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In this paper, Matthijs Kok. a participant in the 1983 Young Scien- 
tists' Summer Program, looks a t  the information given to the decision 
maker by various interactive methods for multiobjective decision mak- 
ing. He considers a number of common approaches to linear multiobjec- 
tivc decision problems. and shows that in these methods the decision 
maker usually sees only a part of the available tradeoff information. He 
then goes on to extend two of these approaches (the reference-point 
method and the interactive multiple-goal programming method) using 
duality theory, demonstrating that this yields additional tradeoff infor- 
mation that could be of interest to the decision maker. 

This research was carried out as part of the  Interactive Decision 
Analysis Project. 

ANDRZEJ WIERZBICKl 
Q r m m  
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All of the various methods developed to handle models with multiple 
objectives require preference information from a decision maker in 
order to obtain a satisfactory solution. The ability of most decision mak- 
ers to give a @ri information about their preference structure is gen- 
erally weak, but it  is assumed that inspection of trial solutions generated 
during a computer session will help them to formulate their preferences. 

In this paper we consider the information that  interactive methods 
can supply to a decision maker. For example, they could provide tradeoff 
values that  could be useful in assessing the interdependence of the 
objective functions once a trial solution has been obtained. Because 
there is no unique approach to the multiobjective linear programming 
(MOLP) problem, several approaches (and scalarization methods) are 
considered. The relations between the tradeoffs and the dual variables in 
each of these formulations of the MOLP problem are discussed. These 
theoretical notions are illustrated by examining the information that is 
given to a decision maker by some commonly used interactive methods. 
W e  show that  these methods supply only a part of the available (tradeoff) 
information. Two existing interactive methods are then extended using 
the dual variables and duality properties of the problem. 

In the next few years we plan to carry out some experiments with 
decision makers (opinion leaders) in public energy planning to see 
whether the ideas developed here are actually useful in practice. 



TRADEOFF INFORMATION TN ~C~ 
M U L T I O B J E ~  LINEAR PROGRAMMING METHODS 

Mat thijs KO k 

Delft University of Technology, Delft. The Netherlands 

Interactive approaches are now used quite widely in multiobjective deci- 

sion making. The crucial assumption in this type of approach is that a decision 

maker exists and can provide information on his preferences which makes it 

possible to obtain a satisfactory compromise solution. (Naturally, this solution 

depends strongly on the preference structure of the decision maker.) 

Many interactive methods have been proposed in the last decade (for 

reviews see: Cohon, 1978; Hwang and Masud, 1979; Zeleny, 1982; White, 1983b; 

Chankong and Haimes, 1983. The book by Chankong and Haimes in particular 

gives an excellent review of concepts and methods in multiobjective program- 

ming). In this paper we will investigate the organization of interaction, and 

particularly the question of what type of information a model should supply to a 

decision maker to give him/her more insight into the decision problem. The 

various existing interactive methods diaer widely in this regard, each method 

making different assumptions about the decision maker's behavior. Of course, 

the question of what information should be given to a decision maker is not 

easy to answer: the apparent lack of interest in this issue probably has less to 

do with unawareness of the problem than wi th  the complications involved in 

addressing it. We believe, however, that investigating the question of what 

information is available would help us to clarify this issue. Once we know what 

information is available we can decide which parts of it should be supplied to 

the decision maker. and on what basis. 

There are two main reasons why the information available in multiobjec- 

tive programming problems is not unique: first, there are different approaches 

to the problem and, second, different assumptions can be made regarding the 

decision maker's behavior (these two reasons are not of course independent). 

Several formulations of the standard multiobjective linear programming 



(MOLP) problem are discussed in Section 2, making a distinction between the 

optimizing approach and the satisficing approach. In Section 3 we discuss 

tradeoffs between objective functions. In our opinion, these tradeoffs are very 

important in assessing possible acceptable solutions of the model. We consider 

the various types of tradeoffs which have been introduced in the literature. 

A s  with ordinary single-objective linear programming models, every M O W  

model has a dual formulation. This will be the main topic of Section 4: the rela- 

tion between the dual formulation and the tradeoffs described in Section 3 will 

also be discussed Section 5 looks a t  the  information offered to the decision 

maker in some commonly used interactive methods. and shows that only a part 

of the available information is usually given to the decision maker. This is 

illustrated in Section 6 by extending two existing interactive methods. Finally, 

we draw some conclusions from our study in Section 7. 

In this paper we consider only linear programming problems with multiple 

objectives. It is. in general. assumed that  solutions are non-degenerate and 

finite. Further, we consider only the values of objective functions, and not the 

values of decision variables. This does not mean that the latter are not 

interesting, but. especially in large problems, the question of which decision 

variables should be shown to the decision maker is problem-dependent. Also, 

although computer graphics can be very useful in illustrating the values of and 

changes in the objective functions (see, e-g., Johnson and Louchs. 1980) this 

will not be discussed here. Enally, we should stress that  by "decision maker" 

we mean any person who is confronted with a decision problem involving multi- 

ple objectives (e-g.. a manager of an industrial A r m ,  a public policy spokesman, 

or  customers in a shop). 

Multiobjective linear programming problems can be formulated in a 

number of ways. The differences arise both from assumptions made about the 

behavior of the decision maker and from the mathematical techniques used to 

calculate (nondominated) solutions. 

We may divide MOLP models into two,categories: o p t i m i z k g  rnodek and 

sd ispc ing  models, although this distinction is not as clear as sometimes sug- 

gested in the literature. In satisficing models the decision maker bas to specify 

target (or aspiration) levels that  he/she wishes t o  attain, whereas in optimizing 

models no targets are  set. The rationale behind this distinction is behavioral: 



the two approaches make different assumptions about the way in which decision 

makers reach decisions. Historically speaking, the optimization approach was 

introduced first; the satisficing approach was not developed until the late 

fifties. These two approaches are now used widely in mathematical program- 

ming and, although the satisficing approach has been criticized on a number of 

grounds, both are generally accepted. We shall look at  these approaches in this 

section. 

