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ABSTRACT

The paper reconsiders random utility choice models in the
light of asymptotic theory of extremes. The theory is introduced
and its main general results are outlined. A stochastic extremal
search process is then built, which is shown to produce the
Logit model as an asymptotic result under very general condi-
tions. Further applications of the new approach are discussed
and outlined.
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THE STRUCTURE OF RANDOM UTILITY MODELS
IN THE LIGHT OF THE ASYMPTOTIC THEORY
OF EXTREMES

1. INTRODUCTION

Random utility choice models have become quite popular in
such applications as trip distribution analysis, modal choice,
residential choice, and so on. However, in spite of the ele-
gance of the theory behind them, some theoretical dissatisfac-
tion is caused by the exceedingly restrictive assumptions cur-
rently used to derive specific forms for such models. Namely,
the prevailing philosophy seems to be an emphasis on the ability
for such models to capture features of individual behavior in a
very disaggregated way, so that a one-to-one mapping is tacitly
implied between a specific assumption at the disaggregate level
(namely, the form of the distribution of the random utility

terms) and the resulting observable probabilistic choice pattern.

The goal of this paper is to show that most of these assump-
tions are unjustified and that, under rather general conditions,
observed choice patterns are quite insensitive to disaggregate
assumptions. The approach which will be used in order to do so
is to reformulate random utility choice theory in terms of
asymptotic extreme value theory, a branch of mathematical sta-
tistics dealing with the properties of maxima (or minima) of

sequences of random variables with a large number of terms.
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In particular, it will be shown that, for a sufficiently
large number of alternatives, a very wide family of distribu-
tions leads to the Logit models as an asymptotic approximation

to choice behavior.

2. THE BASIC RANDOM UTILITY MODEL AND ITS RELATIONSHIP WITH
EXTREME VALUE THEORY

Let a discrete set of objects, S, be given, and denote by

jES any of its elements. Let a real constant vector

V= (V1’~-°’vm)

be given, where m = |S| is the cardinality of S. Finally, let a
probability distribution on R™ be defined by
F(X) = Pr (X < X)

where XEIRIn and
X = (x1,...,x )

is a sequence of m real random variables.

For the triplet (S,V,F) the following problems will be con-

sidered:

a. Find the probability distribution

H.(x) = P_ (max u. < X) (1)
S T Ses

for the maximum element in the sequence of random

variables
U= (uyre-eou) (2)
where u. = ;j + vj ; J=1,...,m

b. Find the discrete probability distribution

p. = P_( max a, - d. < 0) j=1,...,m (3)
J T xes-{j} = J
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for the element in S to which the maximum wvalue in the

sequence U is associated.

¢. Analyse the behavior of H.(x) and pj, j=1,...,m when

S
m becomes, in some sense, large.

Problems like a and c¢ are typically addressed by the extreme
value theory, a branch of mathematical statistics for which a
well developed theory exists (Von Mises 1936, Gnedenko 1943,
de Haan 1970, Galambos 1978).

Problem b can easily be recognized as the mathematical

formulation of the main problem addressed by random utility choice

models. Indeed, if S is the set of possible choices,v, and §j
]

are, respectively, the deterministic and random part of the

utility associated with alternative j, j = 1,...,m, and F(X) is

the joint distribution for the random parts, then equation (3)
defines the probability of choosing each alternative j€S. Equa-
tion (3) is the starting point to build all currently used ran-
dom utility choice models (see, for instance, Manski 1973,
Domencich and McFadden 1975, Williams 1977, Leonardi 1981).
Although it is eviden® that a theory which solves problem
a also solves problem b as a by-product, most of the literature
on random utility models seems to be unaware of extreme value
theory. Moreover, problem c¢, which is the bulk of extreme value
theory, has been ignored in random utility models, which are
always built by introducing very specific assumptions on the dis-

tribution F(X).

On the other hand, the tools developed in extreme value
theory enable many statements on the asymptotic behavior of
Hs(x) and pj to be made, without requiring a specific form for
F(X), provided the set S is, in some sense, large. Since many
practical choice situations actually meet (at least approximately)
the condition of S being large, some standard results for extreme
value statistics might be used to provide random utility models

with some general justifications.

The rest of the paper explores this possibility, with no

claim of exhausting it.



Before we go on to do so, however, some simple general re-
sults will be stated, which hold independently from the form of
F(X) andthe size of S. F(X) will be assumed to be differentiable
up to the mth order (i.e., to admit all partial densities) for
every XEIR“l and to have finite first moments. Moreover, the

vector V will be assumed to be bounded, i.e.,
- < y, < ’ j=1,...,m

The partial density with respect to the jth variable will
be denoted by Fj(X) and defined as

aF (X)
90X .
J

Fj(X) =

while the marginal density with respect to the jth variable will

be denoted by fj(x).

As a preliminary remark, it is easily seen that, if the dis-
tribution for the sequence X is F(¥X), the distribution for the

sequence 6 defined in (2) is
G(X) =P (X+V <x) =P (X<X=-V)=F(X-V) (4

Moreover, since the event

max u. < x
jes

is equivalent to the event

< X for all jes

o

it follows that

HS(X) = G(X, Xye0.,X) = F(x—v1,...,x—vm) (5)
Since it is evident from (5) that HS(x) is a function of V, the
notation

H(x,V) = Hg(x) (6)

will be used.



A lemma will now be stated which summarizes the relation-
ships between the extreme value distribution H(x,V) and the choice

probabilities pj.

Lemma 2.1. Under the assumptions stated above for F(X),

and with pj defined as in (3):

. _ _ [T sH(x,V)
(1) Pj = J“D ——gg;—— dx (7)

where H(x,V) 1is the function defined in (6); moreover,
m

0 < . < 1 and .I .= 1
S Py 27 and g2 Py

(i1) ¢ (V) = J x dH(x,V) < = (8)
and
39 (V)

(iii) 1if the function F(X) is replaced by the function

F*¥(X) = J F(x1+y,...,xm+y) dg (y) (10)

where Q(y) is a univariate probability distribution

with finite first moment a, the probabilities pj

are the same as those  obtained from F(X).

