPECS-FILE	-
3.2.2 MODEL-FILE	
3.2.3 RFP-FILE	
3.2.4 RANGE-FILE	
3.2.5 SUBROUTINE OBJECT	
3.2.6 SUBROUTINE CONSTR	
3.3 INTERACTIVE USE/ERROR MESSAGES	14
3.4 DATA OUTPUT	15
3.5 IMPLEMENTATION	16
3.5.1 IIASA-OPERATING SYSTEM (UNIX)	
3.5.2 EXTERNAL USE	
4. TEST-EXAMPLES	20
4.1 SOLVING A PROBLEM WITH LINEAR CONSTRAINTS	20
AND NONLINEAR OBJECTIVES	
4.2 SOLVING A PROBLEM WITH NONLINEAR CONSTRAINTS	22
AND OBJECTIVES	
5. REFERENCES	26
APPENDIX 1: DIDASS/N - INTERACTIVE CAPABILITIES	27
APPENDIX 2: SUBROUTINES CONSTR_F AND OBJECT_F	31
2.1 CONSTR_T.F., OBJECT_T.F	32
OBJECTIVE GRADIENTS AUTOMATICALLY COMPUTED	
2.2 CONSTR_TC.F, OBJECT_TC.F	35
OBJECTIVE GRADIENTS PROGRAMED FOR TEST 2	
APPENDEX 3 : INPUT AND OUTPUT FOR TEST EXAMPLES	40
3.1: TEST 1 (SECTION 4.1)	40
3.2: TEST 2 (SECTION 4.2)	45

A NONLINEAR DYNAMIC INTERACTIVE DECISION ANALYSIS AND SUPPORT SYSTEM (DIDASS/N)

USER'S GUIDE (MARCH 1984)

Manfred Grauer and Stefan Kaden

1. INTRODUCTION

DIDASS/N is an interactive multicriteria programming package designed for decision support. It is an improved version of DIDASS (May 1983)[5], especially designed for nonlinear multicriteria programming problems, and is based on the reference point approach to multicriteria analysis.

The basic idea of the reference point method is to rank multidimensional decision alternatives q, defined as points in the R^p ($p \ge 2$), relative to a reference point \bar{q} which reflects the preferences of the user.

The ranking of the decision alternatives is based on a partial ordering of the R^p :

$$q^1 \le q^2$$
; $q_i^1 \le q_i^2$; $i = 1, 2, ..., p$; $q^1; q^2 \in \mathbb{R}^p$ (1)

The decision problem is to determine an n-vector x of decision variables satisfying all given constraints while taking into account the p-vector of objectives. We will assume that each component of q should be as small as possible.

A reference point or reference objective is a suggestion \bar{q} supplied by the user which reflects in some sense the "desired level" of the objective. An achievement scalarizing function $s(q-\bar{q})$ defined over the set of objective vectors q is then associated with each reference point \bar{q} [3]. If we regard the function $s(q-\bar{q})$ as the "distance" between the points q and \bar{q} , then, intuitively, the problem of minimizing this distance may be interpreted as the problem of finding from within the Pareto set the point \hat{q} "nearest" to the reference point \bar{q} . (However, the function s is not necessarily related to the usual notion of distance.) With this interpretation in mind, reference point optimization may be viewed as a way of guiding a sequence $\{\hat{q}^k\}$ of Pareto points generated from a sequence $\{\hat{q}^k\}$ of reference objectives. These sequences are generated through an interactive procedure and should result in a set of attainable efficient points $\{\hat{q}^k\}$ of interest to the user. If the sequence $\{\hat{q}^k\}$ converges, the limit may be seen as the solution to the decision problem.

2. PROBLEM FORMULATION

Let us assume that the decision problem can be clarified by analyzing a nonlinear constrained multicriteria problem in the following form:

$$\min_{x} f(x) = q \ge 0^{1}$$
 (2)

¹⁾ The objective functions have to be defined in such a way that they are not negative.

subject to:

$$g\left(x_{nl}\right) \le b_1 \tag{3}$$

$$A_1 x_{nl} + A_2 x_l \le b_2 \tag{4}$$

$$l \le x = \begin{bmatrix} x_{nl} \\ x_l \end{bmatrix} \le u \tag{5}$$

where $g(x_{nl}) = \left[g_1(x_{nl}).g_2(x_{nl}), \cdots, g_m(x_{nl})\right]^T$ is a vector of nonlinear constraints and $f(x) = [f_1(x).f_2(x), \cdots, f_p(x)]^T$ in (2) represents the nonlinear performance criteria. Linear objectives are considered as a part of these nonlinear criteria, without being especially treated.

The decision variables (x) are divided into two subsets: a vector of "nonlinear constrainted" variables (x_{nl}) and a vector of "linear constrainted" variables (x_l) . It is clear that when g is nonexistent, formulation (2)-(5) is identical with a linear-constrainted multicriteria nonlinear programming problem. An overview of the various ways in which the reference point approach can be used in the nonlinear case is described in [4].

The decision analysis and support system DIDASS/N is based on a two-stage model of the decision-making process. In the first stage - the exploratory stage - the user may get informations about the range of his alternatives, thus giving him an overview of the problem. In the second stage - the search stage - the user works with the system in an interactive way to analyze the efficient alternatives { \hat{q}^k } generated by DIDASS/N in response to his reference objectives { \bar{q}^k }. The initial information for the exploratory stage may be provided by calculating the extreme points for each of the objectives in (2) separately. A matrix D_S which yields information on the range of numerical values of each

objective is then computed. We shall call this the decision support matrix.

$$D_{S} = \begin{bmatrix} q_{1}^{*} & q_{2}^{1} & \cdots & q_{p}^{1} \\ q_{1}^{2} & q_{2}^{*} & \cdots & q_{p}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ q_{1}^{i} & q_{2}^{i} & \cdots & q_{p}^{i} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ q_{1}^{p} & q_{2}^{p} & \cdots & q_{p}^{*} \end{bmatrix}$$

$$(6)$$

Row i corresponds to the solution vector x_i which maximizes objective q_i . The vector with elements $q_i^i = q_i^*$, i.e., the diagonal of D_S , represents the utopia (ideal) point. This point is not normally attainable (if it were, it would be the solution of the proposed decision problem), but it is presented to the user as an upper guideline to the sequence $\{\overline{q}^k\}$ of reference objectives. Let us consider column i of the matrix D_S . The maximum value in the column is q_i^* . Let q_i^n be the minimum value, where

$$\min_{1 \le j \le p} \left\{ q_i^j \right\} = q_i^n \tag{7}$$

We shall call this the *nadir* value. The vector with elements $q_1^n, q_2^n, \ldots, q_p^n$ represents the *nadir point*, and may be seen as a lower guideline to the values of the user's objectives.

If the range of the objectives is known, instead of computing the decision support matrix the range of the objectives $\{q_i^{\min}\}$, $\{q_i^{\max}\}$ can

be used and the effort calculating the matrix D_s avoided. This is useful respectively necessary for dynamic problems with a high number of objectives.

In the second stage, the reference point optimization, the following achievement scalarizing functions are maximized according to q and subject to (3-5):

$$s(w) = -\frac{1}{\rho} \ln \left[\frac{1}{p} \sum_{i=1}^{p} w_i^{\rho} \right]$$
 (8)

or

$$s(w) = -(\frac{1}{p} \sum_{i=1}^{p} w_i^{\rho})^{1/\rho}$$
 (9)

with

$$w_i = \gamma_i \frac{\tilde{q}_i - q_i}{\tilde{q}_i - \bar{q}_i}. \tag{10}$$

The solution gives an efficient pointing $q = \hat{q}$, according to a given set of reference points \bar{q} . \tilde{q} is a lower limit to the sequence of reference points (the utopia point q_i^{\bullet} respectively q_i^{\min}). γ_i can be used as weighting factor and ρ is an arbitrary coefficient².

$$\rho \ge p \ge 2 \tag{11}$$

This type of achievement scalarizing function meets the following requirements:

-- They yield scaling factors which make additional scaling of objectives unnecessary.

²⁾ For $\rho=2$ we have the Euclidic norm, for $\rho\to\infty$ the Tschebyschev norm.

- They are smoothly differentiable functions which approximate the nonsmooth function $s = \max_{i} w_{i}$.
- -- They are strongly order-preserving and weakly order-approximating.

The resulting single-criterion programming problems are solved using the solution package MINOS [1,2].

3. THE DIDASS/N PROGRAM PACKAGE

3.1. Overview

DIDASS/N has been developed in FORTRAN 77. It is structured as a set of modules (subroutines). One of these modules is MINOS/AUGMENTED [1,2], for nonlinear single-objective programming. In Table 1 all used subroutines are assorted.

For input and output data as well as data which might be needed in future model runs, external files are created. Table 2 gives an overview.

In Figure 1 the structure of DIDASS/N with the interrelationship between modules and external files is illustrated. The internal data transfer between the subroutines of DIDASS/N including MINOS (GO) is organized using common blocks. Following parameter statements are implemented:

character *1 l
character *8 objnam, rhs, bds
implicit real *8 (a-h, o-z)
common/help/nwcore,rho,rhs,bds,l(80),nrun
common/rfp/nc, objnam (100), gam(100),

rfp (100), obj (100), dif (100) common/utopia/objmin (100), objmax (100) common z (100000) data nwcore/100000/.