As mentioned above, we will restrict ourselves to linear models. The prob- 

lem may be formulated as follows: 

max Q (1) 

subject to 

where C is a p x n matrix of objective coefRcients, A is an m x n matrix of 

constraint coefficients, b is an m vector of right-hand sides, and z is an n vec- 

tor of decision variables. 

Let C denote the i - th  row of matrix C, and S denote the feasible set: 

S = lz IAz = b ,  z r Oj .  Following Steuer and Choo (1983). Z EIRP is the set of 

all feasible objective vectors, Z = 1% 1 z = Cz, z E Sj (the objective space). and 

N E Z denotes the se t  of all nondominated objective vectors (a E E Z is a non- 

dominated objective vector if and only if there does not exist another z E Z 

such that Fi 1 zi for all i and zi > Zi for a t  least one i, i = 1,2, . . . ,p ) .  Now 5 is 

an emi9nt point if and only if 5 is feasible and Z is an inverse image of some 

i? E N. 

We are interested in nondominated (Pareto-optimal, emcient) solutions of 

(1). One way of approaching the problem is to use a multiobjective simplex 

method. which will give all nondominated basic solutions (see. e.g.. Zeleny, 

1974). However. this approach is not ideal in an interactive environment 

because the set of all nondominated basic solutions will in general be very 

large, and there are  other, more appropriate, methods for calculating nondom- 

inated solutions. We will consider two methods which can be used to transform 



problem (1) into a scalar optimization problem: the ujeighting me thod  and the 

constraint  method (other methods exist, but in our opinion these are less 

important). I t  is clear that scalarization is only carried out for technical rea- 

sons. However, as will be shown later in this paper, the technical formulation 

affects the information that  can be offered to the decision maker. 

2 . 1 . 1  m e  Weighting Method 

In this case the problem is formulated as Follows: 

rnax AT ~c 

subject to 

Here h is called the weighking uector .  Without loss OF generality we can assume 

thath ,%O, i = 1,2 ..... p, xf=l h, = 1. 

It i s  well-known (see, e.g.. Zeleny. 1974) that if h, > 0, i=1,2 ,.... p. the solu- 

tion of (2) is nondorninated. On the other hand, if we have an efficient solution 

5 then there will exist a (where & > 0, xf=l& = 1) such that  5 is a solution of 

(2). Furthermore, if & = 0 for some, but not all, i = 1.2 ,..., p, and 5 is the 

unique solution of (2) with this weighting vector, then 5 is an emcient solution. 

I t  is also well-known (see, e.g., Zeleny, 1974) that  the  weighting vector 

corresponding to a basic solution is not unique. 

Two possibilities can arise when solving (2) with a Axed weighting vector 

> 0: the solution 5 is unique and is called an e0cisn. t  bas ic  solution. or the 

number of solutions is infinite. In the latter case there is obviously no guide- 

line as  to which solution to choose. Perturbation techniques do not give satis- 

factory results in this situation because they would produce an efficient basic 

solution, excluding all emcient solutions which are not basic. Because there is 

no rationale for restricting the  se t  of emcient solutions to efacient basic solu- 

tions, problem Formulation (2) is unsatisfactory. However, as  we shall see in 

Section 5, this Formulation is used in existing interactive methods. 

Finally, note that Formulation (2) can be used to list all emcient basic solu- 

tions by applying parametric optimization methods (see, e-g., Guddat, 1979). 



2.1.2 me C o m t ~ a i n t  ~Uethod 

In this method the problem is formulated as follows: 

max ( c ) ~ z  

subject to  

1 ) are lower bounds to  Here the elements of the vector I = ( 1 1 ,  l 2  ,.., l i - l ,  l i + l ,  

the values of the objective functions. 

It can be shown (see, e.g., Chankong and Haimes, 1983) that if 5 is a solu- 

tion of problem (3) for some i and the solution is unique, then 5 is an efficient 

solution of problem (1). If this solution is not unique, then 5 may be dominated 

by another feasible solution, but one of the alternative solutions will be 

emcient. A sumcient condition for the  solution of (3) to  be efficient is that  the 

dual variables related to the  constraints on the objective functions must be 

positive. All efacient solutions of problem (1) can be obtained by a suitable 

choice of vector 1 ,  so that  no emcient solution is excluded. 

In satisficing decision analysis it is assumed that the decision maker can 

specily target levels for the various objective functions. It could be argued that  

these target levels cannot be set  by the decision maker without some 

knowledge of the possible solutions, and there is indeed some truth in this. 

However, we are considering here only interactiue decision making and in this 

case the above objection is not valid because the decision maker can change 

target levels during the interactive process, taking into account information 

about possible feasible solutions. 

The problem formulation is: 

min y 



subject to 

Here t is the p-vector representing the target (or aspiration) levels specified by 

the decision maker, and y is the under-achievement vector, y EIR*. Note that 

nondominated solutions of (4). if such exist, depend on these target levels, and 

thus can differ from the nondominated solutions of (1). Note also that in this 

formulation these levels are  attained from below. 

It is clear that (4) is a linear problem with multiple objectives, and, as 

stated before, all nondominated basic solutions can be obtained by the mul t iob  

jective simplex method. However, since the number of nondominated basic 

solutions is generally large, this approach is not very fruitful in interactive pro- 

gramming, so we will take another approach and scalarize problem (4). This 

can be done in several ways. In this section we shall discuss the two methods 

which, in our opinion, a re  the most relevant: the weighted distance rnearwe 

approach and the achievement function a ~ o a c h  

2.2.1 Ihe Weighted Distance M e m u ~ e  Approach 
- 

Given the target levels T = (Go&. .... t p )  for the objective functions, the 

weighted distance measure problem may be formulated as follows:* 

subject to 

'Note the essential difference from problem (4): here over-achievements are Bso con- 
sidered. 



