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ABSTRACT

Clarke has given a robust definition of subgradients of
arbitrary Lipschitz continuous functions f on R", but for pur-
poses of minimization algorithms it seems essential that the
subgradient multifunction 3f have additional properties, such
as certain special kinds of semicontinuity, which are not auto-
matic consequences of f being Lipschitz continuous. This paper
explores properties of 3f that correspond to f being subdiffer-
entially regular, another concept of Clarke's, and to f being a
pointwise supremum of functions that are k times continuously
differentiable.
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FAVORABLE CLASSES OF LIPSCHITZ CONTINUOUS
FUNCTIONS IN SUBGRADIENT OPTIMIZATION

R, Tyrrell Rockafellar

1. INTRODUCTION

A function f : R" >R is said to be locally Lipschitzian if for
each x€R" there is a neighborhood X of x such that, for some A > 10,

(1.1) |£(x") - £(x")| < A[x" -x'| for all x'e€X, x"eX

Examples include continuously differentiable functions, convex
functions, concave functions, saddle functions and any linear
combination or pointwise maximum of a finite collection of such

functions.

Clarke (1975 and 1980), has shown that when £ is locally

Lipschitzian, the generalized directional derivative

f(x'+tv) - £(x"')

(1.2) f° (x;v) = lim sup
x'—>x t
t+0

is for each x a finite, sublinear (i.e., convex and positively
homogeneous) function of v. From this it follows by classical

convex analysis that the set

(1.3) 3£(x) = {yeR"|y-v <f° (x;v) for all veRr"}
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is nonempty, convex, compact, and satisfies
(1.4) fo (x;v) = max {y*v |y€3f(x)} for all v eRr".

The elements of 3f(x) are what Clarke called "generalized gradients"
of £ at x, but we shall call them subgradients. As Clarke has
shown, they are the usual subgradients of convex analysis when f

is convex or concave (or for that matter when £ is a saddle func-
tion). When f is continuously differentiable, 9f(x) reduces to

the singleton {Vf(x)} .

In subgradient optimization, interest centers on methods for
minimizing £ that are based on being able to generate for each x
at least one (but not necessarily every) y€3f(x), or perhaps just
an approximation of such a vector y. One of the main hopes is
that by generating a number of subgradients at various points in
some neighborhood of x, the behavior of £ around x can roughly be
assessed. In the case of a convex function f this is not just
wishful thinking, and a number of algorithms, especially those of
bundle type (e.g., Lemarechal 1975 and Wolfe 1975) rely on such an
approach. 1In the nonconvex case, however, there is the possibility,
without further assumptions on f than local Lipschitz continuity,
that the multifunction 3f : x >3f(x) may be rather bizarrely disas-
sociated from f. An example given at the end of this section has
f locally Lipschitzian, yet such that there exist many other locally
Lipschitzian functions g, not merely differing from f by an addit-
ive constant, for which 3g(x) =3f(x) for all x. Subgradients alone
cannot discriminate between the properties of these different func-
tions and therefore cannot be effective in determining their local

minima.

Besides the need for conditions that imply a close connection
between the behavior of f£ and the nature of 3f, it is essential
to ensure that 3f has adequate continuity properties for the con-
struction of "approximate" subgradients and in order to prove the
convergence of various algorithms involving subgradients. The key
seems to lie in postulating the existence of the ordinary direction-

al derivatives



(1.5) f'(x;v) = lim
£40 t
and some sort of relationship between them and 5f. Mifflin (1977a

and 1977b), most notably has worked in this direction.

In the present article we study the relationship between f'
and 3f for several special classes of locally Lipschitzian func-
tions that suggest themselves as particularly amenable to comput-
ation. First we give some new results about continuity properties
of f' when f belongs to the rather large class of functions that
are "subdifferentially regular". Next we pass to functions f that
are Zower—Ck for some k, 1<k <=, in the following sense: for each
point % €R™ there is for some open neighborhood X of X a repres-

entation

(1.6) f(x) = max F(x,s) for all x€X,
sSES

where S is a compact topological space and F : X xS—+R 1is a func-
tion which has partial derivatives up to order k with respect to

x and which along with all these derivatives is continuous not

just in x, but jointly in (x,s) EX xS. We review the strong re-
sults obtained by Springarn (forthcoming) for lower-C1 functions,
which greatly illuminate the properties treated by Mifflin (1977b),
and we go on to show that for k >2 the classes of lower—Ck functions

all coincide and have a simple characterization.

