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PREFACE

By introducing a non-Euclidean metric on the unit simplex,
it is possible to identify an interesting class of gradient
systems within the ubiquitous "replicator equations" of evolu-
tionary biomathematics. 1In the case of homogeneous potentials,
this leads to maximum principles governing the increase of the
average fitness, both in population genetics and in chemical

kinetics.

This research was carried out as part of the Dynamics of
Macrosystems Feasibility Study in the System and Decision
Sciences Program.
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THE MAXIMUM PRINCIPLE FOR REPLICATOR EQUATIONS

1. Introduction

The notion of adaptive landscape is a familiar one in
theoretical biology. Evolution is often pictured as an uphill
movement leading to ever increasing fitness under the driving
force of selection. We mention Wright [19] and Simpson [18]
for explicit descriptions of the concepts of adaptive genotypic
and phenotypic landscapes, respectively. The general idea of
evolution as progressive optimization is so pervasive, however,
that it is difficult to give a precise account of its origin.

The strictest version of an uphill movement is that of steepest
ascent. In this case, the adaptive landscape itself determines
the path, and the dynamics are given by the gradient of the slope.
Gradient systems are well-behaved: in fact, they are often too
tame for a realistic description of the antics of biological
evolution. Even if random drift and other stochastic influences
are excluded, the effects of time-dependence, frequency dependence,
developmental constraints, genetic linkage, co-evolutionary
interactions, etc. will lead to phenomena incompatible with the
existence of a potential function. Nevertheless, gradient systems
play an important conceptual role in basic dynamical models, both
in micro- and macro-evolution (cf. Akin [1] and Lande [11]). They
lead to highly suggestive extremum principles and provide a
link between the methods of population genetics and mathematical
physics.

In this paper we shall consider gradient systems within the
framework of replicator equations. Such equations model a rich
diversity of phenotypic and genotypic evolution. The state of
the system is described by relative frequencies within a population,
and hence bv a point on the unit simplex. The basic idea of

Shahshahani[ 17] was to replace the Euclidean metric by a Riemann



metric. Gradient systems with respect to this metric occur
as important examples of replicator equations, both in classical

population genetics and in the chemical kinetics of polynucleotide
replication. The corresponding maximum principles have been stated
by Kimura (8] and Kippers [9]. Their rigorous proof was an imme-

diate consequence of Shahshahani's introduction of the appropriate

metric.

2. Replicator equations

Let

S, = {§=(x1,...,xn) GRn:Exi=1, xiZO}

denote the unit simplex and let f be a vector field defined in
a neighborhood of S . We associate with f the vector field k4

on Sn with coordinates
B (x) = x (£,(x) -&(x)) i=1,...,n (1)
where

®(x) =Lx £, (x) (2)

A differential equation of the type

|+

x = E(x) (3)

is called a replicator equation. Two simple properties are easily

checked:

(a) Both the unit simplex S, and its faces are invariant

under (3);
(b) If £ and g are two equivalent vector fields,
then £=§ on S,- Here, £~g if £ (x) -g,(X) is independent

of i for all x €S .



Replicator equations are very common in mathematical biology.
They describe the action of selection on many different levels
of biological organization. We refer to Schuster and Sigmund [16]
and Hofbauer and Sigmund ([6] for surveys on this subject (the
second of these is more detailed) and shall only give two of the
simplest examples here.

(a) If £ is constant, then (3) becomes

= - 4
Xy xi(ai 3) (4)

This equation describes the evolution of gene frequencies for
frequency-independent asexual reproduction, and in particular
the relative concentrations of self-reproducipg macromolecules
in the absence of mutations and chemical interactions (see

Eigen and Schuster [3] and Kippers [ 10]).