Here q is an integer parameter, 1s q s m, and h is a weighting vector. The 

choice of q is not obvious, and only the values q = 1 (absolute value norm), 

q = 2 (Euclidean norm) and q = = (Tchebycheff norm) represent meaningful 

geometrical concepts of distance. The value q = 2 is often used in economic 

planning (see, e.g., Hughes-Hallet and Rees. 1983); the value q = 1 is also quite 

popular because then problem (5) remains linear (see, e.g., Hafkamp, 1983). A 

corresponding linear problem can also be constructed lor q = =. With q = 1, 

problem (5) can be written in linear forrn as: 

min 2 &(4+ + 4-1 
i =l 

subject to 

The target level t may be given by the  decision maker; it can also be set  equal 

to the  vector r with components: 

& = max (@)Tz 

subject to 

The vector r obtained by solving p ordinary LP problems is often called the u t o -  

pia (or ideal) point. 

In general, it is only possible t o  solve (5) when the values of q ,  t and A have 

been specifled. As we have already seen. the  value of q is often selected on 

purely technical grounds, even though i t  influences the solution of problem (5). 

The values of A (and often t) have t o  be assessed by the decision maker. 



Earlier comments concerning the weighting vector and the uniqueness of 

the solutions of problem (2) also hold for problem (6). One final remark should 

be made about problem (5): it turns out that the solution of this problem 

depends on the scale of measurement of the objective functions, and therefore 

a scaling vector should be introduced. (The weighting vector h can also be 

interpreted as a scaling vector.) 

2.2.2 The Achievement  A r n c t i o n  Approach 

This method, proposed by Wierzbicki (1979), concentrates on the construc- 

tion of modifled utility functions (achievement functions) which express the 

utility (or disutility) of reaching (or not reaching) given target levels. The 

function is only used to measure deviations from these levels. The main advan- 

tage of this method compared with the previous one is that the achievement 

function can be constructed in such a way that the solution corresponds to a 

nondominated solution of problem (1). (It can easily be seen that a solution of 

problems (4). (5) and (6) is not necessarily nondominated with respect to prob- 

lem (1). For example, if the target level in these problems-is feasible, this (not 

necessarily nondominated) target level will be the solution.) 

Choosing one particular scalarizing function, we have the following LP 

problem: 

min q (7) 

subject to 

Here 7 is a scaling (or weighting) vector (e.g.. yi = 1/ ti. i = 1. ...,p), E is a small 

positive constant and e is the p-dimensional unit vector. 

It  can easily be shown that the solution Z of (7) is efacient for every F. 
Suppose that  z" = CS minimizes (7) but 2 is not efficient. Then there exists a 

E E Z such that Z a Z and 2;- > Z, for a t  least one i, and e T ( t  - Z) < e T ( t  - 2")  . 
so that  z" cannot be an optimal solution of (7). 



Another Formulation of this problem is 

min q 

subject to 

A2 = b 

qe 1 @ + y T ( F -  a) 

2 1 0  

y r O  . 

Here D is a p x p  matrix with elements 4, = -E, i # j ,  and 4i = 1, i . j  = 1 ,..., p,. 

where 0 < E << 1 to ensure that the solutions are nondominated (see Section 4). 

In Section 5 we will consider how Formulations (1)-(?a) of MOLP problems 

are used in some existing interactive methods. 

3. TRADEOPFS 

Suppose that  we have two solutions Z and z" of any of the problems (1)-(7). 

If a decision maker is asked to assess his/her preferences regarding these two 

solutions (i.e., to decide whether he/she prefers 2 or E ,  is indifferent. or  cannot 

choose between them), he/she must first assess the tradsofls. According to 

Webster's New World Dictionary, a tradeoff is "an exchange, especially a giving 

up of beneflt, advantage, etc., in order to gain another regarded as more desir- 

able" (Chankong and Haimes, 1983). It is clear that tradeods are very impor- 

tant in  M O M  problems: any choice between two Feasible (nondominated) alter- 

natives, or between several target levels, will necessarily involve the assess- 

ment of tradeoffs. Obviously. the tradeoffs between a number OF Feasible solu- 

tions can be presented in diderent ways: all solutions z ~ . E ~ , . . . , E ~  can be given 

explicitly. or  we can take one solution 2,  1 < i 4 s, and give the tradeoffs 

fi = ~j - &, j = 1.2 ,..., s. j # i with respect to  this solution. The second of 

these methods is particularly appropriate if the  decision maker prefers to make 

pairwise comparisons. In this case we can of course also present all other solu- 

tions d, j = 1.2 ,..., s, j # i For comparison with solution zi.  
There are no technical reasons for presenting the information in one form 

rather than another. so the choice of an approach implies that assumptions are 

being made regarding the behavior of the decision maker. In the case of 



pairwise comparisons. decision makers seem to prefer to compare alternative 

solutions 2 and 21, j = 1, ..., s ,  j f i, ra ther  than to compare the tradeoffs T ~ .  

j = 1,2, ..., s ,  j # i ,  with respect to solution 2 (Zionts and Wallenius. 1983). 

Various types of tradeoffs have been introduced in the literature, some of 

which will be discussed in this section. The first distinction we want to draw is 

between indz f le~ence  tradeofls (or rubjective tradeofls) and solution space 

t ~ a d e o f l s  (or objective tradeofls). Indifference tradeoffs are assessed by a deci- 

sion maker without regard for feasibility: he/she has to determine what 

change in one objective function would compensate for a change in another 

objective function. These tradeofls can be used to assess the utility function of 

the decision maker. Solution space tradeoffs are produced by the  computer 

model from a se t  of restrictive model constraints. These tradeofls do not 

reflect preference inrormation, but can be used by the decision maker to gain 

insight into the decision problem. We shall now investigate these solution 

space tradeoffs in more detail. 

Solution space tradeofls are  of two types: partial hadeofls and total 

tmdeofls  (Haimes and Chankong, 1979; Chankong and Haimes. 1983). This dis- 

tinction is only useful when there are more than two objective functions. The 

formal deflnit.ions of partial and total tradeoffs are given below. 