Table 1. DIDASS/N - modules

Name	Contents	
	Contents	
didass	main control program	
extrem	calculation and output of extreme points (utopia/nadir) for all objectives	
effici	calculation of efficient points according to a given set of reference points	
intact	interactive correction of data for the calculation of efficient points	
varcon	interactive output of variables/constraints for efficient points	
vacose	auxiliary subroutine for varcon	
readrfp	input of reference point file	
yn	input of yes or no as an alternative of next program steps	
obmima	input of the range of objectives	
find	search of an objective-name	
error	error output	
chrhbd	changing of the right-hand-side or bounds set of the model	
go	MINOS [1,2]	
object	calculation of objective functions (nonlinear)	
constr	calculation of nonlinear constraints	

Consequently, the number of objectives is restricted to 100. If necessary the dimension (100) of the defined arrays may be changed in the subroutines.

Further, the MINOS-array restriction have to be considered (see, [1, 2]).

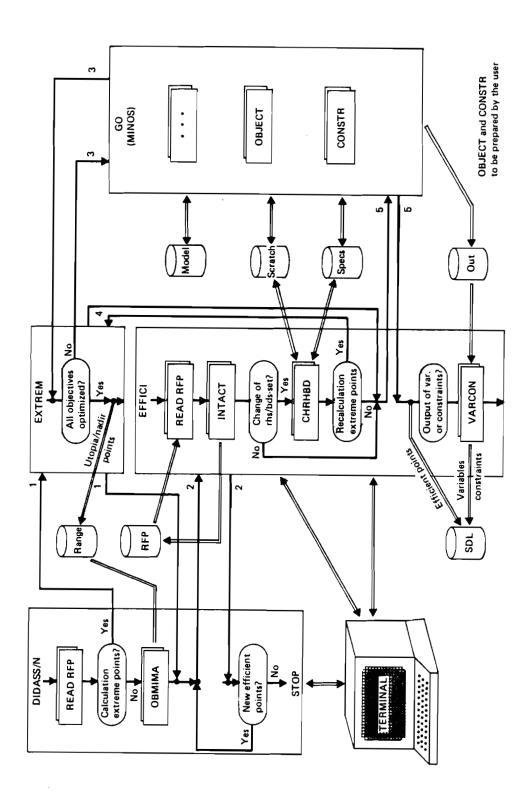


Figure 1. DIDASS/N overview

Table 2. DIDASS/N - file system

unit-number	file name	remarks
2	sol	DIDASS/N - result file
3	rfp	reference point file
4	range	ranges for the objective values as an input or utopia and nadir points as an output
5	specs	specification file according to MINOS [1, 2]
6	out	MINOS-output of the actual last MINOS-run
7	obj	values of the objective functions of the last computed efficient point
83)	fort-8, help	scratch-file for MINOS and DIDASS/N (for specs-file processing)
9	model	problem description in MPS-format according to MINOS
14	standard input, output	usually terminal - display

³⁾ This file is internally opened and closed, if the program run is finished normally. In the case of a program exit due to errors, the files should be removed by the user.

3.2. Data Required from the User

The data preparation is based on the data preparation for the MINOS system [1, 2]. Following data files are required:

specs - specification file (see section 3.2.1)

model - problem description in MPS-format (see section 3.2.2)

rfp - reference point file (see section 3.2.3)

range - range file for the objective values, if the extreme values for all objectives shall not be computed (see section 3.2.4).

The nonlinear objectives and constraints have to be written as FORTRAN statements within the subroutines

object - objective functions (see section 3.2.5)

constr - constraints (see section 3.2.6)

3.2.1. SPECS - file

mps file solution

In principle, for the preparation of the specs-file the MINOS-users guide [1] and -manual [2] should be used. There are no restrictions to the MINOS capabilities. Certain parameters have to be or may be used by the user via a list of problem specifications. They are assumed to be a deck of 80-character card images. Each card contains a sequence of items produced in free format (i.e., separated by at least one blank or =) with keywords and numbers. Blank cards are allowed, and comments may occur after an asterisk (*).

Following a standard specs file for DIDASS/N is given. Values, which have to be inserted by the user are characterized by < >.

begin minimize	<name of="" problem="" the=""></name>
nonlinear constraints	<m, constraints="" nonlinear="" number="" of=""></m,>
nonlinear jacobian vars	<pre><number <math="" of="" variables="">\{x_{ne}\} in nonlinear constraints></number></pre>
nonlinear objective vars	<pre><number altogether="" of="" variables="" {x}=""></number></pre>
bounds	<pre><name bnd="" bounds="" data="" of="" set,="" usually=""></name></pre>
rhs	<name data="" hand-side="" of="" rhs="" right="" set,="" usually=""></name>
rows	<pre><over-estimate constraints="" m="" number="" of="" the=""></over-estimate></pre>
columns	<pre><over-estimate <math="" number="" of="" variables="">\{x\}</over-estimate></pre>
elements	<pre><over-estimate number="" of="" of<="" pre="" the=""></over-estimate></pre>
	nonzero elements in the linear
	constraints $\{A_1, A_2\}$
objective = object	. 1 0
problem no.	<pre><pre><pre><pre><pre><pre><pre>constr and object></pre></pre></pre></pre></pre></pre></pre>

yes

* the following values may be changed by the user

* according to the numerical problem

0.000001 aijtol difference interval 1.0e-6 dj tolerance 1.0e-6 feasibility tolerance 1.0e-6 linesearch toler 0.1 lower bound iterations 1000 major iterations 10 minor iterations 20 penalty parameter 0.1 radius of conver 0.01 row tolerance 1.0e-6

superbasics

<number of super basic variables, normally</pre> not greater than number of variables + 1>

hessian dimension

jacobian

<number of variables + 1>
dense⁴⁾

print level (jflxi)

<amount of information to file out,</p>

typical value 1>

derivative level

<3 - objective and constraint gradients are known

2 - constraint gradients are known>

call function rountines when optimal end

 $^{f 4)}$ This determines the manner in which the constraint gradients are evaluated and stored. For complicated problems with a great number of variables 'sparse' should be used, for the consequences see MINOS [2].

3.2.2. MODEL - File

The data specifying the constraints (3)-(5) have to be prepared in standard MPS format. For details see MINOS [1, 2]. The following has to be considered (compare section 4, examples):

- Nonlinear constraints have to be listed first.
- The ordering of variables must be the same as in the x-array of the subroutines CONSTR and OBJECT (see below). Variables which occur in the nonlinear constraints have to be listed first.

- -- All variables should be specified by upper and lower bounds.
- -- For constraints ranges should be defined.
- -- A set of initial variables should be given.

3.2.3. RFP - File

The reference point file contains for all objectives i=1,p <name objective i> <reference point $\overline{q}_i>$ <wrighting factor $\gamma_i>$.

In the first line the coefficient ρ , see section 2, has to be added. The format is

$$(2x, a8, 2x, 3f 12.5)$$
.

The last line must contain dots (....) as characters 5-8 (compare section 4, examples).

3.2.4. RANGE - File

The range file contains for all objectives i=1,p

<name objective i> $< q_i^{\min} > < q_i^{\max} >$

in the format (2x, a8, 2f 12.5).

3.2.5. Subroutine OBJECT

The objectives $f_i(x)$ have to be programmed in FORTRAN-statements in the subroutine OBJECT. The following one-dimensional arrays have to be used.

obj - values of the objective functions

x - values of the variables (x(1) corresponds to column 1 in the constraints of the model-file, etc.).

Usually the gradients are calculated automatically. Appendix 2.2 shows the subroutine object for the test examples of section 4. For complecated functions the corresponding gradients may be programmed. Therefore, the one-dimensional array

g - gradients of objective functions

has to be used. This is demonstrated for the example TEST 2 in Appendix 2.2. There it is also illustrated, how instead of the x-array the original variable names of the model-file may be used for the subroutines OBJECT as well as CONSTR. In this case, two additional subroutines OBJGRA and VALIST (see Appendix 2.2) are needed.

In contrast to MINOS in DIDASS/N it is not allowed to define the objective functions and their gradients partial in the MPS file (model-file), because more than one objective function has to be considered.

3.2.6. Subroutine CONSTR

The nonlinear constraints $g_i(x)$, i=1,...,m and the corresponding Jacobian matrix J(x) have to be programmed in FORTRAN-standard in the subroutine CONSTR. The following arrays have to be used:

one-dimensional:

- values of the constraints (g(1) corresponds to the row 1 in the constraints of the model-file, etc.)

x - values of the variables (x(1) corresponds to column 1 in the constraints of the model-file, etc.).

two-dimensional:

gj - Jacobian matrix.

A partial specification of the Jacobian matrix in the model-file is possible (see MINOS [1, 2]). Such a specification is necessary, if the Jacobian matrix shall be stored in "sparse" mode.

In Appendix 2.1 the subroutine CONSTR for the test examples of section 4 is demonstrated. In Appendix 2.2 the subroutine CONSTR is shown using the original variable names of the model-file.