Proof. To prove statement (i), notice that by definition

P_(x. < %X. < x.+y , ik < % ot kes - {ih)

F.(X) = lim 1 = J J
J y—=0
therefore
Pr(x < XL o+ v, < Xty , §k + Ve < X s kss-{3})
F.(x—v1,...,x—v ) = lim J J
m Y

J y-0
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It follows that the total probability for the event

ua. > max u

] kes-{j} K

or equivalently

gy > G for all k€s-{j}

where (u1,...,um) is the sequence defined in (2), is given by

x

Py = Fj(x-v1,...,x-vm) dx : (11)

On the other hand, it is evident from definition (6) that

0H (x,V)

AV,

Fj(x—v1,...,x—vm) = - j

and replacing this result in (11) equation (7) follows. To
prove that pj is a proper probability distribution, first note

that from (11) it is obviously true that

Py 2 0 / j=1,...,m (12)
moreover
m ®© m
z p. = J z F.(x—v1,. cpx=v_) dx
j=1 o §=1
= J-m dF(x-v1 ,,,.x—vm) = J—w dH (x,V) =1

Since H(x,V) 1s a probability distribution. From this and (12)
it follows that

Lo< 1 ’ ] = T,¢..,M
PJ < J

This completes the proof of statement (1i).



-7-
To prove (8) define the first moments

uj = J—m X fj(x) dx ' ji=1,...,m

where fj(x) is the jth marginal density of F(x). By assumption

Uj<°° ] j=1l"°lm

By definition
dH(x,V) = dF(x—v1,...,x—vm)

and by the differentiability assumption [already used to prove
statement (i)]

m

yX=V_) = ) Fo(x=v,,...,x-v_) dx

dF(X_V.],--- m L
3=1

On the other hand, from the standard properties of prob-

ability distributions:
F.(x—v1,...,x—vm) < fj(x—vj)

J

Substitution into (8) yields

© m
p(V) = {_w X j£1 Fj(x—v1,...,x-vm) dx <
<ZJ xf(x—v.)dx=2(u.+v)

and since both u. and vj are finite (8) follows. To prove (9)

]
take the derivatives of ¢ (V) and integrate by parts

dx

30 (V) _ [T 4 q8H(x,V) _ 3HG,V) |7 ®3H (x,V)
ov E v - v
-0 J ] - -0 j

(13)

but since



oH \Y%
(Xl __) = - Fj (X_V_I,-—-'X-Vm)

and

the first term on the right-hand-side of (13} vanishes, and com-
parison of the second term with (7) establishes (9). This com-

pletes the proof of statement (ii).

Statement (iii) easily follows from (9). From definitions
(5), (6), and (10)

H* (x,V) F* (x-v ,...,x—vm)

= J F(x+y—v1,...,x+y—vm) dQ (vy)

-

J H(X+YIV) dQ(Y)

-0

and from definition (8) and the assumption on the moment of Q(y)

o* (V) J x dH* (x,V)

= J U- X dH(x+y,V)] dQ(y)
x:—w

y:—oo
= J [6(V) - y] dQ(y) = ¢(V) - a < =
y:—oo
It follows that
3p* (V) _ 99 (V)
v . AV .
J J

which together with (9) proves statement (iii).



Discussion

Statement (i) is a basic result, establishing a general rule
to obtain the choice probabilities from the extreme value dis-
tribution. That is, in a sense, a precise statement of the claim
that a random utility choice model is a by-product of the more
general extreme value distribution problem. Statement (ii)
strengthens this result, giving with equation (9), a method which
is operationally much more useful than representation (7). It
also says something more on the properties of a random utility
choice model. The function ¢ (V) defined by (8) is the expected
value of the maximum in the sequence 6, that is, in the random
utility interpretation, the expected utility deriving from an
optimal choice. The fact that the choice probabilities pj are
the partial derivatives of the expected utility ¢ (V) has an in-
teresting economic interpretation. From the mathematical point
of view, (9) states the integrability cenditions for the vector

function
P(V) = [p1 (V),...,pm(V)]

showing that the general integral

m
J P(V) @v = J ) P (V) dv,
521 3 3

exists, and is independent from the path of integration, and it

is given by ¢{(V) up to an additive constant.

In economics, these conditions are equivalent to those pro-
posed by Hotelling (1938) to ensure the existence and uniqueness
of a consumer surplus for a vector demand function of many sub-
stitutable commodities. Of course, the original Hotelling
formulation uses prices instead of utilities, but one can, with

no loss of generality, write

and call cj a price.
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The fact that random utility models satisfy the Hotelling
conditions has been noted and studied by many authors in the
last 10 years, mainly in the field of transport demand analysis
and land use plans evaluation. The approach has been pioneered
by Neuburger (1971), for gravity-type models, although no random
utility assumption was considered in Neuburger's paper. The |
link with random utility theory is extensively discussed in
Williams (1977), Coelho (1980), Daly (1979) Ben Akiva and Lerman
(1979). However, most of the above works are tied to very spe-
cific assumptions on the form of F(x), and it does not seem to
be explicitly recognized that statement (ii) is fairly general.
More recent work free from specific assumptions is found in
Leonardi (1981) and Smith (1982).

Statement (iii) is also very important, although almost
obvious. It basically says that choice probabilities are unaf-
fected by a shift in the utility scale. Moreover, it says that
they remain unaffected by any mixture of shifts. For instance,
if choices are made by a population which shifts the utility
scale heterogeneously, according to the distribution Q(y), this
heterogeneity does not affect the choice behavior. Due to the
way the function H(x,V) is defined, it is evident that the shift
can be indifferently considered as applied to the random terms
ij or to the deterministic terms Vj' That is, it can easily be

proved that
6V = y) = 6(V) -y -
(see Leonardi 1981), and therefore
Jim ¢V - y) daly) = ¢(V) - o

which leads to an alternative proof of (iii).

Besides other considerations, statement (iii) says that
there is a lot of arbitrariness in fixing an origin for the
utility scale, and additive constants (either deterministic or

stochastic) can be ignored.
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3. MAIN RESULTS FROM THE ASYMPTOTIC THEORY OF EXTREMES

As stated in Section 2, the main problem in extreme value
theory is analyzing the behavior of the extreme value distribu-
tion when the number of elements in the sequence of random vari-
ables becomes large. More precisely, using the terminology
introduced in Section 2, the general problem to be explored is
to find sequences of normalizing constants (am) and (bm), where

m = |S|, such that, as m » «

lim Hs(am + bm X) = H(x)
where H(x) is a nondegenerate probability distribution. The
main interest in exploring this problem lies in the fact that,
as it will be seen, H(x) can be expected to be largely indepen-
dent from the specific form of F(X), on which only some weak
conditions need to be imposed. This is in striking constrast
with the approach followed in building most random utility
models, usually obtained by imposing very restrictive and spe-

cific assumptions on F(X).