Consider two feasible alternatives Z and 2, for which the  values of the 

objective functions are C5 = ((c')~s, ...,(cP) T5) and GE = ((c') Tz",...,(~p)T2"), 

respectively. Denote the objective function with objective coemcients @ by 

number i (i=1,2. . . . ,p) .  The ratio of the diflerence between the values of an 

objective function i for z = 5 and z = 2" to the difference between the values of 

the objective function j  for z = Z and z = 2" will be denoted by Tii(Z, 2"). where: 

The vector %(Z, 2) is called a vector of partial tradeofJs between the objective 

functions i and j on going from Z to 2" i f  (f?)TZ = (@)T~ for all k = 1,2. . . . , p ,  

and k # i , j .  If. on the other hand. (@)T5 # (@)T? for at  least one k = 1.2. . . . .p .  

and k # i , j ,  then Tij(S. 2") is called the vector of total tradeofls between objec- 

tive functions i and j  on going from Z to Z. 



The significance of the partial tradeofl vector is that i t  enables the decision 

maker to compare changes in two objectives at  a time. It is often claimed that 

this makes i t  easier to assign preferences (see, e.g., Chankong and Haimes. 

1983). 

In continuous problems such as (1) it makes sense to introduce a tradeoff 

rate. This may be defined as follows (Chankong and Haimes, 1983): given a 

feasible alternative 5 and a feasible direction d emanating from I (i.e., there 

exists an Z i  > 0 such that 5 + ad E S for 0 I a I Z), the total tradeoff rate 

tii(Z. d )  between objective function i and j a& I along the direction 2 is given 

by 

The partial tradeoff rate can be introduced in an analogous way: if 2 is a 

feasible direction with the property that there exists an E > 0 such that  

( 9 ) T ( ~  + a a )  = ( @ ) T ~  for all k = 1, ...,p and k # i,j, and for all 0 I a 4 a, then 

the corresponding tij(l ,  d )  is called the pmtiul hadeoff rate. 

The concepts introduced in this section will be illustrated in connection 

with some existing interactive MOLP methods in Section 5. 

4. DUALTIT 

In this section we shall look at  the dual formulations of the problems intro- 

duced in Section 2. More specifically, we shall investigate the relation between 

the dual variables and the tradeofis discussed in Section 3. Duality theorems 

and their proofs will not be given in this section: we shall simply refer to the  

relevant literature. 

Before introducing the dual problems under consideration, we shall &st 

summarize the properties of the dual formulation for the general MOLP prob- 

lem (1). The duality properties of ordinary LP problems are: 

(i) The primal problem has a flnite solution W The dual problem has a dnite 

solution. The optimal values are the same. 

(ii) The primal (dual) problem is inconsistent a The dual (primal) problem 

has  no flnite optimal value. 



(iii) The dual formulation of the dual problem is the primal problem. 

The dual formulation of MOLP problem (1) as an MOLP problem with a p x m 

matrix of dual variables (Isermann, 1978) has the same properties as  the dual 

formulation of an ordinary LP problem except that the dual formulation of the 

dual problem is not equivalent to the primal problem. In this case the duality 

properties are: 

(i) For each efficient solution of the primal MOLP problem (1). there exists an 

efficient solution of the dual problem, with the same value of the objective 

functions (and vice versa). 

(ii) The primal (dual) problem is inconsistent e The dual (primal) problem 

has no finite optimal value. 

We shall 'now introduce the  dual formulation. As in Section 2, we Arst dis- 

cuss the optimization approach and then the satisficing approach. 

4.1 optmmmg . . -  Models 

Consider problem (1). The dual formulation can be obtained in two ways: 

1. Combine the objective functions of problem (1) using a weighting vector 

A > 0 in order to get one right-hand-side vector in the dual problem. The 

dual problem is now: 

rnin bTu 

subject to 

where u is the rn-vector of dual variables. Problem (a), which is also the 

dual of problem (2). can now be seen as a multiparametric LP problem 

(Hannan, 1978). We can also solve problem (8) for a h e d  weighting vector 

(Kornbluth, 1974). 

In this formulation the vector of dual variables u depends on the weighting 

vector A. As we have stated before, i t  is not possible to determine a unique 

weighting vector h corresponding to an emcient basic solution, and thus, in 

this formulation, the dual variables related to an efficient basic solution 

are not unique. We can conclude that  the dual variables in this formula- 

tion do not give us  much insight into the decision problem. 



2. Another dual of problem (1) can be formulated (Isermann, 1977, 1978). In 

this formulation there is no vector of dual variables, but rather a matrix: 

each dual variable corresponds not only to a constraint, but also to an 

objective function. Thus we have a p x m matrix of dual variables U. Our 

new dual formulation of (1) is now: 

min Ub 

subject to 

where U is the p x rn matrix of dual variables a n d 5  is an  ordering relation 

deflned by: z 5 y iff z > y and z # y. The proof that  problem (9) is a dual 

of problem (1) can be found in Iserrnann (1979) and Nieuwenhuis (1983). 

This dual Formulation is based on the characterization of an efacient basic 

solution Z of (1) as given in Theorem 1. We must flrst introduce some 

notation. Let the coefacient matrix A be partitioned into a square. non- 

singular m x m submatrix B corresponding to the basic variables, and a 

matrix R containing the rest. Similar partitioning can be used for the 

feasible solution z = (zB, zR) and the objective function matrix ' 

c = (cB, cR)- 

Theorem 1. 

5 is an eflcient bark solution - a w r 0: (C  - C~B'~A)W 5 0 . 

The proof of this theorem is given in the Appendix. The emciency of a feasible 

basic solution can also be characterized in terms of the reduced cost matrix 

W = CR - C ~ B - ~ R .  

Theorem 2. 

5 is m eflcient bark solution - a ur 2 0: WUJ > 0 . 

The proof of this theorem can also be found in the Appendix. 