3.3. Interactive Use/Error Messages

The DIDASS/N package has been designed with special regard to its interactive use. During the program runs the user may change data, generate different program modes and define the amount of data output. The interactions are controlled by a sequence of questions, alternatives and data requirements to be decided by the users. An easy way to get known with these interactions is the practical test. The system is so organized, that wrong actions do not lead to program failures. If a reaction to a given request is wrong, this request will be given again. For instance, if an objective name is input which does not exist in the model-file, a new objective name is required.

For the interactions special keywords are used. It is possible to type the complete keywords or their abbreviation (underlined by an asterisk).

Example: enter (yes or no)!

The answer may be y/n but also yes/no. The complete list of all interactive capabilities is given in Appendix 1, see also the list of examples of section 4, Appendix 3.

During the DIDASS/N run error messages as indicated in Table 3 are possible.

Table 3. Error messages

Message	Cause/consequence
**** ERROR incorrect reference point file (missing?)	missing end data in rfp file /Stop
**** ERROR no rhs entry in specs file	missing rhs entry in specs-file /Stop
**** ERROR no bounds entry in specs file	mission bounds entry in specs file /Stop
**** ERROR not enough ranges	number of ranges in range file less than number of objectives/Stop
**** ERROR wrong order of ranges	order of ranges not adequate to the objective names /Stop
**** ERROR no solution in MINOS out file	single-objective optimization in MINOS not finished /continue
**** ERROR no optimal solution	no optimal solution of single-objective optimization in MINOS/continue

3.4. Data Output

The main results of DIDASS/N are listed on the screen of a terminal (standard unit). This includes

- -- table of the results of the calculation of extreme points for all objectives
- -- table of efficient points (objective values)
- -- values of variables and constraints for efficient points.

In the Appendix 3 the terminal output is illustrated for the examples of section 4.

Additional to the terminal output, following output files are created:

- out MINOS-output depending on the value of print level in the specs file, see [1,2] and section 3.2.1.
- sol DIDASS/N results, a copy of the terminal output including the actual data of the DIDASS/N run, see Appendix 3 for the test examples.
- range Name, utopia and nadir point of all objectives, format (2x, a8, 2g12.5).

The output of results (Values of objective functions, constraints and variables) is printed in the format g12.5.

That means numbers greater than 0.1 and less than 10^6 are printed in f-format otherwise in e-format.

3.5. Implementation

3.5.1. IIASA Operating System (UNIX)

For the internal use at IIASA the DIDASS/N package is available as a directory including the files, listed in Table 4.

For the compiling, linking and loading the executable files dida_t.tra respectively dida_tc.tra should be used. For instance dida_t.tra:

xf77 constr_t.f object_t.f didass.0 nonlp.0
-lxU77⁵) -a dida_t

⁵⁾ Date, subroutine of the UNIX utility library.

Table 4. DIDASS/N - directory

Blocks	file-name	contents
4 6	constr_t.f	subroutine constr for test 1 and test 2 (Appendix 2.1)
4 7	constr_tc.f	subroutine constr for test 2 (Appendix 2.2)
988	dida-t*	didass/n, loaded for test 1 and test 2
1	dida_t.tra*	exectable file for preparing dida_t*
1	dida_t1.run* dida_t2.run*	executable files for program run test 1 and test 2
988	dida_tc2*	didass/n, loaded for test 2, programmed objective functions gradients
1	dida_tc2.run*	executable file for program run test 2/c
1	dida_tc2.tra*	executable file for preparing dida_tc*
31 47	didassn.f didassn.0	didassn programs
6 7	model.t1 model.t2	model file for test 1 and test 2
1048	nonlp.0	MINOS/AUGMENTED
1 1 1	obj.t1 obj.t2 obj.tc2	efficient points of the last session, test 1, test 2, test 2/c
5 5	object_t.f object_t.0	subroutine object for test 1 and test 2 (Appendix 2.1)
8 7	object_tc.f object_tc.0	subroutine object for test 2/c (Appendix 2.2)
28 50 74	out.t1 out.t2 out.tc2	MINOS - outfile, test 1, test 2 and test 2/c
1 1 1	range.t1 range.t2 range.tc2	range-file for test 1, test 2 and test 2/c
1 1	rfp.t1 rfp.t2	rfp-file for test 1 and test 2
3 5 7	sol.t1 sol.t2 sol.tc2	sol-file for test 1, test 2 and test 2/c
2 2 2	specs.t1 specs.t2 specs.tc2	specs-file for test 1, test 2 and test 2/c

To start DIDASS/N the executable file dida_ $\begin{cases} t\,1\\t\,2\\t\,c\,2 \end{cases}$, run has to be actual-

ized, defining the input/output files. 6)

didassn 2 = =_'sol' 3 = 'rfp' 4 = 'range' 5 = 'specs' 6 = 'out' 7 = 'obj' 9 = 'model' 14 ==.

In this case, the new solution is added to the sol-file. For the filenames, the actual filenames have to be inserted. For instance dida_t1.run

dida_t 2 == sol.t1 3 = rfp.t1 4 = range.t1 5 = specs.t1 6 = out.t1
7 = obj.t1 9 = model.t1 14 ==.

⁶⁾ Useary, HASA specific subroutine which permits the assignment of files at run time.

3.5.2. External Use

The current version of the DIDASS/N package has been designed specifically to be portable, and it has therefore been written completely in FORTRAN 77, avoiding the use of operating-system-dependent statements or commands.

The DIDASS/N source code including data files for the examples is normally supplied by IIASA on tape (9-track, unlabeled, ebcdic, upper case, 800 bpi, block size 800 characters, record length 80 characters) under the names listed in Table 5.

Table 5. DIDASS/N - source tape

file-name	contents
constr_t.f constr_tc.f	constr for test 1 and 2 constr for test 2/c
didassn.f	didass/n package
model.t1 model.t2	model files for test 1 model files for test 2
nonlp.t	MINOS/AUGMENTED
object_t.f object_tc.f	object for test 1 and 2 object for test 2/c
rfp.t1 rfp.t2	rfp file for test 1 rfp file for test 2
specs.t1 specs.t2 specs.tc2	specs file for test 1 specs file for test 2 specs file for test 2/c

To prepare DIDASS/N the user must compile link and load to following FORTRAN files:

consr_t.f object_t.f didassn.f nonlp.f

The input and output files are presumed under the names of Table 1.

Therefore, in the main program the following file-definitions are included.

```
iin = 14  (standard input)
ion = 14  (standard output)
open (2, file = 'sol')
open (3, file = 'rfp')
open (4, file = 'range')
open (5, file = 'specs')
open (6, file = 'out')
open (7, file = 'obj')
open (9, file = 'model')
open (14, file = '/dev/tty')
```

This may be changed, if necessary. It has also to be proved, whether a subroutine date

date (datum)

datum:

24 character string with the current date and time in ascii form is available. If necessary, the program lines

character*24 datum call date (datum) write (2,201) datum

have to be changed in the main program didass.

4. TEST-EXAMPLES

4.1. Solving a Problem with Linear Constraints and Nonlinear Objectives

To demonstrate the use of DIDASS/N, in the first test example test 1 the following quadratic programming problem is described.

$$\min \begin{cases} (x_1 - 3)^2 + (x_2 - 2)^2 + (x_2 - 6)^2 + (x_7 - 4)^2 = abj1 \\ 0.5(x_3 - 4)^2 + (x_8 - 6)^2 + (x_9 - 11)^2 = abj2 \\ (x_4 - 1)^2 + (x_5 - 8)^2 + (x_{11} - 4)^2 + (x_{12} - 1)^2 + (x_{10} - 8)^2 = abj3 \end{cases}$$
(12)

subject to:

$$2x_{1}+0.5x_{2}-x_{6}+x_{11}=6$$

$$x_{1}+2x_{2}-x_{7}+x_{11}=0$$

$$x_{3}+0.5x_{6}-x_{8}-x_{12}=0$$

$$0.5x_{3}+x_{6}-x_{9}+x_{12}=0$$

$$x_{4}+0.5x_{5}+0.5x_{8}-x_{10}=0$$

$$2x_{4}+x_{5}-x_{8}-x_{11}=0$$

$$2x_{4}+x_{5}-x_{8}-x_{12}=0$$

$$2x_{1}+x_{2}+2x_{11}\leq 9$$

$$2x_{6}+3x_{12}\leq 13$$

$$5x_{4}+3x_{5}\leq 16$$

$$3x_{4}+2x_{5}+3x_{8}\leq 13$$

$$3x_{1}+2x_{2}\leq 14$$

and

$$x_i \ge 0, \ i=1,2,...,12$$
 (14)

$$x_1 \leq 2 \; , \; x_2 \leq 6 \; , \; x_3 \leq 3 \; , \; x_4 \leq 2 \; , \; x_5 \leq 4 \; , \; x_6 \leq 4 \; , \; x_8 \leq 3 \; , \; x_{11} \leq 3 \; , \; x_{12} \leq 2 \; , \; x_{11} \leq 3 \; , \; x_{12} \leq 2 \; , \; x_{11} \leq 3 \; , \; x_{12} \leq 2 \; , \; x_{11} \leq 3 \; , \; x_{12} \leq 2 \; , \; x_{11} \leq 3 \; , \; x_{12} \leq 2 \; , \; x_{11} \leq 3 \; , \; x_{12} \leq 2 \; , \; x_{12} \leq 3 \; , \; x_{13} \leq 3 \; , \; x_{14} \leq 3 \; , \; x_{15} \leq 4 \; , \; x_{15} \leq$$

In Appendix 2.1 the subroutines constr_t.f and object_t.f are presented (nprob=1). The corresponding input files

specs.t1, model.t1 and rfp.t1,

a copy of the terminal input/output as well as the output files

sol.t1 and range.t1

are given in Appendix 3.1.