For instance, the Logit model is obtained by assuming X is
a sequence of independent identically distributed (i.i.d) random

variables with common distribution function:

= _ _—Bx
Pr(xj < X) = exp (- e ) (15)
Function (15) will actually be shown to play a fundamental role
in extreme value theory, in the sense that almost every asymptotic
extreme value distribution can be reduced to (15) by a suitable
transformation. But it need not be assumed for each j&€S, provided

|s| - » and some other requirements are met.

As a matter of fact, the main results in this paper are
those on convergence to the multinomial Logit for a wide class
of random utility models. This makes, in a sense, the Logit
model an aggregate rather than a disaggregate one. Conversely,
eventual convergence properties to the multinomial Logit for a
wide class of distributions F (X) would make it hardly justifi-
able to make any inference on the specific form of the actual

F(X), since the mapping between F(X) and H(x) is many-to-one.
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Most well-known results on extreme value statistics concern
sequences of i.i.d. random variables. The independency assump-
tion could be replaced by asymptotic independency for many re-
sults, but thiswill not be pursued here. Some general results
from the theory developed for i.i.d. random variables will be
sufficient to give an asymptotic justification to the logit model.
The following terminology will be used

F(x) = Pr(§ < x) 1is theunivariate distribution of any
random variable X in the sequence
considered

n
Fn(X) = 'H1 F(xj) is the joint distribution for a sequence
I= of n terms
Hn(x) = Fn(x) is the distribution of the maximum term
in a sequence of n terms [this follows
from (5) as a special case]
a(F) = inf {x:F(x) > 0} is the lower endpoint of F (x)
w(F) =sup{x:F(x) < 1} is the upper endpoint of F (x)

Hn(x) will be said to belong to the domain of attraction of some
nondegenerate distribution H(x) if sequences of normalizing con-

straints an and bn can be found such that

lim Hn(an + bn x) = H(x) (16)

n--o

The following will be referred to as Condition 3.1 and
Condition 3.2.

Condition 3.1. wW(F) = » and there is a constant 8 > 0
such that, for all x > 0

1 - F(tx) _ -8B

o T F(E)

torx
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Condition 3.2. For some finite a
w(F)
[T - F(x)] dx <
a

and for all real x

1 - F[t + xR(t)] _ -x
T - F(t) - ©

lim
t+w (F)

where R(t), a(F) < t < p(F) is the function

-1 (rw(F)
R(t) = [1 - F(t)] ) (1 - F(x)] dx
t

The main results for i.i.d. random variables are stated

without proof in the following reference Lemma.

Lemma 3.1. Any nondegenerate limit in (1€) satisfies the
functional equation

Hm(Am + B_ X) = H(x) m

| v
—_

(17)

Equation (17) has only three solutions:

exp (—X-B) x>0, B>0
H1(X) = (18)
0 x <0
1 x >0
HZ(X) = 8 (19)
exp [-(-x)"] x<0, B8>0
Hy(x) = exp (-e ™) —o < X < (20)

F(x) belongs to the domain of attraction of:

H1(x) if, and only if, condition 3.1 holds

H2(x) if, and only if, w(F) < » and for the modified
distribution
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1

F¥(x) = Fluw(F) - X] x>0

condition 3.1 holds
H3(x) if, and only if, condition 3.2 holds.

The sequences of normalizing constants a and bn in (16)

can be computed as:

(i) a =0, b = inf {x:1 - F(x) < 1/n} 1if F(x) belongs

to the domain of attraction of H1(x)

(ii) a = w(F), bn = w(F) - inf {x:1 - F(x) < 1/n} 1if

F(x) belongs to the domain of attraction of Hz(x)

(iii) a, = inf {x:1 - F(x) < 1/n}, b, = R(an) if F(x)

belongs to the domain of attraction of H3(x).

Discussion

Lemma 3.1 is a collection of results scattered in the
literature. They can be found with the proofs in the compre-
hensive book by Galambos (1978), although they date back some-
what earlier. Not mentioning the work on extremes done by
Bernoulli and Poisson, the first systematic results on the
three possible limits are due to Fisher and Tippet (1928) and
von Mises (1936), although these authors limited their consid-
erations to absolutely continuous F(x). The current level of
the theory, not requiring continuity, is due mainly to Gnedenko
(1943) and de Haan (1970).

The most important qualitative result is perhaps the ex-
haustive list of possible limits. Lemma 3.1 does not say that
a nondegenerate limit in (15) always exists. If, however, it
does, then it can only be either H1(x), H2(x), or H3(x). H3(x)
is, of course, of the same form as (13), therefore, one might
expect a tight relationship between Condition 3.2 and a possible
limiting Logit form for the choice probabilities. It would be
nice to have strong behavioral justifications for choosing

Condition 3.2, rather than Condition 3.1. However, there is
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no self-evidence in the way the two conditions are formulated.
Some insight is given by assuming F(x) is differentiable. 1In
this case, if one defines the hazard rate
- _F'lx) _ d -
p(x) = +— F(x) - ax log [1 F(x)]
it can be shown (von Mises 1936) that Condition 3.1 is equiva-
lent to

lim x p(x) = B (21)

X0

while Condition 3.2 is equivalent to

. d 1
lim = |=5=x| =0 (22)
Xx>w(F) dx [p(x)}

In other words, with (21) the hazard rate is, in the limit,
inversely proportional to X, while with (22) the hazard rate is,
in the limit, constant. One might recall the meaning of the

hazard rate:
p(x) dx = P _(x < X < x +dx |x > x)

that is, p(x)dx is the (infinitesimal) probability that the
random variable X is nearly x, conditional to the event that it
is not less than x. In terms of utilities, it would seem plaus-
ible to assume a diminishing returns effect, by which the prob-
ability of finding higher utilities does not increase for high
utility levels. This would lead to discard assumption (21), and
hence Condition 3.1, as unrealistic. There is, however, a

stronger argument to justify working under Condition 3.2 only.