(b) If £ is linear, then (3) becomes

= X, -® (5)
X xi(Z aijxJ )
This equation occurs in at least four different fields of
evolutionary biology. First of all, it is equivalent to the

general Volterra-Lotka eguation in mathematical ecology

. n-1
= . . i = 1 s o @ -1 (6)
with bij = aij - anj' This equivalence (obtained by setting
Y; = xi/xn) has been pointed out by Hofbauer [5]. Secondly,

(5) describes the evolution of gene frequencies for asexual re-
production, if the fitnesses are (linearly) dependent, and of
phenotype freguencies in game-theoretic models of animal be-
havior (cf. Maynard Smith [14]). Thirdly, it plays an important
role in the chemical kinetics of catalytically interacting poly-
nucleotides, hypercycles etc. (see Eigen and Schuster (3]).
Finally, (5) describes the action of selection in a one-locus
viability model, under the assumption of Hardy-Weinberg equili-
brium (cf. Hadeler [4]). In this case, X is the frequency of



allele Ai in the gene pool and aij is the probability of
survival, from zvgote to adult age, of the genotype AiAj.
This yields a special case of (5), namely

x; = xi(z aijxj'ﬂb) with aij = aji (7)

(7) is the so-called Fisher-Haldane-Wright selection équation.

It is easy to show that for both (4) and (7), the "average
fitness" & is always increasing (see [ 4] ). Kimura [8] claimed
that the orbits of (7) always point in the direction of maxi-
mal increase of & , and Kiippers [ 9] stated that this same pro-

pertv of "steepest ascent" holds for (4).

At first glance, this seems to be wrong. Indeed, maximal
increase implies that the direction of the orbits is ortho-
gonal to the constant level sets of & (as every hiker intuiti-

velyv knows). This is not the case in general.

It turns out, however, that with another notion of orthogo-
nality the orbits do cross the constant level sets at right
angles. Thus the maximum principles become valid if one modifies
the notion of inner product (see Shashahani [17] and 2kin [1]).

3. Shahshahani gradients

The relevant state space for replicator egquations is Sn. We
are therefore interested in angles between vectors belonging to
T S,s the tangent space to S, @t the point p €int S _: these
vectors are characterized by the property that the sum of their
components is 0. For two vectors X and y in T S, we define,
following Jacquard [ 7] and Shahshahanil 17] :

X.Y. (8)

oA
=1 Pj 7%

<.§rx>}2 =

1

and check that this is indeed an inner product. It differs from

the "usual" Euclidean inner product



n
XYy (9)
=1

&y =

i
by the factors 1/pi: The i-th term in the sum gains in importance

if 17 is small, (8) leads to a notion of orthogonality which de-
pends on p, and induces a distance which differs from the Euclidean
one by attaching more weight to changes which occur near the

boundary of Sn' (We refer to akin [1] for details).

Let V be a differentiable function from some neighborhood U
of S (inR ) intoR. For each p €int S _, the derivative DV(p)
is a linear map from the tangent space into R. There exists a

unique vector grad V(p) such that
(grad V(p),y > = DV(p) (y) (10)

holds for all xETpRn. This "Euclidean" gradient grad V(p) has
components.BV(E)/axi. Similarly, there is a unique vector Grad V(p)
such that

(Grad V(p) .y, = DV(p) (y) (11)

holds for all XG TESn' This vector is called the Shahshahani
gradient of V.

4., Replicator equations and Shahshahani gradients

It is easy to characterize those replicator eguations (3).

which are Shahshahani gradients:

Theorem: i = Grad V iff £~ grad Vv

Indeed, suppose that f~ grad V. We know that g~ h implies g=h
on Sn' We may therefore assume, without loss of generality,
that f=grad V. For v¢€ TESn' one gets



- ) 1 ]
C £(p) 'Y'>E = 2-5; py (£, =®)y, = T f.y,

since Z yi=0. Thus

(E(p) ,pé =zl y, =ovip(p (12)
1l

Hence, by (11), £ = Grad V.
If, conversely, = Grad v, then (12) implies
Z5i¥y 2%, Y

i

for all ye¢ Tp_sn' With yi=1, yn=-1 and yj =0 for all j +1i,n,

this implies

DV 2V = -
g;; (p) bx_ (p) fi(E) fn(B).
It follows that
dV =
5;: (p) = fi(B)

does not depend on 1, and hence that £-grad V.