The consumed computing time (VAX) was 3:18 sec.

4.2. Solving a Problem with Nonlinear Constraints and Objectives

The second example is related to a practical problem--the analysis of regional water policies in open-pit mining areas [6]. A simplified test area had been chosen, which is shown in Figure 2.

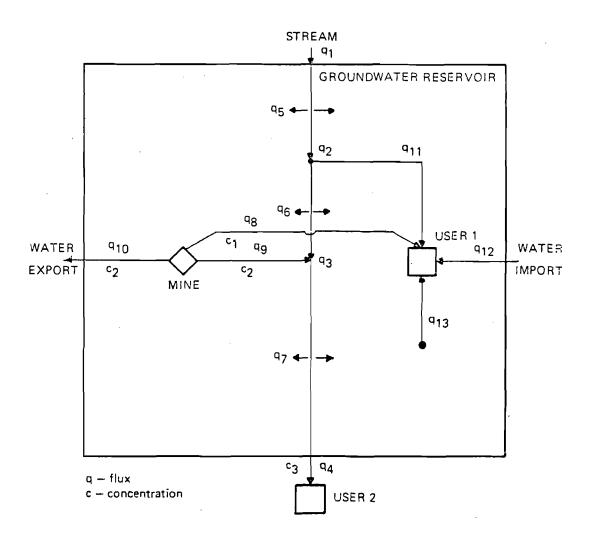


Figure 2. Schematized test area for test example test 2.

The main impacts on the water resources system are:

-- regional lowering of groundwater table which essential effects the river flow (infiltration losses) as well as a groundwater-waterwork in this region;

-- high mineralized mine drainage water which is needed for river flow augmentation but effects the downstream water use.

Possible technological alternatives are for instance:

- water import for water supply and/or flow augmentation
- -- export of high mineralized water
- -- selective mine drainage
- -- treatment of high mineralized water.

The following nonlineaar static model has been used.

Objective Functions

Minimizing deviation between water supply and demand

$$obj 1 = 1000 - (q_8 + q_{11} + q_{12} + q_{13})$$
 USER1 (15)
 $obj 2 = 1000 - q_4$ USER2

Minimizing costs for water supply USER 1

$$abj4 = (1.0+0.01,c_1).q_8+1.5q_{11}+q_{12}+q_{13}$$

Minimizing costs for mine drainage

$$abj3 = 2q_8 + q_9 + 1.5q_{10} + 400.0$$

Minimizing costs for water supply USER 2

$$obj5 = 0.01.q_4.c_3 + 500.0$$

Constraints

Flux balance for river sections

$$150 - q_5 - q_2 = 0$$
 $q_2 - q_6 - q_{11} - q_3 = 0$ $q_3 + q_9 - q_7 - q_4 = 0$

Groundwater tables (response functions)

$$30 > h_1 = 50 - 0.5(q_9 + q_{10}) - 0.1q_8 - 0.01q_{13} + 0.001(q_9^2 + q_{10}^2)$$

$$+ 0.0002q_8^2 + 0.1q_5 + 0.3q_6 + 0.2q_7$$

$$60 < h_2 = 80 - 0.2q_{13} - 0.1(q_8 + q_9 + q_{10})$$

$$+ 0.01q_5 + 0.02q_6 + 0.03q_7$$

$$(16)$$

Bank filtration

$$q_5 = 27 - 20 \exp(-0.01(q_8 + q_9 + q_{10}) - 0.001q_{13} + 0.002q_6 + 0.01q_7)$$

$$q_6 = 22.2 - 20 \exp(-0.02(q_8 + q_9 + q_{10}) - 0.002q_{13} + 0.001q_5 + 0.001q_7)$$

$$q_7 = 44.2 - 40 \exp(-0.02(q_8 + q_9 + q_{10}) - 0.005q_{13} + 0.001q_5 + 0.002q_6)$$

Minieralization

$$c_1 > 100 + 0.1 q_8 \quad c_2 > 200 + 0.2 (q_9 + q_{10}) \quad c_3.q_4 < c_2.q_9$$

Bounds

$$0 \le q_i \le 200, i = 1,13$$
 $c_i \ge 0, i = 1.3$ (17)
 $c_1 < 500 \ c_2 < 1000 \ c_3 < 200$

In Appendix 2, the subroutines constr_t.f and object_t.f are described (nprob=2). The subroutine object is shown for the case of automatic computed objective functions gradients (Appendix 2.2) and programmed objective functions gradients (Appendix 2.3).

The corresponding input files for the last case

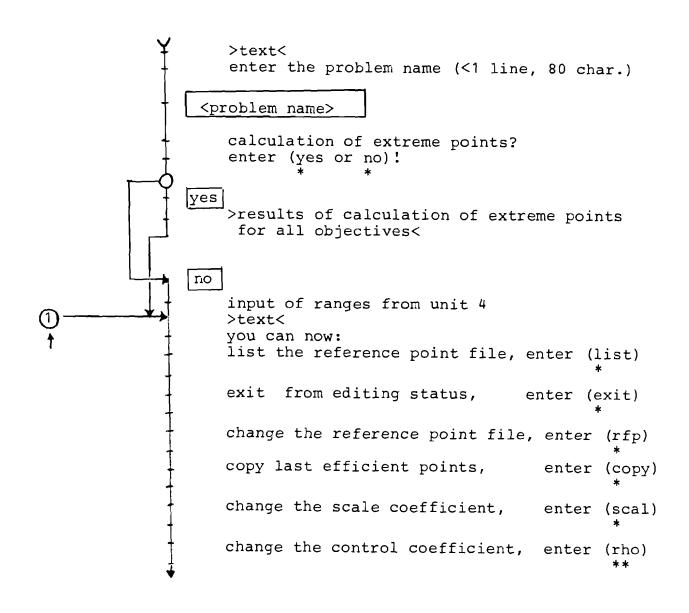
specs.tc2, model.t2 and rfp.t2

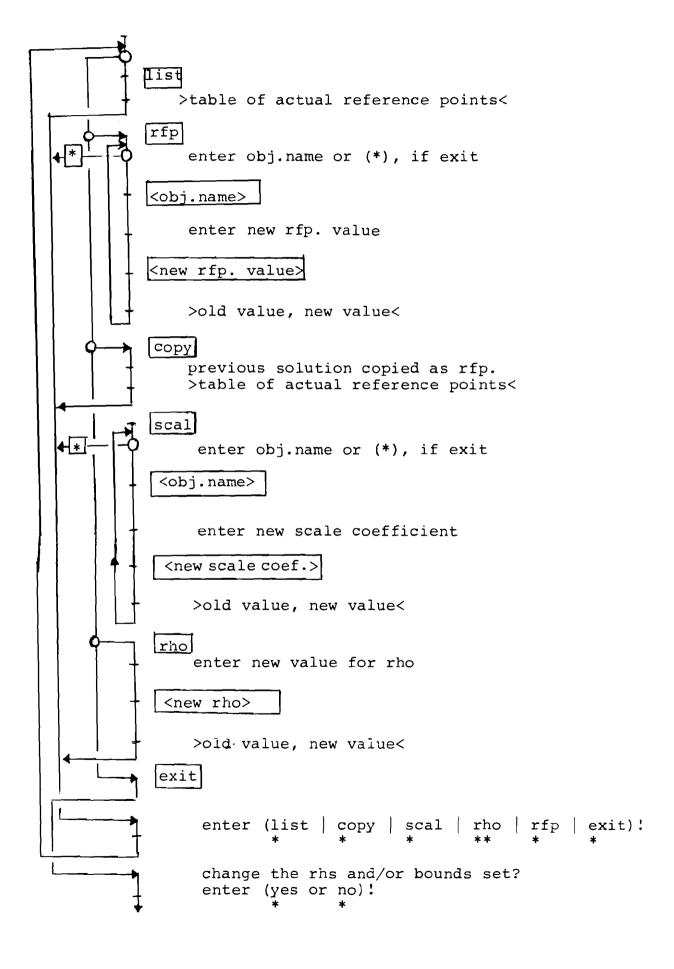
and a copy of the terminal input/output are listed in Appendix 3.2.