The dual variables U of problem (9) can be interpreted in the same way as 

in ordinary single-objective LP problems: the variable Ulj indicates how much 

the value of the I-th objective function changes with a unit change in the 

right-hand side of the j - th  constraint (of course, this change in the  solution 



must remain feasible). T'hese variables give the mutual dependence of the 

objective functions on the right-hand sides of the constraints, and not on the 

changes in the  objective functions. We can conclude that these dual variables 

are of little use to the decision maker because they give only the mutual depen- 

dence of the objective functions on the right-hand-side vector b .  

The reduced-cost matrix W contains information about changes in $he 

objective functions when one unit of a non-basic variable is brought into the 

basis. Therefore, every column of W can be seen as a vector of tradeoffs 

between adjacent feasible basic solutions (two basic solutions Z and Z are  

called adjacent iff 5 and 2 have m -1 basic variables in common)*. Assume that  

we have obtained a nondominated basic.solution Z. I t  is clear that  not all of the  

adjacent feasible basic solutions (adjacent with respect to 5 )  a r e  necessarily 

emcient. It can also happen that  an adjacent feasible basic solution is etflcient. 

but that  the edge leading to that solution is not efficient (see Section 5). 

It is clear that these tradeoffs give the decision maker considerable insight 

into the mutual dependence of the objective functions. To obtain these 

tradeofls it is necessary to calculate a nondominated trial solution. The 

tradeoffs (the reduced-cost matrix W) can be obtained directly from a multiob- 

jective simplex tableau (Zeleny, 1974; Yu and Zeleny, 1975). Note that the 

tradeoffs which lead to nondominated solutions of (1) are of special interest to 

the decision maker. However, i t  is not necessary to use a multiobjective sim- 

plex tableau: the tradeoffs can also be obtained from an ordinary (single- 

objective) simplex tableau in the following way. 

1. Combine the objective functions using a weighting vector X > 0 to obtain 

the  efficient feasible basic solution 5; this results in one objective function 

Ce. 
2. Introduce variables z i ,  2=1,2, . . . ,p,  into the model, and add p additional 

constraints: 

In the terminology of Section 3 each column of I is a total tradeoff vector. 



The problem can now be formulated as: 

max AT, 

subject to 

The reduced-cost matrix can immediately be obtained from the simplex 

tableau solving this problem for a fixed X. 
The dual of problem (3) can be written down immediately, since i t  is a single- 

objective LP problem. We also have dual variables v, related to the lower 

bounds on the objective functions: the variable v j  indicates how much the  

value of the objective Function which is maximized changes with a change of 

one unit in the lower bound of the objective function j (j = 1,2 .,.., i -l,i+l,..., p). 

4.2 Satisficing Models 

Consider problem (4). Here again the dual can be obtained in two ways: 

I. Combine the objective functions using a weighting vector h > 0 in order to 

get one right-hand-side vector in the dual problem: 

subject to 

where u and v are  the  m-vector and p-vector, respectively, of dual vari- 

ables, and e is the p-dimensional unit vector. This has  the same draw- 

backs as  the dual Formulation (8) of problem (1). 



2. Another dual formulation of (4) can be found in Isermann (1977). We first 

rewrite problem (4) as: 

max 22 

subject to 

Xg = g 

520 , 

where 

E = [O. -I,  01 

As we have already seen, the dual problem of (4a) is: 

rnin 86' 

subject to 

aw~o:(E-8X)w&o , 

where 8 = [U V]. This can be rewritten as: 

min Ub + V E  



subject to 

where U is the p x m matrix and V the p x p  matrix of dual variables. and 

ur = (wl, w2,  w3)T, where w is an n-vector, and w 2  and w 3  are p-vectors. The 

symbol 0 on the right-hand side denotes a p-dimensional zero vector. 

The restrictions in problem ( 1 1 )  stem from the definition of a nondom- 

inated solution to (4). 

In this formulation the  matrix U can be given the same interpretation as 

in dual problem (8). The dual variables V can be interpreted as follows: vari- 

able 3j gives the change in objective function i corresponding to a one-unit 

change in the lower-bound constraint on objective function j (i,j = 1,2 . . . . ,p).  I t  

is clear that  in this formulation the reduced-cost matrix can be again usefully 

be given to the  decision maker. 

The dual formulation of problem (5) will not be considered, since, this is 

generally not a linear problem. Now consider problem (6).  the well-known 

linear goal-programming problem. Because there is only one objective function 

in this formulation we have an rn-vector u and a p -vector v of dual variables. 

The dual problem of (6)  can be formulated as: 

max u T b  + v T F  

subject to  

Again. we can conclude that the dual variables are dependent on the  

weighting vector A. However, the dual variables v can give the decision maker 

insight into the  sensitivity of the value of the objective function to changes in 

the target values. 

The dual problem of (7) is: 



subject to 

We cannot prove that the dual variables u are strictly positive; however. this 

does not mean. that  solutions of problem (13) are not emcient (see Section 2). 

The dual problem of (7a) is: 

max ub + u y t  ( 14) 

subject to 

I t  can be proven that in this case u > 0 (since ui - &Cjti v j  5 0 and C, u, = 1 

yields v, 2 E /  (I+&) > 0, i = l.....p so the last constraint in problem (7) is 

redundant). This guarantees that the solution of (7) and (14) is nondorninated. 

We will return to this formulation in Sections 5 and 6. 

Concluding this section, we can state that two types of tradeoff information 

are useful in giving a decision maker more insight into the decision problem: 

(i) The dual variables related to the constraints on the values of the objective 

functions: the sensitivity of the lower bounds can be assessed directly. 

The dual variables can be in the iorm of a p-vector (problems (10). (12). 

(13)) or a p x p  matrix (problem (11)). As we shall see in Section 6. the 

p x p matrix of dual variables of problem (11) is also available in a slightly 

modifled formulation of problem (14). 