Thus if £ is a Euclidean gradient, i.e. if

bfi } d £
bxj bxi

holds (for all i and j) in some small neighborhood U of Sn which
is simply connected, then the orbits of §==§(§) are orthogonal, in
the_Shahshahani sense, to the constant level sets of V (in Sn).

5. Homogeneous potentials

If the potential function V is a homogeneous function of

degree s>0, i.e. if



- S
V(o.x1,...,axn) =q V(x1,...,xn) (13)

holds for alla € R, then the "average fitness" & satisfies (by

Euler's theorem)
d(p) =T p,f. (p) =% p, 2= (p) = s V(p).
= “ivi idx;

Hence & increases at a maximal rate, in the Shahshahani sense.

The rate of increase is

— y _ dV DV dVv v

d(x) = vVix) = T2 x, =s% 2l x (2—-% x. 2V

(—) S (—) s in 1 s i bxi l(bxi J bxj)
= s[Ei xi(fi(x))z- (Z xifi(x))2]>_ 0 (14)

The rate of increase can be viewed (up to the factor s) as the
variance of a random variable taking the value fi(i) with

probability X0 i=1,...,n,
If, for example, f=grad V with

Vi) =Z a;x; (15)

then (3) becomes (4) and one obtains the (modified) maximum

principle of Kiippers . If

1
V() = = a,.x.x, (16)
- 2 i3 ijhiT3
then
L' =1
yx, B = 3L (ayg+ay;)xy
1 J
In particular, ifaij==aji' then (3) becomes (7) and one obtains

the (modified) maximum principle of Kimura. In this case (14)

is just Fisher's Fundamental Theorem of Natural Selection (see,
e.g. Hadeler [ 4]): the rate of increase of the average fitness
is proportional to the variance of the fitness in the gene pool.



It is obvious that the orbits of any gradient system converge
to the set of fixed points. Does every orbit converge to an
equilibrium? This need not always be the case, as Takens has
shown. But for (4), it is obviously true. For (7), it is also
valid, but demands an elaborate proof (see Akin and Hofbauer [2],
and Losert and Akin [ 12]). It would be interesting to know
whether for any Shahshahani gradient system with homogeneous
potential function V, every orbit converges to an eguilibrium.

If V is not homogeneous, then ® need not always increase.
2 has its minimum at X, = i, but the minimum
of the corresponding ¢ = 2x1‘ + x, is at x, =4 . For a state which

has X, between & and }, the average fitness decreases.

For example V= X, 2 +Xx

6. First—-order replicator equations and Shahshahani gradients

Let us now characterize those linear replicator equations (5)
which are Shahshahanj; gradients.

Theorem (5) is a Shahshahani gradient iff

+ajk+a = a.,+a,, +a,. (17)

244 ki 317 %ik T “kj

holds for all i,j,k between 1 and n.

Condition (17) states that the sum of the coefficients of
the matrix A= (aij) over all three-~cycles i« jak-1 of indices
is independent of the orientation. The same holds, then, for all
p-cycles, p> 3, as shown by "triangulation".

Indeed, if (17) holds, one has only to set ¢, = to

k - ®kn"®nk
see that

b,. = a,,+c,
1] by J

satisfies b,.=b..,. The eguation
ij ji



X, = xi(Z bijxj-Q) (18)

is therefore a Shahshahani gradient, and so is (5), since it

coincides with (18) on Sn'

Conversely, if £==Grad V, then f=grad V, i.e. there is

some function Y such that

dV _
fi(g)-g§; (p) = ¥(p)

holds for all i (and all p€ S,). From this follows

bfi d £, dY dY
X, (p) - b_lx. (p) = 5% (p) e (p) (19)
Jj 1 J i
bfi
E aljx3 then A = alj. Thus
J
- - oY _dr
357255 T §x. (p) % (p) (20)
i

From this (17) follows immediately.