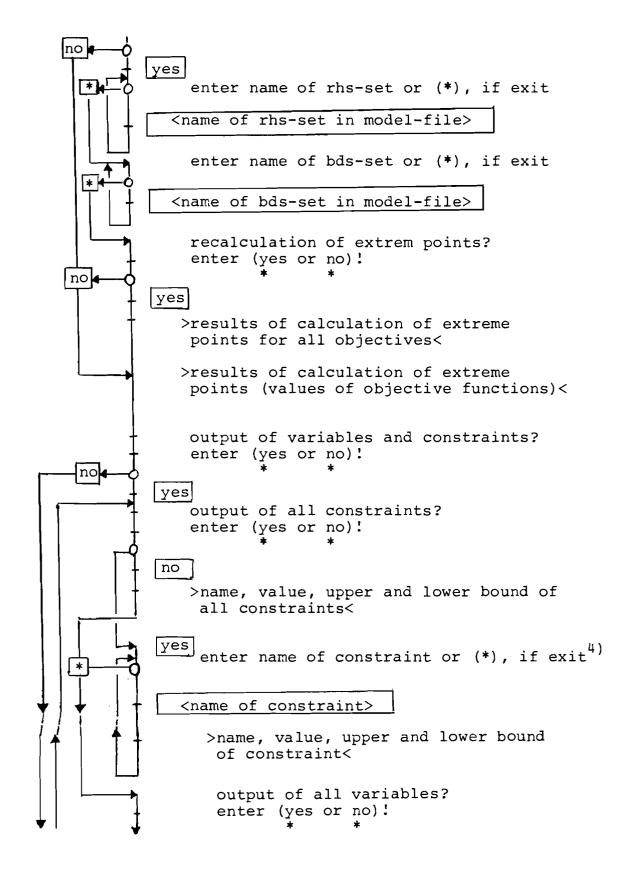
For one run including the calculation of extreme points and an efficient point the CPU-time on the VAX was 6:48 sec. The program version with automatic computed function gradients has consumed 6:38 sec. The numerical results are identical.

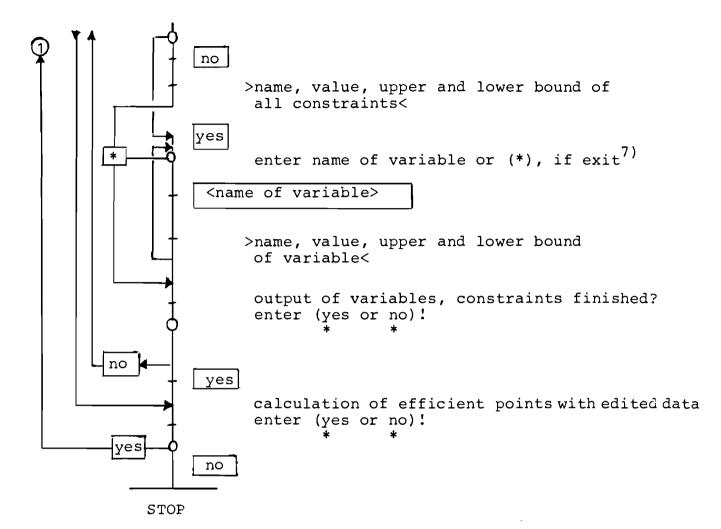
REFERENCES

- [1] B.A. Murtagh and M.A. Saunders, "MINOS/USER'S GUIDE", Technical Report SOL-77-9 Systems Optimization Laboratory, Stanford University (1977).
- [2] B.A. Murtagh and M.A. Saunders, "Minos/Augmented", Technical Report SOL-80-14, Systems Optimization Laboratory, Stanford University (1980).
- [3] A. Wierzbicki, "A mathematical basis for satisficing decision making", pp. 465-485 in Organizations: Multiple Agents with Multiple Criteria, Ed. J.N. Morse, Springer-Verlag, Berlin, New York (1981).
- [4] M. Grauer, "Reference point optimization the nonlinear case", pp. 126-135 in Essays and surveys on Multiple Criteria Decision Making, Ed. P. Hansen, Springer-Verlag, New York (1983).
- [5] M. Grauer, "A dynamic interactive decision analysis and support system (DIDASS), user's guide (May 1983)", WP-83-60, IIASA, June (1983).
- [6] S. Kaden, "Analysis of regional water policies in open-pit mining areas a multicriteria approach", presented at the IIASA Workshop on Interactive Decision Analysis and Interpretative Computer Intelligence, Laxenburg, 20-23.9.1983.


APPENDIX 1: DIDASS/N - INTERACTIVE CAPABILITIES


The interactive capabilities are characterized in form of a flow scheme. Following symbols are used:


> < text or result-output of the terminal


terminal input

< > name or value for the input

The search for variables and constraints is done in the same order as the values are stored, that means for instance x(1) would not be founded after a search for x(2), etc. In such a case, the output of variables/constraints may be started again and x(1) be searched.

- APPENDIX 2: SUBROUTINES CONSTR.F AND OBJECT.F
 - 2.1: CONSTR_T.F, OBJECT_T.F
 GRADIENTS AUTOMATICALLY COMPUTED
 - 2.3: CONSTR_TC.F, OBJECT _TC.F
 OBJECTIVE FUNCTION GRADIENTS PROGRAMMED

In the listings those program lines are signed which have to be prepared by the user.

```
APPENDIX 2.1: CONST_T.F, OBJECT_T.F

OBJECTIVE FUNCTION GRADIENTS AUTOMATICALLY

COMPUTED
```

```
subroutine constr( mode, m, n, njac, x, g, gj, nstate, nprob )
C
 *** mode
              - if mode=-1 termination
С
 *** m
С
              - number of nonlinear constraints
 *** n
С
              - number of nonlinear variables nl
 *** njac
              - m*n
              - values of nonlinear variables
 ***
              - constraints
 *** gj
С
              - jacobian matrix of constraints
c *** nstate - status parameter
c *** nprob - problem number
С
      implicit real*8(a-h,o-z)
      real *8 \times (n), g(m), gj(m, n)
      goto (200,100), nprob
C
c *** test2
С
100
      do l i=1,m
      do 1 j=1, n
      gj(i,j)=0.0
1
      continue
      g(1) = 0.5*(x(6)+x(7))+0.1*x(5)+0.01*x(8)
            -0.001*(x(6)**2+x(7)**2)-0.0002*x(5)**2
            -0.1*x(2)-0.3*x(3)-0.2*x(4)
      gj(1,2) = -0.1
       gj(1,3) = -0.3
       gj(1,4) = -0.2
       g_3(1,5)=0.1-0.0004*x(5)
       gj(1,6)=0.5-0.002*x(6)
      g_{5}(1,7)=0.5-0.002*x(7)
       gj(1,8)=0.01
C
       d=x(5)+x(6)+x(7)
       c = \exp(-0.01*d - 0.001*x(8) + 0.002*x(3) + 0.001*x(4))
       g(2) = x(2) + 20 * c
       gj(2,2)=1.0
       gj(2,3)=0.04*c
       q_1(2,4) = 0.02*c
       qj(2,5) = -0.2*c
       gj(2,6) = gj(2,5)
       gj(2,7)=gj(2,6)
       gj(2,8) = -0.02*c
```

```
C
      c=exp(-0.02*d-0.002*x(8)+0.001*x(2)+0.001*x(4))
      g(3)=x(3)+20*c
      gj(3,2)=0.02*c
      gj(3,3)=1.0
      gj(3,4)=gj(3,2)
      gj(3,5)=-0.4*c
      gj(3,6)=gj(3,5)
      gj(3,7)=gj(3,6)
      gj(3,8) \approx -0.04*c
C
      c = exp(-0.02*d - 0.005*x(8) + 0.001*x(2) + 0.002*x(3))
      g(4) = x(4) + 40*c
      gj(4,2)=0.04*c
      gj(4,3)=0.08*c
      gj(4,4)=1.0
      gj(4,5) = -0.8*c
      gj(4,6)=gj(4,5)
      gj(4,7)=gj(4,6)
      gj(4,8) = -0.2*c
C
      g(5) = x(1) * x(10) - x(6) * x(9)
      gj(5,1)=x(10)
      gj(5,6) = -x(9)
      gj(5,9)=-x(6)
      gj(5,10)=x(1)
200
      return
      end
9
      subroutine object( mode,n,x,f,g,nstate,nprob)
C
C
     calculation of objective functions
C
  *** mode
С
              - if mode=-1 termination
              - number of nonlinear variables
C
      n
              - values of nonlinear variables
C
  *** f
              - objective function
  *** g
С
              - gradient vector
  *** nstate - status parameter
c *** nprob - problem number
C
      implicit real*8 (a-h,o-z)
      dimension x(n), q(n)
      character*1 1
      character*8 objnam, rhs, bds
      common/help/nwcore, rho, rhs, bds, 1(80), nrun
      common/rfp/nc,objnam(100),gam(100),
                  rfp(100),obj(100),dif(100)
      common/utopia/objmin(100),objmax(100)
      common z(100000)
C
C ***
      Insert here the criteria functions in FORTRAN-statements.
С
      goto (1,2),nprob
```

```
С
С
      This is the testproblem testl with quadratic criteria
C ***
      functions and linear constraints.
С
1
      obj(1)=((x(1)-3)**2+(x(2)-2)**2+(x(6)-6)**2+(x(7)-4)**2)
      obj(2)=(0.5*(x(3)-4)**2+(x(8)-6)**2+(x(9)-11)**2)
     obj(3)=((x(4)-1)**2+(x(5)-8)**2+(x(11)-4)**2
              +(x(12)-1)**2+(x(10)-8)**2)
      goto 3
С
c *** This is the testproblem test2 with nonlinear criteria
c *** functions and nonlinear constraints
C
2
      obj(1)=1000.0-x(5)-x(8)-x(13)-x(15)
      obj(2)=1000.0-x(1)
      obj(3)=(1.0+0.01*x(14))*x(5)+x(8)+x(13)+1.5*x(15)+500.0
      obj(4)=2*x(5)+x(6)+1.5*x(7)+400.0
      obj(5)=0.01*x(1)*x(10)+500.0
C
3
      if (nstate .eq. 2 ) return
      if (nrun .ne. 1 ) goto 20
С
      quadratic scalarizing function is used for the calculation
С
С
      of the decision support matrix.
C
      f = 0.0
      do 10 k=1,nc
          c=rfp(k)
          if(dabs(c).lt.l.) c=1.
          c=gam(k)*obj(k)/c
          f=c*c+f
10
      continue
      return
C
С
      The automatic scaled achievement variables are calculated.
C
20
      if (nstate.ne.1) goto 60
      do 30 i=1,nc
          if (rfp(i) .le. objmin(i)) goto 40
          dif(i)=.5*objmin(i)
30
      continue
      goto 60
40
      continue
      do 50 i=1,nc
          dif(i)=.5*rfp(i)
50
      continue
С
      The achievement scalarizing function has to be inserted
C
60
      s=.0
      do 70 i=1,nc
          w=((dif(i)-obj(i))/(dif(i)-rfp(i)))*qam(i)
          s=s+w**rho
70
      continue
      s=s/nc
      goto (80,90), nprob
```

```
c
c *** test1
c
c
c *** The logarithmic scalarizing function is used
c
80  f=(dlog(s))/rho
    return
c
c *** test2
c
90  f=s**(1/rho)
    return
    end
```