Assume, further to Condition 3.1, o(F) > 0, and define the

new random variable

~

= log X (23)

032

with distribution G(;). It is clear that
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~ _ ~ X, _ b4
G(x) = Pr (log x < x) = Pr(x < e7) = F(e)

and the hazard rate of G(x) is

G' (%) _ e* F’(ex)

p*(x) = — =
1 G (x) 1 = F (%)

therefore, defining y = e

lim p*(x) = lim JL51L93— = lim yp(y) = B

X+ yree y>®

because of (21). Hence, the transformed variable (23) has an
asymptotically constant hazard rate, meets condition (22), and

belongs to the domain of attraction of H,(x). Thus a simple

3
) .
logarithmic transformation maps a large subset of the domain of

attraction of H1(x) [namely, the F(x) for which a(F) > 0] into

a subset of the domain of attraction of H3(0). Similar consid-
erations apply to the domain of attraction of Hz(x). By Lemma
3.1, F(x) belongs to the domain of attraction of Hz(x) if

F* (x) = F|:w(F) - ‘:E] (24)
belongs to the domain of attraction of H1(x); hence

G* (x) = F*(e¥)
belongs to the domain of attraction of H,(x). Transformation

3
(24) 1is interesting in its own right. One can write:

F*(x)=P|—;:<w(F)—lj|=P ——1—~<x
rL X r w(F) - x

hence F*(x) is the distribution of the random variable:
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Applying now transformation (23) to F* (x)
G*(x) = P_ {- loglw(F) - x] < x}

therefore, the distribution of the random variable

u =~ log [w(F) - x] (25)
belongs to the domain of attraction of H3(0). The one given by
(25) is an interesting utility function. If @ (F) is interpreted

as an tdeal level for the variable §, then for x +» w(F)

the maximum satisfaction. 1If one additionally assumes:

I
o

a(F)

I
-_—

w(F)

so that 0 < x

| A
—

therefore (25) can be used to map a normalized weight into a

nonnegative real number.

To summarize, given a sequence of i.i.d. random variables
whose maximum has an asymptotic nondegenerate distribution Hk(x),
k=1,2,3, a suitable transformation can always reduce them

to a sequence whose asymptotic distribution for the maximum is

H3(x). The transformations are:
I. u = log x if k = 1
II. u = - log [W(F) - x] if k = 2
III. u = x if k = 3

and their shape is as shown in Figure 1.
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a4
II III

I
—p

w(F) X
Figure 1. Graph of the three possible transformations required

to generate extremes converging to
H,(x) = exp (-e %)

3
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Besides the above theoretical considerations, one might
ask how some of the most commonly used distributions behave in
the limit. The answer is that most of them belong to the do-
main of attraction of H3(x), like the exponential, the normal,
the lognormal, the gamma, and the logistic. Some less usual
distributions belong to the domain of attraction of H1(x), such
as Cauchy and Pareto distribution, or of Hz(x), such as the uni-
form and the beta distribution. However, there are qualitative
differences in the way of reaching the limit, even within the
same domain of attraction, which raise some theoretical and
empirical problems. The crucial problem in applications is
estimating the normalizing constants an and bn’ In a random
utility choice model, the constant a, is not critical, no mat-
ter how large it becomes as n - =, because of statement (iii)
in Lemma 2.1. The constant bn, on the contrary, is critical,
since it is related to the dispersion of the extreme value dis-

tribution. Indeed, if

. _ __ =X
1lim Hn(an + bn X) = H3(x) = exp (-e )
n+-o
it follows that
1
= B;(X - an)
lim Hn(x) = lim exp |[-e (26)

n+o n>ro«

and the right hand side of (26) would be used as an approxima-
tion of Hn(x), for large n. It is clear that, if bn does not
depend much on n, it makes sense to estimate it as a constant
and consider the limiting approximation a stable low. If, on
the other hand, the dependence of bn from n is not negligible,
any empirical estimation of its value would strongly depend on
the conditions under which the observations were made, and the
limiting law in (26) would be a poor forecasting tool. The
nature of this problem is clarified by two examples. As a first

example, assume

F(x) = 1 - e FX
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an exponential distribution. Hence it belongs to the domain of
attraction of H3(x). By applying the rules given in Lemma 3.1

it can easily be shown that
bn = 1/B for all n > 1

therefore, the limiting approximation would be:

-B(x - a )
Hn(x) ~ exp | -e n

a very stable law. As a second example, assume

X 2
(2.{()—1/2 [ e‘Y /2

- OO0

F (X) dy

a standard normal distribution. It also belongs to the domain
of attraction of H3(x), but the sequence bn in this case can be
shown to be

b_ = (2 log n)~1/2

therefore the coefficient in the exponential (26) would be:

By = éz (2 1log n) /2

The seguence Bn increases with n, although very slowly,

and lim Bn = «, although an unbelievably large n is required to
n-roo
get a large value of Bn (for instance, Bn = 10 for n ~ 5.1021,

which far exceeds any reasonable number of alternatives one
could find in this world). This sequence is shown in Figure 2.
Since the dependency on n does not disappear, any empirical
estimate for Bn would depend on the number n of alternatives
available at the time. Therefore, with changing size of the
choice set, the wvalue for Bn would change. This means, if the
population is normal, a constant B is a poor approximation for

forecasting purposes.

The fact that Bn increases with n seems counterintuitive,
since it implies that the dispersion in the limiting distribu-
tion decreases, while many empirical observations on choice be-
havior (for instance, urban trips) seem to suggest that disper-

sion increases with the number of alternatives.
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4. ASYMPTOTIC DERIVATION OF THE MULTINOMIAL LOGIT MODEL

Lemma 3.1 will now be used to derive a first result on the
asymptotic convergence of choice probabilities to the multinomial
Logit model. In order to do so, an additional assumption on the
structure of the choice set, the measured utilities and the
choice behavior is required. It will be referred to as Condition
4.1.

Condition 4.1. Let S be the total choice set and associate

with each 0€S a real number v (o), the measured utility of o.