Before proceeding with this, let us review some of the exis-
tence properties of f' and continuity properties of 3f that are
possessed by any locally Lipschitzian function. This will be use-
ful partly for background but also to provide contrast between
such properties, which are not adequate for purposes of subgradient
optimization, and the refinements of them that will be featured

later.

Local Lipschitz continuity of a function £ : R"> R implies by
a classical theorem of Rademacher (see Stein 1970) that for almost
every xéERn,Vf is differentiable at x, and moreover that the grad-

ient mapping Vf, on the set where it exists, is locally bounded.



Given any xEERn, a point where f may or not happen to be differ-
entiable, there will in particular be in every neighborhood of x

a dense set of points x' where f(x') exists, and for any sequence
of such points converging to x, the correspoinding sequence of
gradients will be bounded and have cluster points, each of which
is, of course, the limit of some convergent subsequence. Clarke
demonstrated in Clarke (1975) that 3f (x) is the convex hull of all

such possible limits:

(1.7) 3f (x) = co{lim f(x')|x'=>x, £ differentiable at x'}.

Two immediate consequences (also derivable straight from properties
of £° (x;v) without use of Rademacher's theorem) are first that 3f

is locally bounded: for every x one has that

(1.8) U 3f(x') is bounded for some neighborhood X of x,
x'eEX

and second that 3f is upper semicontinuous in the strong sense:

(1.9) for any € >0 there is a § >0 such that
3f (x') CIf(x) + eB whenever [x'-x| <$ ,
where
(1.10) B = closed unit Euclidean ball = {x|[x| <1} .

The case where 9f (x) consists of a single vector y is the
one where f is strictly differentiable at x with Vf(x) =y, which

by definition means

[} - '
(1.11) lim fix'+ev) = F(xT) _ yev for all veR" .,
x'>x t
t40
This is pointed out in Clarke (1975). From (1.7) it is clear

that this property occurs if and only if x belongs to the domain

of V£, and Vf is continuous at x relative to its domain.



We conclude this introduction with an illustration of the
abysmal extent to which 3f could in general, without assumptions
beyond local Lipschitz continuity, fail to agree with Vf on the
domain of Vf and thereby lose contact with the local properties
of £f.

Counterexample

There is a Lipschitzian function £ : R">R such that

n

(1.12) Sf(x) = [=1,1] for all xeR"

To construct f, start with a measurable subset A of R such that

for every nonempty open interval I CR, both mes{ANI] >0 and

mes[A\I] >0 . (Such sets do exist and are described in most texts
on Lebesgue measure.) Define h :R =R by
h(t) = “ett) dlq) where o (t) = { | £ tEA,
- 0“ ’ € T ]-1 if teA .

Since I8l _=1, h is Lipschitzian on R with Lipschitz constant
X=1, Hence h'(t) exists for almost every t, and !h'(t)|i1 .

In fact h'=6 almost everywhere, from which it follows by the
choice of A that the sets {t|h'(t) =1} and {t|h'(t) =-1} are both

dense in R. Now let

m
f(x) = ) h(x,) for x = (xq,...,%x) .

existing if and only if h'(xi) exists for i=1,...,n. Therefore
Vf(x)ez[—1,1]n whenever Vf (x) exists, and for each of the corner
points e of [-1,11" the set {x|Vf(x) =e} is dense in R". Formula

(1.7) implies then that (1.12) holds.

Note that every translate g(x) =f(x -a) has 9g =3f, because

af 1is constant, and yet g -f may be far from constant,
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2. SUBDIFFERENTIALLY REGULAR FUNCTIONS

A locally Lipschitzian function £ : R?> R is subditfferentially
regular if for every x €R™ and veR” the ordinary directional de-
rivative (1.5) exists and coincides with the generalized one in

(1.2):
£'(x;v) = £°(x;V) for all x,v.

Then in particular f'(x;v) is a finite, subadditive function of
v; this property in itself has been termed the quastidifferen-
tiability of f at x by Pshenichnyi (1971).

THEOREM 1. (Clarke 1975). If £ Zs convex or Zower-Ck
on RV for some k <1, then £ <8 not only locally Lipschitzian

but subdifferentially regular.

Clarke did not study lower-Ck functions as such but proved
in Clarke (1975) a general theorem about the subgradients of "max
functions" represented as in (1.6) with F(x,s) not necessarily
differentiable in x. His theorem says in the case of lower-Ck

functions that

(2.1) 3f (x) = co{VxF(x,s) | se1(x)}
where
(2.2) I(x) = arg max F(x,s) .

. sSES

It follows from this, (1.4), and the definition of subdifferential

regularity, that

(2.3) f'(x;v) = max {VXF(x,s)-v | se1(x)}

for lower—C1 functions,a well known fact proved earlier by
Danskin (1967).