APPENDIX 2.2: CONST_TC.F, OBJECT_TC.F OBJECTIVE FUNCTIONS GRADIENTS PROGRAMMED

```
subroutine constr( mode m,n,njac,x,g,gj,nstate,nprob )
С
c *** mode
             - if mode=-1 termination
 *** m
С
             - number of nonlinear constraints
 *** n
             - number of nonlinear variables nl
С
 *** njac
             - m*n
 *** X
             - values of nonlinear variables
 *** g
С
             - constraints
c *** gj
             - jacobian matrix of constraints
c *** nstate - status parameter
c *** nprob - problem number
      implicit real*8(a-h,o-z)
      real*8 x(n),g(m),gj(m,n),v(10)
      equivalence (v(1), q4), (v(2), q5), (v(3), q6), (v(4), q7),
                   (v(5),q8),(v(6),q9),(v(7),q10),(v(8),q13),
                   (v(9),c2),(v(10),c3)
C
c *** test2
С
      call valist(10, x, v)
      do l i=1, m
      do 1 j=1, n
      gj(i,j)=0.0
1
      continue
```

```
C
  *** gwtabl
С
       g(1) = 0.5*(q9+q10)+0.1*q8+0.01*q13
             -0.001*(q9**2+q10**2)-0.0002*q8**2
             -0.1*q5-0.3*q6-0.2*q7
       gj(1,2) = -0.1
       gj(1,3) = -0.3
       gj(1,4) = -0.2
       gj(1,5)=0.1-0.0004*q8
       gj(1,6)=0.5-0.002*q9
       gj(1,7)=0.5-0.002*q10
       gj(1,8)=0.01
С
С
  *** bafill
       d=q8+q9+q10
       c = exp(-0.01*d-0.001*q13+0.002*q6+0.001*q7)
       g(2) = q5 + 20 * c
       gj(2,2)=1.0
       gj(2,3)=0.04*c
       gj(2,4)=0.02*c
       gj(2,5) = -0.2*c
       gj(2,6)=gj(2,5)
       gj(2,7)=gj(2,6)
       gj(2.8) = -0.02*c
C
C
  *** bafil2
С
       c=exp(-0.02*d-0.002*q13+0.001*q5+0.001*q7)
       g(3) = q6 + 20 * c
       gj(3,2)=0.02*c
       gj(3,3)=1.0
       gj(3,4)=gj(3,2)
       gj(3,5) = -0.4*c
       gj(3,6)=gj(3,5)
       gj(3,7)=gj(3,6)
      gj(3.8) = -0.04*c
С
c *** bafil3
      c=exp(-0.02*d-0.005*q13+0.001*q5+0.002*q6)
      g(4) = q7 + 40 * c
      gj(4,2) = 0.04*c
      9j(4,3)=0.08*c
      gj(4,4)=1.0
      gj(4,5) = -0.8*c
      gj(4,6)=gj(4,5)
      gj(4,7)=gj(4,6)
      gj(4.8) = -0.2*c
С
c *** qualil
C
      g(5) = 94 \times 3 - 99 \times 2
      gj(5,1)=c3
      gj(5,6) = -c2
      gj(5,9) = -q9
      gj(5,10)=g4
200
      return
      end
```

```
subroutine object(mode, n, x, f, g, nstate, nprob)
C
  *** calculation of objective functions
С
C
  *** mode
              - if mode=-1 termination
С
              - number of nonlinear variables
С
              - values of nonlinear variables
С
      X
 *** f
              - objective function
С
C *** q
              - gradient vector
 *** nstate - status parameter
 *** nprob - problem number
С
      implicit real*8 (a-h,o-z)
      dimension x(n), g(n), v(15)
      character*1 1
      character*8 objnam, rhs, bds
      common/help/nwcore, rho, rhs, bds, 1(80), nrun
      common/rfp/nc, objnam(100), gam(100),
                  rfp(100),obj(100),dif(100)
      common/utopia/objmin(100), objmax(100)
      common z (100<u>000)</u>
      equivalence
                   |(v(1),q4),(v(2),q5),(v(3),q6),(v(4),q7),
                   (v(5),q8),(v(6),q9),(v(7),q10),(v(8),q13),
                   (v(9),c2),(v(10),c3),(v(11),q3),(v(12),q2),
                    (v(13),q11),(v(14),c1),(v(15),q12)
  *** Insert here the criteria functions in FORTRAN-statements.
С
С
С
C
  *** This is the testproblem test2 with nonlinear criteria
  *** functions and nonlinear constraints
C
C
      call valist(n,x,v)
C
      obj(1) = 1000.0 - q8 - q11 - q12 - q13
      obj(2) = 1000.0 - q4
       obj(3)=(1.0+0.01*c1)*q8+q11+1.5*q12+q13+500.0
       obj(4) = 2*q8+q9+1.5*q10+400.0
       obj(5) = 0.01*44*c3+500.0
C
       if (nstate .eq. 2 ) return
       do l i=1,n
            q(i) = 0.
1
       continue
       if (nrun .ne. 1 ) goto 20
       do 2 i=1,nc
            if(gam(i).gt.0.0001) k=i
2
       continue
C
  *** quadratic scalarizing function is used for the calculation
  *** of the decision support matrix.
C
С
       c=rfp(k)
       if(dabs(c).lt.l.) c=1.
       f=obj(k)/c
```

```
С
c *** computation of gradients
С
      d=2.*f/c
      call objgra(n,k,d,x,g)
C
      f=f*f
      return
С
C ***
      The automatic scaled achievement variables are calculated.
С
20-
      if (nstate.ne.1) goto 60
      do 30 i=1,nc
          if (rfp(i) .le. objmin(i)) goto 40
          dif(i)=.5*objmin(i)
30
      continue
      goto 60
40
      continue
      do 50 i=1,nc
           dif(i)=.5*rfp(i)
50
      continue
C
c *** The achievement scalarizing function has to be inserted
С
60
      s=.0
      do 70 i=1,nc
           d=gam(i)/(dif(i)-rfp(i))
           w=(dif(i)-obj(i))*d
           s=s+w**rho
           d=-rho*w**(rho-1)*d
  *** computation of gradients
С
С
           call objgra(n,i,d,x,g)
C
70
      continue
       s=s/nc
       f=s**(1/rho)
      d=s**(1/rho-1)/rho/nc
       do 80 i=1,n
            g(i)=g(i)*d
80
       continue
       return
       end
C
  *****
С
C
       subroutine valist(n,x,v)
С
  *** association of actual variables
С
C
       real*8 x(n), v(n)
       do l i=1,n
            v(i)=x(i)
1
       continue
       return
       end
```

```
subroutine objgra(n,k,d,x,g)
C
      calculation of objective gradients
C
C
              - number of nonlinear variables
С
С
              - index of actual objective
C
              - factor
C
              - values of nonlinear variables
      x
C
              - gradient vector
С
      implicit real*8 (a-h,o-z)
      dimension g(n), x(n), v(15)
      equivalence (v(1), q4), (v(2), q5), (v(3), q6), (v(4), q7),
                    (v(5),q8),(v(6),q9),(v(7),q10),(v(8),q13),
                    (v(9),c2),(v(10),c3),(v(11),q3),(v(12),q2),
                    (v(13), q11), (v(14), c1), (v(15), q12)
C
      call valist(n,x,v)
C
      programing of gradients in the following form:
С
С
      g(i)=g(i)+(partial object. funct. over partial <math>v(i))*d
C
      goto (1,2,3,4,5),k
С
  *** objl
С
C
1
            g(5) = g(5) - 1.*d
            g(8) = g(8) - 1.*d
            g(13)=g(13)-1.*d
            g(lo)=g(lo)-1.*o
       goto 6
C
      obj2
С
С
2
            g(1) = g(1) - 1.*d
       goto 6
С
C
  *** obj3
С
3
            g(5)=g(5)+(1.0+0.01*c1)*d
            g(8) = g(8) + 1.*d
            g(13)=g(13)+1.*d
            g(14) = g(14) + 0.01 * q8 * d
            g(15)=g(15)+1.5*d
       goto 6
C
      obj4
C
С
4
            g(5) = g(5) + 2.*d
            g(6) = g(6) + 1.*d
            g(7) = g(7) + 1.5*d
      goto 6
C
C
      obj5
С
5
            g(1)=g(1)+0.01*c3*d
            g(10)=g(10)+0.01*q4*d
6
      return
      end
```

```
APPENDIX 3:
                INPUT AND OUTPUT FOR TEXT EXAMPLES
         3.1:
                TEST1 (Section 4.1)
         3.2:
               TEST2 (Section 4.2)
APPENDIX 3.1:
               TEST1
% more specs.tl
begin
          testl
   minimize
   nonlinear constraints
                              0
                             12
   nonlinear jacobian vars
   nonlinear objectiv vars
   bou
                      bnd
   rhs
                      rhs
                            20
   rows
                            20
   columns
                           100
   elements
   objective = object
                             1
   problem no.
   mps file
                              9
   solution
                           yes
                      0.000001
   aijtol
                           1.0e-06
   difference intervall
   dj tolerance
                       1.0e-6
                       1.0e-5
   feasibility tol
   linesearch toler
                          0.1
   lower bound
                           0.
                         1000
   iterations
   major iterations
                           10
   minor iterations
                           20
   penalty parameter
                          0.1
   radius of conver
                         0.01
   row tolerance
                       1.0e-6
   superbasics
                           12
   hessian dimension
                           12
   jacobian
                        dense
   print level (jflxi)
                            1
   derivative level
                             2
   call function routines when optimal
end
% more rfp.tl
  objl
                 25.0
                             1.000
                                          24.0
  obj2
                 50.0
                             1.000
```