Assume S can be partitioned into m > 1 subsets S1’52""’Sm such
that
v(g) = Vj for all cesj; - o < vj <o ; 3 =1,...,m
|S.| == j=1,...,m

Assume a sample of size n is drawn from S according to n
Bernoulli trials, such that, if o(k)ES is the alternative drawn
at trial k,

m
Pr[G(k)ESj] =w. >0 , z w. =1, k=1,...,m .

In short, Condition 4.1 assumes the alternatives can be par-
titioned into very large subsets homogeneous with respect to the
measured utilities. The information on alternatives is obtained
by independent trials. Clustering alternatives into homogeneous
subsets is more often than not a natural way to formulate a
choice problem. For instance, in models for travel demand, a
geographic area is usually divided into smaller zones, each zone
containing many possible trip destinations, and the same average
travel cost is assigned to the trips from a given origin to any
destination within the same zone. In residential mobility and
migrations, alternatives are clustered into regions, and the same
average attributes are assigned to any alternative within the
same region. Aggregating alternatives into homogeneous subsets
is actually a need in modeling spatial choice problems, since the

task of listing them one by one is impossible and unrealistic.
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All the ingredients are now ready to prove the following.
Theorem 4.1. Assume the random utility terms are i.i.d.

random variables with distribution F(x) belonging to the domain

of attraction of H3(x) and let Condition 4.1 hold. Assume fur-

ther w(F) = « and there is some constant x1,such that F'(x),
F"(x) exist for x > x1. Define o, such that
v(on) + X(0_.) = max v[o(k)] + x[o(k)]
1<k<n

(ties broken arbitrarily)

where i(c) is a random variable with distribution F(x), and

P (j) =P € S. i = 1,...,m
n{d) r % 3! % > 1
Then:
. F'(t)
(i) 1if lim = B < =
tym 1 - F(E)
Bv.
wj e
) w. e J
j=1 )

. F'(t)
(1i1) if lim = o
oo 1 - F(t)
1, v, = max v
J k
lim P_(3) = 1<k<m (28)
n-+o© n

0 , otherwise

Preoof. Consider the following stochastic process in dis-
crete time. The system will be said to be in state (j,x) at

time n if cnej and v(on) + i(on) = Xx. The above process is
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easily seen to be a homogeneous Markov chain with mixed state
space. Define the transition probabilities

pl(j,y:i,x) = Pr On+1 = j,[V(On+1) + x{(o )y

n+1

<ylo, =1 [v(o ) +x(o )] =x

For j # i, a transition from i to j occurs only if an alternative
from S. is drawn, which according to Condition 4.1 happens with
probability wj, and it has a total utility in the interval [x,y)
which happens with probability

F(y = v.) - F(x - v.) x <y
J J -
If v < X no transition occurs. Therefore,

wj[F(y - vj) - F(x - Vj) r X <y

p(i,y:i,x) = (29)
0 , X > Y

for j # 1i.

The system can remain in state i in two mutually exclusive
ways:

I. An alternative in Si is drawn (different from the
current one) with total utility in the interval
(x,y): the probability for this event is given by
(29), for j = 1i.

II. An alternative is drawn from any Sj,1 <Jj<m, but it
has a total utility less than x; this happens with
probability

l~—4g

w. F(x - v.)
] ]

§=1

Adding up events I and II one gets:

w, F(y —v.) + ] w. F(x - v.,) , x <y
pli,y;i,x) =1 * * i#i I J
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The state probabilities
P (3ry) =P lo =73, vio ) + x(o ) < vyl

satisfy the Kolmogoroff equations:

m y o )
P, Gy = ] J P(j,yii,x) dP_(i,x) (31)
i=1 -C0
j=1,...,m
-0 < < @
n > 1
with the initial conditions
P,(J,y) = w.F(y - v_) j=1,...,m (32)
] J -°°<y<°°

After substitution from (29) and (30) and some rearrangements,

equation (31!) becomes

m
P o1 (dry) = Wy F(y - vj) i£1 P_(i,y)

m
L op,(ix)

Y
- W. J P(x - v.) d
J & ] 1

i

y m
+ [ﬂn 121 w, F(x - Vi)] d P_(3,x) (33)

Now let the following functions be introduced

Q (y) = Y P (i,y) the distribution of the maximum
i=1 total utility after n trials
m

G(x) = ] wy F(x-vi) the distribution of the total
i=1

utility after one trial

The equation (33) can be reformulated as:
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Pn+1 (le) = Wj F(y - V]) Qn(Y)

Y
—wy [T v a0

-0

y .
+ Lﬂ) G(x) d Pn(j,X)

and since from the rule of integration by parts

Y
{ Qn(X) dF (x - vj) = F(y - vj) Qn(y)

=00

one finally gets:

Y
Pn+1(j,y) = wj f Q,(x) d F(x - vj)

-0

Y
+ J G(x) d P (j,x) j=1,...,m (34)
-_C0 n n->_1

Summing both sides of (34) over j = 1,...,m and using the rule
of integration by parts again, the following equation relating

Qn(y) and G(y) is obtained:

Quy1 (¥) =0 (v) G(y) n > 1 (35)
_oo<y<oo

{v

with the initial condition
Q, (y) = G(y)
The solution of (35) is obviously
0, (¥) = G (y) (36)

a result which could have been obtained directly. Substitution
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of (36) into (34) and induction over n with the initial condi-
tions (32) easily yield a closed-form solution for the state

probabilities:

Y
Pn+1(j:Y) = (n + 1) wj LWD ¢"(x) d F(x - vj) (37)

Now clearly,
P (J) = Pr(onesj) =P (3,>)

therefore

o]

Pn+1(j) = (n + 1) wj Lﬂo Gn(x) d F(x - Vj) (38)

Hence, the asymptotic behavior of Pn(j) depends on the asymptotic
behavior of Gn(x). Let it first be proved that G(x) belongs to
the domain of attraction of H3(x), i.e., it satisfies Condition
3.2, Since F{(x) satisfies this condition, there is some finite

a for which:

[o.0]

J [1 = F(x)] dx < o
a

and of course this implies

J [1 - P(x)] dx < =
b

for any b > a. Now

©

m <]
J [1 - G(x)] dn = | w. J [1 - F(x - vj)] dx
b =

[1 - P(x)] dx

and if one chooses b = a + max v. , all the above integrals
1<j<m
converge. Hence G(x) satisfies the first part of Condition 3.2.