The reader should bear in mind, however, that Theorem 1 says

considerably more in the case of lower—Ck functions than just this.



By asserting the equality af f' and f°, it implies powerful things
about the semicontinuity of f£' and strict differentiability of f.

We underline this with the new result which follows.

THEOREM 2. For a function f : R? >R, the following are
equivalent:

(a) £ ts locally Lipschitzian and subdifferentially
regular;

(b) f£'(x;v) exists finitely for all x,v, and is upper
semicontinuous in X.

Proof.

(a) = (b). This is the easy implication; since f'= f°
under subdifferential regularity, we need only apply (1.4) and
(1.9).

(b) = (a). For any x' and v the function Q(t) =£f(x"' + tv)
has both left and right derivatives at every t by virtue of (b):

(1.12) Q'

+(t) = £'(x'"+tv;v), Q' (t) = -f'"(x"+ tv; -v)

Moreover, the upper semicontinuity in (b) implies that for any

fixed x and v there is a convex neighborhood X of x and a constant
A >0 such that

(1.13) £'(x'+ tv; v) < A and -f'(x'+ tv; V)Z ~A when x'+ tveX.

Since Q has right and left derivatives everywhere and these are

locally bounded, it is the integral of these derivatives (cf.
Saks (1937)):

t

t
Q(ty) -Qlty) = J Vo (nar = J To (mar
to ' to

From this and (1.13) it follows that

|£(x'+tv) - £(x')| < At when Xx'€EX, x'+tveX

Thus the local Lipschitz property (1.1) holds as long as x"- x'
is some multiple of a fixed v. To complete the argument, con-

sider not just one v but a basis VireeesVy for R",
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Each erRn has convex neighborhoods X.l and constants xi_zo such
that

' N ' ' ' —_
(1.14) [£(x'+ tv, ) =f(x ) | < Ajt when x'€X,, x'+tv,E X; .

Then there is a still smaller neighborhood X of x and a constant

a >0 such that for x'eé X and x"€ X one has

" = . +l..+
X X'+ t1V1 tnvn

with x' and x'+ t1v1ex1 , X'+ t1v1 and (x'+ tv1) +tv26X2 , and
so forth, and
el + .o+ ft | < afk"-x" .
n —

Then by (1.14)

|£x™) - £(x") < |[£(x'+ £, vy) -£(x") | + |f<x'+tvl+tv2) - f(x'+tvl)| t...

< x1t1+ x2t2+...+-xntn
S g+ i, ek ) alx"-x'| .

In other words, £ satisfies the Lipschitz condition (1.1) with

A= (X1 + ... +Xn)a . Thus f is locally Lipschitzian.

We argue next that f'(x ;v) < £°(x;v) for all x,v by (1.2),
and therefore via (1.7) that

(1.15) f°(x;v) = lim sup £'(x'; v) .
x'> x

The "lim sup” in (1.15) is just f'(x';v) under (b), so we conclude
that £'(x;v) = £°(x;v) . Thus (b) does imply (a), and the proof of
Theorem 2 is complete. O



COROLLARY 1. Suppose f is locally Lipschitzian and
subdifferentially regular on R" and let D be the set of all
points where f happens to be differentiable. Then at each
x €D, £ is in fact strictly differentiable. Furthermore,

the gradient mapping 1S continuous relative to D.

COROLLARY 2, If f Zs locally Lipschitzian and subdif-
ferentially regular on Rn, then 3f is actually single-valued

at almost every x € R,

These corollaries are immediate from the facts about differ-
entiability of f that were cited in §1 in connection with formula
(1.7). The properties they assert have long been known for convex
functions but have not heretofore been pointed out as properties
of all lower—Ck functions. They hold for such functions by virtue

of Theorem 1.

COROLLARY 3. Suppose f 7s locally Lipschitzitan and sub-
differentially regular on r™. If g ©s another locally Lip=-

schitzian function on R™ such that dg = 9f, then g = f + const.

Proof. By Corollary 2, 3g is single-valued almost every-
where. Recalling that g is strictly differentiable wherever
dg 1s single-valued, we see that at almost every x €R" the
function h = g-f is strictly differentiable with Vh(x) =
Vg (x) - VE(x)
that Vh(x) = 0 for almost all x implies h is a constant func-

tion. O

0. Since h is locally Lipschitzian, the fact

COROLLARY 4. Suppose f is locally Lipschitzian and sub-
differentially regular on R,  Then for every continuously
differentiable mapping E:R->R", the function Q(t) = f£(E(t))
has right and left derivatives Qg (t) and Q' (t) everywhere,

and these satisfy

Ql(t) = lim sup QL(T) = lim sup Q' (1) ’
T->t T->t
(1.16)
Q'(t) = lim inf Q;(T) = lim inf Q' (1) .