obj3

• • • •

45.0

1.000

% more mode					
name	testl				
rows					
e gll					
e gl2					
e gl3					
e g14			rhs		
e g15			rhsl	gll	5.0
e g16			rhsl	_	8.0
e gl7			rhsl	ugll ugl2	12.0
l ugll			rhsl	ug12 ug13	15.0
l ugl2			rhsl	ugl4	12.0
l ugl3			rhsl	ug15	13.0
l ugl4			rhs	gll	6.0
l ug15			rhs	ugll	9.0
columns			rhs	ugl2	13.0
xl 1	gll	2.0	rhs	ug13	16.0
xl 	g12	1.0	rhs	ugl4	13.0
xl	ugll	2.0	rhs	ug15	14.0
x1 x2	ugl5	3.0	bounds	,	-
x 2 x 2	g11	0.5	up bndx	хl	2.0
x 2	g12	2.0 1.0	up bndx	x 2	6.0
x 2	ugll ugl5		up bndx	x3	3.0
x3	g13	2.0 1.0	up bndx	x4	2.0
x3	g14	0.5	up bndx	x 5	4.0
x4	g15	1.0	up bndx	x6	4.0
x4	g16	2.0	up bndx	x8	3.0
x4	g17	3.0	up bndx	x 11	3.0
x4	ugl3	5.0	up bndx	x12	2.0
x4	ugl4	3.0	up bnd	хl	3.0
x 5	gĺ5	0.5	up bnd	x 2	7.0
x 5	ģ16	1.0	up bnd	x 3	4.0
x 5	gl7	-1.0	up bnd	x4	3.0
x 5	ug13	3.0	up bnd	x 5	5.0
x 5	ugl4	2.0	up bnd	x 6	5.0
x 6	gll	-1.0	up bnd	x8	4.0
x6	g13	0.5	up bnd	x11	4.0
x6	g14	1.0	up bnd	x12	3.0
x6	ug12	2.0	fx initial fx initial	xl x2	1.9
x7	gl2	-1.0	fx initial	x2 x3	1.6 1.7
x8	g13	-1.0	fx initial	x4	0.4
x8	g15	0.5	fx initial	x5	1.2
x8	g16	-1.0	fx initial	x6	0.6
x8	g17	1.0	fx initial	x7	6.1
x8	ugl4	3.0	fx initial	x8	1.0
x9	g14	-1.0	fx initial	x 9	2.45
x10 x11	g15	-1.0	fx initial	x10	1.5
x11 x11	g11	1.0	fx initial	x11	1.0
x11	g12 g16	1.0 -1.0	fx initial	x12	1.0
x11	ugll	2.0	endata	_	
x12	gl3	-1.0			
x12	g14	1.0			
x12	g17	-1.0			
x12	ugl2	3.0			
_	J - 	-			

% more sol.tl
testl, linear constrained quadratic programming problem Fri Jan 6 10:25:23 1984

calculation of efficient points						
objective names	scale	reference point	efficient point	utopia point	nadir point	
obj1 obj2 obj3	1.0 1.0 1.0	25.000 50.000 45.000	31.642 63.693 59.463	24.019 38.312 48.863	42.500 128.00 108.99	
name end constra	value ints	1	ower limit	upper limit		
name x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 rhs end variabl	value 2.3117 0. 3.2332 0.78898 2.4928 0.81169 4.5000 1.8825 4.1849 2.9766 2.1883 1.7566 -1.00000		Ower limit O. O. O. O. O. O. O. O. O. O	upper limit 3.00000 7.00000 4.00000 3.00000 5.00000 none 4.00000 none 4.00000 3.00000 -1.00000		
<pre>% % % more range.tl objl 24.019</pre>						
testl, linear constrained quadratic programming problem calculation of extreme points ? enter (yes or no)!						

```
selfish-optimization for all objectives
        * decision support matrix *
-the diagonal represents the utopia point-
   i objnam(i) obj(1)
   1 obj1 | 24.019 | 89.699 | 92.138
2 obj2 | 38.563 | 38.312 | 108.99
3 obj3 | 42.500 | 128.00 | 48.863
   generation of efficient points
You can now:
   list the reference point file, enter ( list )
   exit from editing status, enter (exit)
   change the reference point, enter ( rfp )
   copy last efficient points, enter (copy)
   change the scale coefficients, enter ( scal )
   change the arbitrary coeff., enter ( arbi )
objective reference scale rho
  names points
 objl 25.000 1.0 24.0 obj2 50.000 1.0 obj3 45.000 1.0
   enter ( list | copy | scal | arbi | rfp | exit ) !
   change the rhs and/or bounds set?
   enter ( yes or no ) !
n
   calculation of efficient points
   ______
objective scale reference efficient utopia nadir names point point point point
        1.025.00031.64224.01942.5001.050.00063.69338.312128.001.045.00059.46348.863108.99
  objl
  obj2
  obj3
   output of variables and constraints?
   enter ( yes or no ) !
 output of all constraints?
   enter ( yes or no ) !
```

n

```
name
           value
                           lower limit upper limit
enter name of constraint or ( * ), if exit
output of all variables?
  enter ( yes or no ) !
У
                           lower limit upper limit
  name
            value
           2.3117
                                            3.00000
 xl
                             0.
                                            7.00000
x2
              0.
                             0.
           3.2332
х3
                             0.
                                            4.00000
x4
          0.78898
                                            3.00000
                            0.
x5
           2.4928
                            Ο.
                                            5.00000
                                            5.00000
х6
          0.81169
                            0.
                             0.
x 7
           4.5000
           1.8825
                                           4.00000
x8
x 9
           4.1849
                             0.
                                              none
           2.9766
x10
                             0.
                                              none
xll
           2.1883
                             0.
                                           4.00000
                             Ο.
x12
           1.7566
                                            3.00000
                                           -1.00000
          -1.00000
                             -1.00000
rhs
output of variables/constraints finished?
  enter ( yes or no ) !
У
   calculation of efficient points with edited data?
   enter ( yes or no ) !
21.4u 11.8s 19:45 2% 102+52k 247+217io 239pf+0w
```

APPENDIX 3.2: TEST2

% more specs.tc2 begin test2

minimize nonlinear constraints nonlinear jacobian vars 10 nonlinear objectiv vars 15 bnd bounds rhs rhs rows 20 20 columns 100 elements objective = object 2 problem no. 9 mps file solution yes verify yes aijtol 0.000001 difference intervall 1.0e-06 dj tolerance 1.0e-6 feasibility tol 1.0e-6 linesearch toler 0.1 lower bound 0. iterations 1000 19 major iterations 29 minor iterations penalty parameter 0.1 0.01 radius of conver 1.0e-6 row tolerance superbasics 12 hessian dimension 12 dense jacobian print level (jflxi) derivative level 3

call function routines when optimal

end

% more rfp.	t2		
objl	900.	1.000	2.0
obj2	900.	1.000	2 - 0
obj3	600.	1.000	
obj4	6 00.	1.000	
obj5	600.	1.000	