For the second part, define
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R(t) = [1 - F(t)] ) [ [1 - F(x)] dx
‘t

and

o

1 -Gyl J [1 - G(x)] dx
t

R(t)

From the definition of G(x) and R(t) it follows:

) Wl [ [1 = F(x - v.)] dx

where

Wj(t) = ] J j=1,...,m

For the weights Wj(t) it is true that

m

wW.(t) >0 , E W.(t)y =1 for all real t
] - =1 J
]
hence R(t) is a weighted arithmetic mean of R(t - Vj)’ j =
1y¢..,m, and
min R(t - v,) < R(t) < max R(t - v.)
1<j<m ] 1<j<m ]
Since the vj are finite
lim min R(t - v.) = lim max R(t - v.) = lim R(t)
tre 1<j<m ] t>eo 1<3<m ] oo

and one concludes that

Lo,m o (39)

I
—_
-
.

lim R(t) = lim R(t) lim R(t - vi) i

t> > t->o
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Using the weights Wj(t) defined above, it is easily shown
that

1 - Flt + xR(t)]
1 - G(t)

m 1 —Ewt—vj+x§wn
- j£1 Wy (8) T=F(E - vy)

Using (39) and Condition 3.2 for F(X):

1 — F{t -V, +xXR(t)] 1-Flt-v. +xR(t-v.)] s
lim RN = Lim T - g(t —~ 7= ¢©
t—>00 :] t‘*°° J
Therefore
1 - G[t + xR(t)] _ § -x _ _-x
lim ey ) W.(t) e =e
o j=1 J

hence G(x) also satisfies the second part of Condition 3.2, and
belongs to the domain of attraction of H3(x). According to

Lemma 3.1, normalizing constants a, and bn exist such that:

lim Gn(an +b_x) =exp (-e ) (40)
n+o

and they can be computed as
a, = inf [x:1 - G(x) < 1/n] (41)
b, = ﬁ(an) (42)

Due to the definition of G(x) and the continuity assumption

on F(x) for x > X4 for large n rule (41) reduces to finding the
only root of the equation

(43)

m 1
jZ1 LF [1 - Fla, - vj)] = -

which holds for all a_ > x, + max v., an inequality surely met

when n+«, since lim a = o, J
n—>-co n
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Using the limit (40) one can approximate the integral on
the right hand side of (38) for large n:

) ® n . (® n
llmj G (x)dF(x—vj) = lim G (an+bnx) dF(an+bnx-vj)
n->oo - 00 n—PCD ¥ == QO
= lim exp (-e ®)dF(a +b x-v.)
n+o 4/ o P n n J
(44)

Since lim a =« from equation (42) and result (39) it follows
n->w

lim bn = lim R(an) = lim R(arl - vj) 1 < j<m (45)
n->oo n—+o n-+o

Therefore, from Condition 3.2:

lim [1-F(a_-v. +b x) = 1lim {1-F[a -v. +xR(a —V.)J}
n--co n J n n->o n J n J

1—F[an—v:j +xR(a_-v.)]

= lim L [1-Fla, =v.)]
n--o 1-F(a_-=-v.)
n J
-X .
= e lim [1-F(a_ -v.)]
ri~>o n J

or

. _ _ X g _ -
lim F(an vj +bn Xx) = 1 e lim [1 F(arl vj)]
n—>00 n—>oo
Replacing this result into (44)
limJ Gn(x)dF(x—v.) = [J- e_X exp (—e_x) dx]lim [1-F(an—v.)]
n>®© ‘= J —co n—-oo ]

,:LdeB(x)] lim [1 —E‘(arl —vj)]

n->o

lim |_1--F(an - Vj)] (45)

n—+-o

since
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Substitution of result (45) into (38) finally yields:

lim Pn(j) =w., limn [1 - F(an - vj)]
n-+>o n-—+o

and since from equation (43)

m
. [1 - F - v,
j£1 wj[ (a, J)]
it follows:
rllir} Pn(J) = iﬂ} - (46)
'2 wj[1 - F(an - vj)]

J=1

Since F(x) is assumed to belong to the domain of attraction

of H3(x), property (22) holds for the hazard rate:

_ _F'(x)
0oX) = %

Clearly property (22) implies that either

< o

i
w™

lim p (x)

X+

or

I
8

lim p (%)

X+

On the other hand, it is true in general that for any probability

distribution F(x) which is continuous for x > X4t



[1-F(x)] = [1-F(x;)] exp [- [[ow dy]

Therefore, if a, - vj > X,

a 7]
n
[1-F(an-vj)] = [1—F(an)] exp [— Ja _v.o(y) dy
n j =
V-_‘.| m
= [1 -F(an)] exp [i} p(an-x) dx- (47)

By using the mean value theorem for integrals, there is some £,
ge(o,vj), such that

V.

]
L o(an-X) dx = vj o(an-E) (48)

substituting (48) into (47) yields the estimate:

vj p(an-é)
[1 —F(an-vj)] = [1 -F(an)] e , EE(Oer)

and (46) becomes
v. pla_-¢§&)

w, e 3 n
1im P_(j) = lim —— ——— , £E(0,v.)  (49)
n>o n n->o If‘ W evj O(an £) J
j=1 J
Consider the case
lim p(x) = g < =
X->00
Then
lim p(a_ - &) = B
n-« n
and
B v
w] e J
iiﬁ Pn(J) T m ij
) w. e
j=1
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Now consider the case

lim p(x) = «
X->oo

and define

V.e = Mmax v,
) 1<j<m

Equation (49) can be written for j* as

lim P_(j*) = lim 1
© n - © (v _V-*)p(a -£)
n- n-+ Wy 2: W, e k 73 n
7T kA
and since Ve T Vj* <0, k=1,...,m for all k # j and
lim p(a_ = E) = o
n-+o n
lim P_(j*) = 1
n->o n
and this, of course, inplies
lim Pn(j) =0 for all j # j*

n-—+>o

The proof of Theorem 4.1 is completed.