(ii) The reduced-cost matrix W: each column W; of this matrix is a tradeoff 

between adjacent basic feasible solutions. 

5. EXEIING INTERACTWE METHODS 

Many interactive methods for handling MOLP problems have been proposed 

in the  last decade. I t  is impossible to discuss all of them here, so we have 

selected several more or less at  random. while still covering a broad class of 

methods. (For detailed reviews see Chankong and Haimes, 1983; White, 1983b.) 

We shall look a t  the following methods: 

1. The Zionts and Wallenius method 

2. The surrogate-worth-trade08 method 

3. The interactive multiple-goal programming method 

4. The refe rence-point method 

5. Steuer's weighted Tchebychefl method 

We shall consider applications only to (static) linear problems, although 

some of these methods can be applied to more general models (e-g., the 

reference-point method may be used with both nonlinear and dynamic models. 

In the  lat ter  case the discussion of tradeofls would include the time preferences 

of the decision maker). 

It is not our intention to criticize these methods: we shall simply use 

them to illustrate the ideas (concerning the tradeofl information given to the 

decision maker) developed in the preceding sections. 

5.1 The Zionts and Walleniua Method 

The Zionts and Wallenius method (Zionts and Wallenius, 1976; Zionts and 

Wallenius, 1983; Zionts, 1983) uses problem (2) (or the equivalent problem (2a)) 

as the  formulation of the MOLP problem. First a trial solution Z is calculated. 

using an arbitrary weighting vector in the &st iteration. The to t&  C r a d s o f l ~ a t e  

along one of the  edges of the feasible region emanating from the extreme point 

5 is then presented to the  decision maker. I t  is clear that only nondorninated 

edges a re  relevant. The decision maker has to assess these total tradeofl rates, 

i.e.. he/she has to decide if the suggested tradeofl reflects his/her preferences. 

(The decision maker is also allowed to answer "I don't know".) Using these 

answers a new weighting vector A and trial solution are calculated, and the  



process is repeated. The interaction ends if the decision maker cannot identify 

preferred tradeoff rates. 

The solution of problem (2) generally yields a basic solution. However. if 

the decision maker has a nonlinear (unknown) utility function, the solution is 

not necessarily basic: how close the best basic solution found is to the "true" 

optimal solution depends on the structure of the problem. Zionts (1983) 

stresses that the objective function is not used as  a utility function, but rather 

"to identify good (and hopefully optimal) alternatives, and present these to the  

decision maker in helping him to make a decision". This is true, but there is no 

rationale for excluding all nonbasic nondominated solutions. 

Comparing this method with the various approaches to MOLP problems 

given in Section 2, we conclude that this approach does not make use of lower 

bounds on the values of the objective functions, nor does it assume "satisficing 

behavior" on the part of the  decision maker. Of course, i t  is a simple matter  to 

introduce lower or upper bounds on the values of the objective functions. 

5.2, The Surrogate-Worth-Tradeofl Method 

This method, originally developed by Haimes and Hall (see, e-g., Chankong 

and Haimes. 1983). uses the p a M  h d e o f f  vector introduced in Section 3. 

These partial tradeoffs are calculated using formulation (3). The lower bounds 

are updated a t  every iteration, the  values for the Arst iteration being guessed, 

as in the Zionts and Wallenius method There is no rule governing which objec- 

tive should be taken as the objective function in problem (3); however, we 

recommend that either a dominant objective or one in familiar units should be 

chosen. 

At each iteration we solve problem (3) with Lower bounds 

f f a  lk-l .  4+1.....fp and objective function (@)Tz. and obtain a nondominated 

solution 5. Let u,, j =1,2.k -1. k +la... ,p  denote the dual variables of these lower 

bounds, and suppose that uj > 0. j = 1.2 ..... k -1.k + 1 ,.... p. (If v, = 0 for some j 

we have to  modify this method. see Chankong and Haimes. 1983.) Now each v,- 

represents the nondominated partial tradeoff rate between ( C L ) T ~  and ( ~ j ) ~ i E  

when all other objectives are held Axed a t  their respective values a t  5. These 

tradeoffs are presented to the decision maker, together with the lower bounds. 

The decision maker is then asked: "Given that zi = (d)T5, i=1.2, . . . .p : for all 

j = 1, ....p, how (much) would you like t o  decrease zk by vj units for each one 



unit increase in z, with all other zi remaining unchanged?" (Chankong and 

Haimes, 1983) 

The decision maker also has to determine the  "surrogate worth" of the 

tradeoffs. The method proceeds by changing the lower bounds according to the 

answers give11 by the decision makers. Comparing the  information that is avail- 

able and the information that is given to the  decision maker, we see that all 

useful information available in this formulation is actually given to the decision 

maker. However, the following slightly different formulation makes more infor- 

mation available: 

max zk (15) 

subject to 

This formulation is equivalent to problem (3). but makes the reduced-cost 

matrix immediately available. 

5.3 The Interactive Multiple- Goal Programming Method 

This approach (Nijkamp and Spronk, 1980; Spronk. 1981) is also based on 

formulation (3). In this case p ordinary single-objective LP problems are solved 

at each iteration, yielding solutions Z, = ( d ) T 2 ,  i=1. ...,p ; here Z' is the non- 

dominated solution of problem (3) taking (d)Tz as  the objective function and 

ignoring all the rest. The vector Z is  the u t o p i a  (icfed) point. Using the solu- 

tions of the  p LP problems it is easy to calculate the nadir  point z": 

gi= min ( P ) ~ s ~ ,  i .=l ,  ..., p , 
]=I, ...g 

The nadir point is then presented to  the decision maker as a trial solution, 

together with the "potency matrix" containing the  utopia point and the nadir 

point z". Next, the  decision maker is asked which objective function value 

should be improved flrst. The lower bound of this objective function is then 



updated, possibly using a priori preference information. We again calculate a 

potency matrix, and the decision maker is asked whether the shifts 

("sacrifices") counterbalance the proposed improvement in the solution. If so, 

the decision maker is asked whether the solution should be improved further; 

if, on the  other hand, the sacrifices are judged to be too heavy, the proposed 

increase in the value of the objective function is obviously too large. In this 

case a new lower bound is calculated, which in turn has to be evaluated by the 

decision maker. 