% more mode name rows g gwtabl e bafill e bafil2 e bafil3 g qualil l flubal g fluba2 g fluba3 l gwtab2 g quali2 g quali3 columns q4	1.t2 test2 qualil		q13 q13 q13 q13 q13 c2 c2 c3 q3 q3 q2 q11 c1 q12	gwtabl bafill bafil2 bafil3 gwtab2 qualil quali3 qualil fluba3 fluba2 flubal fluba2 fluba2 quali2	0.2 1.0 1.0 -1.0 1.0 -1.0
94 94	qualii fluba3	-1.0	rhs	gwtabl	20.0
q5 q5 q5 q5	gwtabl bafill bafil2 bafil3	-1.0	rhs rhs rhs rhs	bafill bafil2 bafil3 qualil	27.0 22.2 44.05 0.0
q5	flubal	1.0	rhs	flubal	150.0
q5 q6 q6	gwtab2 gwtabl bafill	-0.01	rhs rhs rhs	fluba2 fluba3 gwtab2	0.0 0.0 20.0
q6	bafil2		rhs	quali2	100.0
q6	bafil3		rhs	quali3	200.0
q6	fluba2	-1.0	bounds		
q6 -7	gwtab2	-0.02	up bnd up bnd	q 4	200.0 200.0
q7 q7	gwtabl bafill		up bnd	q5 q6	200.0
q7	bafil1		up bnd	q7	200.0
q7	bafil3		up bnd	q 8	200.0
$ {q7}$	fluba3	-1.0	up bnd	$\bar{\mathbf{q}}$ 9	200.0
q7	gwtab2	-0.03	up bnd	q10	200.0
q8	gwtabl		up bnd	q13	200.0
q8	bafill		up bnd up bnd	c2 c3	1000.0 200.0
q8 q8	bafil2 bafil3		up bnd	q3	200.0
q8	gwtab2	0.1	up bnd	q^{2}	200.0
q8	quali2	-0.1	up bnd	qll	200.0
q9	gwtabl		up bnd	cl	500.0
q 9	bafill		up bnd	q12	200.0
q9 ~0	bafil2		lo bnd lo bnd	q 4 q5	0.0 0.0
q9 q9	bafil3 qualil		lo bnd	q5 q6	0.0
q9 q9	fluba3	1.0	lo bnd	q7	0.0
q 9	gwtab2	0.1	lo bnd	q . 8	0.0
q9	quali3	-0.2	lo bnd	q9	0.0
q10	gwtabl		lo bnd	q10	0.0
q10	bafill		lo bnd	q13	0.0
q10	bafil2		lo bnd lo bnd	c2 c3	0.0
q10 g10	bafil3 gwtab2	0.1	lo bnd	q3	0.0 0.0
q10 q10	quali3	-0.2	lo bnd	q2	0.0

```
lo bnd
             qll
                          0.0
 lo bnd
             cl
                          0.0
 lo bnd
             q12
                          0.0
 fx initial
             q4
                        100.0
 fx initial
             q5
                        20.0
 fx initial
             q6
                         20.0
 fx initial
             q7
                         40.0
 fx initial
             g8
                         30.0
fx initial
             q9
                         60.0
 fx initial
             q10
                         20.0
 fx initial
             q13
                         30.0
 fx initial
             c2
                        216.0
 fx initial
             c3
                        130.0
 fx initial
            q3
                        80.0
 fx initial
             q2
                        130.0
 fx initial
                        30.0
             qll
 fx initial
                        103.0
             cl
 fx initial
             q12
                         0.0
endata
% dida tc2.run
             didass
       a dynamic and interactive
  decision analysis and support system
      nonlinear version jan. 1984
  *********
   enter the problem name ( < 1 line, 80 char.)
test2, nonlinear constraints and nonlinear objective functions
   calculation of extreme points ?
   enter ( yes or no ) !
У
  selfish-optimization for all objectives
        * decision support matrix *
 -the diagonal represents the utopia point-
                  obj(1)
   i objnam(i)
                                                              548.43
                 578.31
                             975.78
                                          1211.3
                                                   799.91
      objl
   1
                920.14
                                                              900.00
                             800.00
                                          631.35
                                                   668.98
   2
      obj2
                                                           Ì
                                                              647.38
                             879.63
                                       1
                                         500.00
                                                   699.65
   3
      obj3
               1000.00
                                         568.30
                                                              804.24
                 931.70
                             847.88
                                                    482.15
      obj4
                                                   712.69
                                      810.35
                                                              500.00
                 807.68
                           1000.00
      ob j5
   generation of efficient points
   ______
 You can now:
   list the reference point file, enter ( list )
                                 enter ( exit )
   exit from editing status,
   change the reference point,
                                 enter (rfp )
   copy last efficient points,
                                 enter (copy)
   change the scale coefficients, enter ( scal )
   change the arbitrary coeff.,
                                 enter ( arbi )
```

```
objective reference scale rho
    names points

      objl
      900.00
      1.0
      2.0

      obj2
      900.00
      1.0

      obj3
      600.00
      1.0

      obj4
      600.00
      1.0

      obj5
      600.00
      1.0

    enter ( list | copy | scal | arbi | rfp | exit ) !
                   * * * * * *
    enter new value for rho
24
 old val. 2.0000 new val. 24.000
     enter ( list | copy | scal | arbi | rfp | exit ) !
    enter obj.name or ( * ), if exit
objl
    enter new rfp. value
 old val. 900.00 new val. 850.00 enter obj.name or ( * ), if exit
     enter ( list | copy | scal | arbi | rfp | exit ) !
 objective reference scale rho
   names points

      objl
      850.00
      1.0
      24.0

      obj2
      900.00
      1.0

      obj3
      600.00
      1.0

      obj4
      600.00
      1.0

      obj5
      600.00
      1.0

     enter ( list | copy | scal | arbi | rfp | exit ) !
e
     change the rhs and/or bounds set?
     enter ( yes or no ) !
n
     calculation of efficient points
     ______
 objective scale reference efficient utopia nadir names point point point point

      obj1
      1.0
      850.00
      891.85
      578.31
      1000.00

      obj2
      1.0
      900.00
      909.70
      800.00
      1000.00

      obj3
      1.0
      600.00
      612.04
      500.00
      1211.3

      obj4
      1.0
      600.00
      488.96
      482.15
      799.91

      obj5
      1.0
      600.00
      589.19
      500.00
      900.00
```

```
output of variables and constraints?
   enter ( yes or no ) !
 output of all constraints?
   enter ( yes or no ) !
У
                                                  upper limit
                                lower limit
   name
               value
              20.000
                                 20.00000
 gwtabl
                                                      none
 bafill
              27.000
                                 27.00000
                                                   27.00000
 bafil2
              22.200
                                 22.20000
                                                   22.20000
              44.050
                                 44.05000
                                                  44.05000
 bafil3
 qualil
                  0.
                                                      none
 flubal
              150.00
                                                  150.00000
                                     none
 fluba2
                  0.
                                  0.
                                                      none
 fluba3
                  0.
                                  0.
                                                      none
              20.000
                                                   20.00000
 gwtab2
                                     none
 quali2
             100.000
                                100.00000
                                                      none
 quali3
              200.00
                                200.00000
                                                      none
 output of all variables?
   enter ( yes or no ) !
У
                                lower limit
                                                  upper limit
               value
   name
 q4
              90.305
                                  0.
                                                  200.00000
 q5
              17.363
                                  0.
                                                  200.00000
 q6
              17.963
                                   0.
                                                  200.00000
 q7
              37.225
                                                  200.00000
                                   0.
 q8
                                  0.
                                                  200.00000
                  0.
 q9
              41.554
                                  0.
                                                  200.00000
 g10
              31.604
                                   0.
                                                  200.00000
 q13
              71.669
                                   0.
                                                  200.00000
 c2
              214.63
                                   0.
                                                 1000.00000
 с3
              98.764
                                   0.
                                                  200.00000
 q_3
              85.975
                                   0.
                                                  200.00000
              132.64
 q2
                                   0.
                                                  200,00000
              28.699
                                   0.
                                                  200.00000
 qll
             100.000
                                   0.
                                                  500.00000
 cl
              7.7843
                                   0.
                                                  200.00000
 q12
            -1.00000
                                 -1.00000
                                                   -1.00000
 rhs
 output of variables/constraints finished?
   enter ( yes or no ) !
У
   calculation of efficient points with edited data?
   enter ( yes or no ) !
У
```

```
generation of efficient points
 You can now:
   list the reference point file, enter ( list )
   exit from editing status, enter ( exit )
   change the reference point,
                                enter ( rfp )
   copy last efficient points,
                                enter (copy)
   change the scale coefficients, enter ( scal )
   change the arbitrary coeff., enter ( arbi )
 previous solution copied as rfp
 objective reference scale rho
  names points
-----
        891.85 1.0 24.0
909.70 1.0
612.04 1.0
 objl
 obj2
 obj3
 obj4
           488.96
                        1.0
 obj5 589.19
                        1.0
   enter ( list | copy | scal | arbi | rfp | exit ) !
е
   change the rhs and/or bounds set?
   enter ( yes or no ) !
n
   calculation of efficient points
objective scale reference efficient utopia
                                                         nadir
                   point point point point
  names
          1.0891.85903.94578.311000.001.0909.70892.08800.001000.001.0612.04604.90500.001211.31.0488.96491.00482.15799.91
 objl
 obj2
 obj3
 obj4
 obj5
            1.0
                     589.19
                                 579.55
                                            500.00
                                                        900.00
   output of variables and constraints?
  enter ( yes or no ) !
```

n 82.9u 14.0s 8:47 18% 142+116k 215+535io 194pf+0w