Let us call two nX n matrices A and B equivalent (A~ B) if

there exist constants cj s.t. a

.. =b,.+c., for all i and j between
1] i 3

1 and n. A and B are equivalent iff the functionsx- Ax and x- BX

are equivalent in the sense described in Section 2. The theorem

implies that (5) .is a Shahshahani gradient iff one of the following

conditions is satisfied:

(a)

(b)

(c)

there is a symmetric matrix within the equivalence class

of the matrix A;

there exist constants ¢, such that a,.-a., = c, -c. for
i ij ji i 3
all i and j:
i € RD . -a., = u, .
there exist vectors u,v such that al:l a:ll ul-i-v:J

for all i and j.
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7. Further remarks

(A) For (5), ¢ is homogenous. From this it follows that ¢

increases at a maximal rate, in the Shahshahani sense, iff A is

symmetric.

If (5) is interpreted as the dynamics of a game (see, e.g.,
Schuster et al.[15] ), this means that the average payoff
increases at a maximal rate iff the game is a partnership

game.

On the other hand it is easy to check that ¢ is an invariant
of motion for (5) (i.e. constant along every orbit) iff for

all i and j, one has

aii = aij and ajj = aji

or

= 2a.,, = 2 (21)

R - T -

alj ajl ii ajj

It would be interesting to characterize those equations (5)
for which & is monotonically increasing along every orbit.

(B) Game dvnamics between two populations lead to equations

of the type

. n : m
X; = xi('g aijxj+-zi bijyj-«b) i=1,...,n
3_1 3—1 (22)
. n m
y. =y.(Z co,x,+% d.,.y.-¥Y) j=1,...,m
] DT I T

with

d® = T a,.x.x.+Z b..x

: V. y.xi+-2 d.iy.yi (23)
iy 3TAT3T 5y i30S i 313

z. C.y
13 3 ig -
(see, e.g., Schuster et al.[15]). This equation "lives" on the
vroduct space Snx Sm of two simplices. One may introduce in an
obvious way a Shahshahanitype inner product in the corresponding

tangent spaces. Equation (22) is a gradient system with respect
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to this metric if the matrices (aij) and (dji) satisfy (17)

and if there exist constants c, and 4. such that with g,.=c,.~-b..
i ] ij i 3J12
gij = ci--dj (24)
for i=1,...,n and j=1,...,m. This is the case iff
gsj+gti = gtj+gsi (25)

holds for all indices i,j,s and t. (Condition (17) means that
gij = aij--aji satisfies (25)).

(C) As mentioned in Section 2, the first-order replicator
equation (5) is equivalent to the Volterra-Lotka equation (6).
The mapping

(x1l"'IY1) "(Ya]l'"lyn_‘])

transforms the Shahshahani inner product on S  into an inner

product onR 2-1 . For g €int R2_1

TgR2-1 , this yields

and two vectors Y and Z in

y n-1 1 n-1 n-1
Y,2) = £ —Y.Z. -(Z Y)(ET Z.).
I i=1 9% P i=r t og=1

A more natural inner product would be

n-1

Y,2) =T Y.2 26
€ >g z (26)

a
19 1
With this metric,

y =yifi(y1,-¢.’yn_1) i=1,...,n—1

i
is a gradient iff

V.

i~ fi(y1"'yn-1)

is a gradient with respect to the Euclidean metric. In particular,
the Volterra-Lotka equation (6) is a gradient system with respect
to the metric defined by (26) iff b,. =bji for 1s4i,js n-1.

1]
Volterra-Lotka equations of this type have been investigated by

MacArthur [13].
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