One of the charming features of this method is its simplicity. The trial 

solutions are not efficient, so we cannot speak of tradeofls between efficient 

solutions. However, it is again possible to  supply the decision maker with more 

information, as we shall see in Section 6, where this method is extended 

5.4 The Reference-Point Method 

The basic idea of the reference-point method (Wierzbicki, 1979, 1982; 

Lewandowski and Grauer, 1982) is to construct an achievement scdarizing 

$unction This may be interpreted as the problem of finding the nondorninated 

point "nearest" (in the minimax sense) to any reference point given by the 

decision maker. The formulation of the  MOLP problem is as in problem (7). We 

shall now discuss this method as i t  is used in DIDASS, a Dynamic Interactive 

Decision Analysis and Support System developed a t  IIASA (Grauer. 1983). setting 

the coemcient p in the achievement scalarizing function equal to the number 

of objectives. The information given to the decision maker is based on a two- 

stage model of the decision process: in the &st stage the decision support 

(payoff) matrix is presented to the decision maker (this is a p x p matrix con- 

taining elements (d)T~j. where ~j is the optimal solution for objective func- 

tion ( d ) T z  ); in the second stage the nondominated point "nearest" to the  deci- 

sion maker's reference point is provided. The decision maker can change his 

reference point a t  each iteration, leading to a new nondominated solution. In 

the most recent implementation of DIDASS (Grauer. 1983), the dual variables of 

problem (14) are also given to the decision maker. These dual variables give 

the change in the minimum value of the difference between the optimal solu- 

tion and the reference point corresponding to a change of one unit in the refer- 

ence point. However, once again more information is potentially available, as 

we shall see in the extension given in Section 8. 



5.5 Steuer's Weighted Tchebycheff Method 

This method (Steuer, 1982; Steuer and Choo, 1983) is quite similar to the 

reference-point method described above. The information given to the decision 

maker consists of a certain number of nondominated solutions (tradeoffs are 

implicit), and the  decision maker has to assess which he/she prefers. A new 

selection of nondominated solutions is then calculated (but now from a smaller 

set) and once again offered to the decision maker. 

The number of solutions offered to the decision maker is a matter  of judg- 

ment; in practice, 5-10 solutions are usually given (Steuer and Harris, 1980). 

These solutions are calculated in the following way. First. the utopia (ideal) 

point ? is calculated (if there is more than one utopia point. or 
N - 
ti = t j .  i . j  = I ..... p .  i#j, then = P + c. E > 0). The distance between any 

z E Z and the utopia point is then measured using the augmented weighted 

Tchebycheff metric, which is defined as follows: 

max tb(6 - (@)Tz)j + c f (& - (@)Tz) , 
i =I, ...,p i =l 

where A is the weighting vector and c is a positive scalar sufaciently small to 

ensure that  solutions are nondominated. I t  can be shown (Steuer and Choo, 

1983) that a solution Z of problem (1) is nondominated if and only if there 

exists a weighting vector h such that  Z minimizes the augmented weighted 

Tchebycheff problem (7). (The formulation (7a) can of course also be used in 

this method.) 

The method then proceeds as follows. A large se t  of weighting vectors (con- 

sistent with preference information obtained from the decision maker in ear- 

lier iterations) is generated. Using "filtering" techniques (Steuer and Harris, 

1980). several of these vectors are selected and used to solve problem (7), in 

order to compute maximally dispersed representatives of the set of nondom- 

inated objective vectors. This does not, however. mean that there will be a 

representative set of objective vectors, and therefore these vectors are again 

"filtered". 

The advantage of using problem (7) instead of problem (2) (Steuer, 1977) is. 

that formulation (7) does not exclude nonbasic solutions. 

In this method, tradeoff information is provided in the form of maximally 

dispersed alternatives from a given set: apparently it does not make sense to 



supply the decision maker with tradeoff information based around a certain 

solution. 

Finally, note that although this method is quite similar to the reference- 

point method. there are two important differences: 

(a) In the reference-point method only one nondominated solution is calcu- 

lated. while in this Tchebychefl method a selection of nondominated solu- 

tions a re  calculated. 

(b) Unlike the  reference-point method, this Tchebychefl method does not allow 

the decision maker to specify the reference point: this is fixed as the uto- 

pia point. 

6. KXIWWIONS OF TWO MEL'HODS 

In this section we propose extensions of two of the methods discussed in 

the preceding section: the interactive multiple-goal programming method and 

the reference-point method. These extensions are concerned only with the 

information about possible alternatives and tradeoffs in objective space. The 

purpose of this section is to show that  the decision maker can be given more 

information than the methods suggest when he/she is assessing trial solutions 

generated during a computer session. This information can be made available 

on request: e.g., instead of giving the system a new reference point, the deci- 

sion maker may ask the system for tradeoff information around a certain trial 

solution. 

6.1 Ektension of the Interactive Multiple-Goal Fropmdmg Method 

In every major iteration of this method (see Section 5.3) we optimize each 

objective function separately, with lower limits imposed on all other objective 

functions. If the solutions are unique, this results in a t  most p efacient solu- 

tions. If the solutions are not unique, one of them will be emcient. In the origi- 

nal method these solutions are  not shown to  the decision maker, but this could 

be done at his/her request. Moreover, (2, -1) dual variables are associated with 

each solution; these are related to the minimum value constraints of the objec- 

tive functions (it obviously makes no sense to formulate a minimum value con- 

straint for the objective function which is being optimized). Thus we have a 

total of p X ( p  -1) dual variables available. I t  seems rather excessive to present 

a matrix containing all these dual variables to the decision maker (although 



the decision maker could of course request to see them if he/she wanted) - it 
would be more reasonable to proceed as follows. If the decision maker wants to 

increase the minimum value of a particular objective function j ,  then the sys- 

tem should give him/her the option of seeing the (p -1) dual variables of this 

constraint in the ( p  -1) L,P problems. These dual variables give the correspond- 

ing "losses" in the values of the objective functions in the neighborhood of the 

optimal solution. All that is required is to ask the decision maker: 

"Do you want to see the changes in the objective functions caused by 
increasing the minimum value of one objective function by one unit? 
If yes, indicate which objective function." 