Together with the above limiting results for the choice
probabilities, one would like to also have an asymptotic approxi-
mation for the expected utility, as defined in (8) and make sure
that property (9) holds in the limit. This is provided by the
following corollary.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold with

X, = -, and define the function

o ) = | yao_

[o o]

where Qn(y) is given by equation (36). Then:
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8¢n(V)
(i) s— = P,(3)
J
m BV..
1 log ) w. e J 4+ 1im C if lim p(t) =
B =1 3 n>e n ' £ o0 © -
(ii) lim ¢ (V) =
n+oo .
max v, + lim Ch , 1f lim p(t) =
1i]§m -+ t>
where p(t) = F'(t)/[1-F(t)] and Cn is a sequence asymptotically

independent from V.

Proof. From equation (36)

Qn(y) = G

where G(y) is defined as

G(y) = _
J

e~ 3

w. F -V.
1J(Y 5)

Therefore, since F(x) is differentiable for every real x,
3¢, (V)

av,
J

[ d[n ¢ y) —%ﬂ]
—c0 J

= TR oWy J y d[Gn_1(y) F (y-vj)]

Integration by parts yields

ap_ (V) © -
—nv—-—=nw. [ Gn1(y) dF (y -vVv.) (50)
y J J

[e%]

Jew

and comparison of (50) with (38) proves statement (i).

To prove the first case considered in statement (ii), one

simply observes that:

ij
m Bv. w. e
CEN il 3
3v. [B log Ly Wj S ] = ™ BV . (51)
] J= Tow, e ]
j=1 )

which is the same as (27). On the other hand, by using the
asymptotic approximation
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. * n L oa ® n
lim Loode (y) = lim Lm (an+bnx) d G (an+bnx)

nro

lim ¢n(V)

n—+o n-+>oo

n+o©

= 1im [an-+b ( x e ¥ exp (-e-x) dx]

= lim (an+bn Y)
n-—-o

where vy is Euler's constant. Of course, the sequence an-l-bn Y
tends to infinity as n + «, therefore, taking equation (51) into

account, the limiting form for ¢n(V) must be of the form

1 n Rv .
lim ¢ (V) = g log ] w. e J 4y 1imcC
n-+o n J:'I J n-+o n
BCn
where C -+ ®» as n + « and lim =— =0, j = 1,...,m.
n V.
n-+o

The second case considered in statement (ii) follows obvi-

ously from equation (28).

Discusston of Theorem 4.1 and Corollary 4.1.

The somewhat lengthy proof of Theorem 4.1 is actually an
excusetx)introducetjmabrototype of a basic stochastic search
model, namely, the Markov Chain defined by equations (33). The
main departure of a search-based random utility model from
standard ones is the assumption on the knowledge of the choice
set, which in a search behavior is always limited, although in-
Creasing with the number of trials, while in the classic random
utility model it is unlimited from the start. While the assump-
tion of Bernoulli trials might seem restrictive, the main re-
sults obtained actually carry over to a wider class of sampling
processes, provided they satisfy a strong law of large numbers,
in the sense that, if Hj(n) is the number of units in Sj sampled

after n trials, lim H.(n)/n = w., a constant.
n->o ] ]
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The Markov Chain of equations (33) is related to the
Extremal Process, whose theory was started by Dwass (1964) and
Lamperti (1964). A treatment of discrete-time extremal proces-
ses is found in Shorrock (1974). The theory for such processes
is rapidly developing, and a closer look at it by social scien-

tists is surely worth the effort.

Equations (27) and (28) raise again the problem of gqualita-
tive differences in the limiting behavior among distributions
belonging to the domain of attraction of H3(x). The limit given
by (27) is a standard multinomial logit, while the one given by
(28) 1is equivalent to deterministic wutility maximizing. How-
ever, while using (27) would give fairly good approximations to
the actual behavior when the assumption B < = holds, the limit-
ing form (28) would give a totally useless approximation to the
actual behavior, since such a limit is usually reached so slowly
that no real situation will ever be close enough to it. Even
when the hazard rate tends to infinity, much better approxima-
tions are still obtained by using a multinomial logit, but in

this case the estimated B parameter is not independent from n.

In the nondegenerate case (27), the choice probabilities
also depend on the wj, the sampling probabilities in the
Bernoulli trials. Since the model would remain unaffected if
the wj were all multiplied by a constant, only the knowledge of
weights proportional to the sampling probabilities is needed.

A natural and simple assumption would be:

w, = |S.|
J ]
but any other assumption is possible. If, for instance, the
actor has a prior knowledge or guess on the convenience of each

Sj’ it might be reasonable to assume:

wy g(.vj)
where ¢g(x) 1s some nonnegative, nondecreasing function. A pos-
sible meaningful generalization suggests itself in this case.
The assumption of sampling probabilities remaining constant dur-
ing the scarch is unrealistic. It is more reasonable to assume
the actor will modify them during the search, depending on the

outcomes of the trials. In other words, a learning and
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adaptation mechanism would be introduced. Such a more general

search model will be the subject of further work.

Although the formulation of a choice process as a search
one is natural in many ways, one might find the assumption on
the clustering structure of the choice set too restrictive, and
insist on having a different measured utility for each alterna-
tive. 1In this case Condition 4.1 will fail to hold and Theorem
4.1 is useless. The following reference lemma will be useful
to deal with this case. It is a well known result, due to
Mejzler (1950), therefore it will be stated without proof.

Lemma 4.1. Let 21,...,xn be a sequefice of independent ran-

dom variables with distributions

Fj(x) = Pr(xj < x) j=1,...,n

Let there be a sequence Zn such that
n

lim .Z [1 - fj(Zn)] = A 0 <A < ®
n+o j=1

Furthermore, let there be. a constant B such that

n[1l - Fj(Zn)] < B for all n and j
Then
n
lim 1 F,(z ) = e B
. !
n+o j=1

Lemma 4.1 keeps the independency assumption, but does not
require identical distributions. It can be applied to the spe-
cial structure of random utility models, where the distribution
for the total utility of each alternative j is F(x - vj). The

result is stated in the next theorem.