Another possibility is that the decision maker is interested in the changes 

in the minimum values of the objective functions caused by decreasing the 

mamrnum value of objective function j .  In this case we can give the inverse of 

the dual variables to the decision maker. 

The total tradeoff vectors (i.e., the  reduced-cost matrix) a re  also available. 

but we will not discuss their use in this method. 

Finally, applications of this method show that the dual variables are often 

used to obtain information about the mutual dependence of the  objective func- 

tions (see, e.g., van Driel e t  al., 1983). However, this is done ad hac and not by 

changing the options available in the method. 

6.2 Extension of the Reference-Point Method 

The reference-point method as described in Section 5.4 does not provide 

the decision maker with tradeoff information. This means that the decision 

maker has to specify a new reference point without any knowledge of nondom- 

inated solution's in the neighborhood of the calculated nondominated solution. 

To see what tradeoff information could be given we rewrite problem (7) as 

subject to 



We shall set 

i= 1: C - I  -: O O O .,I l 
and let 2 be the basic matrix corresponding to an optimal basic solution of 

(7b). 

Suppose that we have calculated an optimal basic solution 5 of problem 

(7b) with Z = C5. What tradeofl information can be given to the decision 

maker? 

First we look at the dual variables of the constraints with the reference 

point on their right-hand side. These dual variables give only the sensitivity of 

the optimal value of the objective function q to changes in the reference point. 

I t  would be more useful to know the sensitivities of the values of all objective 

functions Z = C Z  to changes in the reference point. This information is avail- 

able: we can obtain the sensitivity to (small) changes p in the reference point 

from the simplex tableau. A tradeofl vector is available for each component of 

the reference point, so we have a p x p matrix of tradeoff vectors (some or all 

of which may be zero). This matrix is a part of the  8-l matrix. which itself is 

part of the simplex tableau (for more details see Despontin and Vincke, 1977). 

Note that  this tradeoff matrix has exactly the same interpretation as  the 

matrix of dual variables V in problem (10). 

The decision maker may then use this tradeoff information to  choose a new 

reference point. However, we can also proceed in another way (Despontin and 

Vicke,  1977; Isermann, 1977). The decision maker chooses an objective which 

he/she wants to improve. The corresponding tradeoff vector v is then offered 

to the decision maker and he/she has to specify a stepsize T in the direction of 

the tradeoff vector v ,  such that  a new nondominated solution is reached: 

where 7 is  the upper bound on the stepsize; above i the becomes infeasible. 

There are of course other ways to extend and modify the reference-point 

method as it  is now used in DIDASS (see, e.g., Kallio e t  al., 1981). Whether this 

will turn out to be fruitful or  not  depends on the capabilities of the  decision 

maker (or, more precisely, on whether our assumptions concerning these capa- 

bilities a re  correct). 



7. CONCLUSIONS 

The question of which tradeoff information should be given to a decision 

maker is a central issue in interactive MOLP methods. We have shown that, in 

general, more information is available than is actually given to the  decision 

maker. Of course, i t  can be argued that we cannot give the decision maker all 

the available information because otherwise he/she would not be able to see 

the wood for the trees. However, if the information is made available to the 

decision maker only on request this argument is not valid. Furthermore, deci- 

sion makers might require different types of information at  the beginning and 

end of a computer session - decision makers familiar with computerized deci- 

sion support systems may not want the same information as inexperienced 

users. The drawback of making more information available is of course that the  

interaction between the decision maker and the computer becomes more com- 

plicated. The problem is to And a compromise between the quality of informa- 

tion available t o  the decision maker and the  complexity of the interaction. This 

paper only provides a framework for investigating this question; much research 

still remains to be done. 



APPENDM: PROOFS OF THEORENS 1 AND 2 

Theorem 1 

5 is an ef ic ient  basic  solution 3 ur 2 0: (C - c ~ B - ~ A )  w & 0 . 

Proof (Isermann, 1978). 

(i) Let Z be an efficient basic solution. Then: 

3 X > O .  V Z E S :  ?cz>XTc~ , 

We can write: 

so that  

?G = 3 c B ~ - l b  = ?cBB-~A~ . 

We now have a single-objective LP problem with the optimality condition 

?C - Rc,B-'A s o , 

or, equivalently: 

?(c - C,B~A) r o . 

We now invoke Motzldn's theorem of the alternative (see, e-g.. Mangasarian, 

1969): 

r a f i > O ,  3 ~ ~ s o : P + ( c ~ B - ~ A  -C)j i=Oj  . 

The last part is equivalent to 

3 w 2 0 : (C - CBBIA)w & 0 . 

(ii) The condition 

a w 2 0 : (C - C ~ B - ~ A ) W  & o 



implies 

22 € S : C Z & C ~ B " A ~  , 

where C B B ' l k  = C B ~ - ' b  = E, and Z is a feasible basic solution. We then have 

22 E S : Cz 2 CS, so that 2 is efficient. 

Theorem 2 

~ i s a n e f l c i e n t b a s i c s o l u t i o n ~  2 ~ 1 0 :  h $ z 0  

Proof 

aw.:o : w w g o  
a w  2 0  : ( C ~ - C ~ B - ' R ) W J O  

V z e  : BR + a t B  = b  ; 2 ~ ~ 1 0 :  CBzB + C R z R - C B B - ' b  S O  

2 ~ ~ s  : a - c B ~ - l b 2 o  ~ Z E S  : C Z ~  E 

F is an emcient basic solution. 
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