Theorem 4.2. Let ﬁ1,...,um be a sequence of independent

random variables with distributions
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Pr(uj < x) = F(x - vj) j=1,...,n
where -« < vj <o, j=1,...,n and F(x) is a twice-differentiable
univariate distribution with a(F) = -, w(F) = «, and such that
lim 1 ; f(;(:)x) = o BX 0 < B < (52)
t>ow '
Define
P (j) = P_(4, » max u,)
n r-j 1<k<n k
k#]j
Then
Bv.
\ . . e J
lim pn(J) = lim = BV (53)
n-—+o n->o Z e ]
j=1

Proof. It is first remarked that assumption (52) is equiva-
lent to stating that F(x) belongs to the domain of attraction of
H3(x) and

[}
lim 1F (t)

t>o - F(t)

It will now be shown that the sequence ﬁ1,...,ﬁn satisfies the

conditions of Lemma 4.1. Consider the sequence
Z = a + X —®© < X < o

where a, is the root of the equation

n
.Z [1 - Fla, - vl =1 (54)
j=1

Since 1 - F(x) is a continuous monotone decreasing function

(54) implies:
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I
8

lim a
n—+o n

Therefore, from assumption (52)

1-F(a -v. +Xx)
n J

lim [1-F(a_-v,-x)] = lim — = [1-F(a_-v.)
norco n J . 1 F(an vj) n j
-Bx .
= e lim [1 -F(a_-=-v.)
n->o n J
and
(3 -B B -Bx
lim § [1-F(a_-v.+x)] =e "X 1lim | [1-F(a_-v.)] =e
4 n j . n b)
n>o j=1 nro j=1
(55)
because of equation (54). Thus the first condition of Lemma 4.1
is met by the sequence a, + x, with
A= e BX
Moreover, the quantities
n[1-F(an-vj-+x)] (56)

are easily seen to be bounded for all n and j. Indeed, for
n < », expression (56) is finite, since 0 < 1-F(x) <1 for all

X. For n » », the following asymptotic approximation can be

usedzr
1 —F(an-vj)
lim [1-—F(an-vj)] = lim — = F(a ] [1 -F(an)]
n->c nro n
RV ..
=e J 1im [1-F(a_)]
n->o n
which follows from assumption (52). Substitution of this approxi-

mation into equation (54) yields
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Bv.
lim [1-F(a )] J = (57)

n->o J

e~ 3
o
1

from which the inegquality follows:

. 1
lim [1 —F(an)] < ———__Ev; < ©

n—-o .
min e

J

Again using the asymptotic approximation, (56) becomes

-B(x-v.)
limn [1-F(a_-v,+x)] = e J limn [1-F(a)]
n->o n J n->o n
RV.
J -
i‘e—gv—. e <
min e
J
Thus Lemma 4.1 applies and
o -8
lim @I P(a_-v, +Xx) = exp (-e Xy , - <x <o
. n j
n+eo j=1
The limiting expected value for max u. is given by
1<j<n
. _ . ® -Bn
lim ¢_(V) = 1lim J (a_ +x) 4 [exp (-e )]
n->o n n—>o © n

lim an + v/B

In—>

where y is Euler's constant. The sequence a, is, of course, a
function of V = (Vl""’vn) while the term y/B is a constant.

Therefore, applying property (9) in Lemma 2.1

3p_ (V) 3a
lim p (j) = 1lim ——— = lim ——
n->w n n->co an noo an

FProm (57) it follows that
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n Rv.
lim log [1-F(a )] = - lim log ] e >
n-—o n->o j:‘]

and applying the derivation rule for implicit functions

' BV.

F (an) Ban J
1-F(a ) 3v.
n J

But from assumption (52):

F'(a))
Lin 5y = °
n—+~ n

and one concludes that

1im p_(j) = lim

Discussion

Theorem 4.2 seems more general than Theorem 4.1, but it is
actually less useful. The assumption on the clustering struc-
ture of the choice set has been dropped, but the price paid for
this is the unrealistic assumption of unlimited knowledge of the
choice set. This assumption is needed in order to make result
(53) independent from the way the alternatives are ordered.

When the right hand side of (53) is used as an approximation for
a finite (although large) n, one has therefore to make an arbi-
trary decision on which alternatives to drop from the sequence.
This always produces an unpredictably biased model. Moreover,
the limiting choice probabilities (53) are, in a sense, always
ill-defined and difficult to handle empirically, since they are
of the order of magnitude 1/n and assume very small values as

n » ©», This, of course, does not happen when clusters are intro-

duced, since limits (27) and (28) do not depend on n.
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It should be remarked that Theorem 4.2 has been proved under
the assumption of a bounded limiting hazard rate. The case of an
unbounded limiting hazard rate would have led to a result similar
to (28), adding nothing really new to what has been said already
about this degenerate behavior. BAs an additional historical re-
mark, it must be mentioned that, although Theorem 4.2 does not
appear in the literature, an analogous result has been proved
by Juncosa (1949). The problem addressed by Juncosa seems dif-
ferent since it deals with lifetime heterogeneity, the distribu-
tion for the minimum, rather than the maximum, is looked for,
and the distribution is assumed to satisfy Condition 3.1 (suit-
ably restated for minima) rather than 3.2. However, since a
problem of minimum can be restated as a problem of maximum by
a change in sign, and since Condition 3.1 can be mapped into Con-
dition 3.2 by a logarithmic transformation (this has been shown
in the discussion following Lemma 3.1), part of Theorem 4.2 can

actually be derived from the result of Juncosa.

5. CONCLUDING REMARKS

This paper has explored with some success the usefulness of
reinterpreting random utility models in the light of asymptotic
theory of extremes. This has, in a sense, turned the usual
philosophy upside-down, producing the Logit model as an aggregate
rather than a disaggregate result. An unsuspected robustness of
the Logit formula has also been found, since the assumptions on
the individual distributions required to derive Theorem 4.1 are

by far weaker than theones found in the literature.

Another point of departure from the traditional approach is
the use of a dynamic search formulation, rather than the usual
static choice one. The stochastic process of search used in the
proof of Theorem 4.1 is an interesting result in itself, and can
be considered as the simplest prototype of a family of such models,

which needs further exploration in the future.

The effectiveness of themethod outlined in the paper (combin-
ing asymptotic theory of extremes and stochastic search processes)
has thus been shown, although its power has yet to be explored in

full. ©Natural further steps in future research suggest themselves,
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such as considering forms of dependency in the sequence of ran-
dom terms and learning mechanisms changing the knowledge of the
choice set and the dispersion of the distribution during the
search.
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