Tt T—>t
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Proof. The function Q is itself locally Lipschitzian
and subdifferentiably regular (cf. Clarke 1980). Apply
Theorem 2 to Q, noting that Q}(t) = Q'(t;1) = Q°(t;1) and
Q'(t) = -Q'(t;-1) = -Q°(t;-1), and hence also 3Q(t) =
[Q (£),Q] (t)]. The reason Q (1) and Q!(1) can appear inter-
changeably in (1.16) is that by specialization of (1.7) to
Q, as well as the characterizations of Q: and Q' just men-
tioned, one has

Q'(t) = 1lim sup Q'(1') , Q'(t) = lim inf Q' (') ,

+ [ - '
S T =T

where the limits in this case are over the values T1' where

Q'(1') exists. O

3. LOWER—C1 FUNCTIONS AND SUBMONOTONICITY

The multifunction of :Rn::;Rn is said to be monotone if
(3.1) (x'-x")+ (y'-y") >0 whenever y'esf(x'), y"eod f(x").

This is an important property of long standing in nonlinear ana-
lysis, and we shall deal with it in §4. 1In this section our aim
is to review results of Spingarn (forthcoming) on two generaliz-
ations of monotonicity and their connection with subdifferentially
regular functions and lower—C1 functions. The generalized prop-

erties are as follows: 9df is submonotone 1if

'—l . .—
lim inf (x x) * (¥ y) >0, ¥x, ¥vyeif(x) ’
(3.2) x'>x |x'~ x|
y'e sf(x')

and it 1is strictly submonotone if

lim inf X=xD) - (y'=y") >0, ¥x .
x'>x |x"= x'|
(3.3) "> x
vy'e of (x')
Yue 3f(X")
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To state the results, we adopt Spingarn's notation:

(3.4) 3f (x) = ly €93f (x) | (y'=y) v <0, ¥y'e 3f (x)}

Thus af(x)V is a certain face of the compact convex set of (x),
the one consisting of all the points y at which v is a normal
vector. Let us also recall the notion of semismoothness of £

introduced by Mifflin (1977): this means that

]

(3.5) whenever x5-Xx , visv ' tj¢ 0, y°»y, with

yje E)f(x]+t.j v]), then one has y.v=1£f'(x;v) .

THEOREM 3 (Springarn (forthcoming)). The following
properties of a locally Lipschitzian function £:R'>R are
equivalent:

(a) £ is both subdifferentially regular and semismooth;

(b) 3f <s submonotone;

(e¢) 3f is directionally upper semicontinuous in the
sense that for every x €R", v €R™ and € >0, there
28 a § >0 such that

(3.6) 3f (x +tv') C 3f(x) +eB  when |v'-v| <& and 0<t< § .

THEOREM 4 (Springarn (forthcoming)). The following
properties of a locally Lipschitzian function £:R"> R are

equivalent:
(a) £ is lower C';

(b) 3f 2s strictly submonotone:

(c¢) df 7Zs strictly directionally upper semicontinuous
. . n n
in the sense that for every X€R , VER and € >0,

there 28 a & >0 that
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(3.7) (y"-y') +v'> - when [x'-x| < &, [v'-v|<6,0<t<s,

y'e of (x') and y"€odf(x'+ tv') .

Spingarn has further given a number of valuable counter-

examples in his forthcoming paper. These demonstrate that

(3.8) 0f submonotone # 5f strictly submonotone ,
1
(3.9) f subdifferentially regular # f lower-C ,
(3.10) f quasidifferentiable and semismooth # f subdiffer-

entially regular,

Comparing Theorems 3 and 4, we see that lower—C1 functions
have distinctly sharper properties than the ones of quasidiffer-
entiability and semismoothness on which Mifflin, for instance,
based his minimization algorithm (1977a). 1In perhaps the majority
of applications of subgradient optimization the functions are ac-
tually lower—C1, or even lower-C . This suggests the possibility
of developing improved algorithms which take advantage of the
sharper properties. With this goal in mind, we explore in the
next section what additional characteristics are enjoyed by lower-

Ck functions for k> 1,

4, LOWER—C2 FUNCTIONS AND HYPOMONOTONICITY

The properties of lower-Ck functions for k >2 turn out,
rather surprisingly, to be in close correspondence with properties
of convex functions It 1is crucial, therefore, that we first take
a look at the latter. We will have an opportunity at the same
time to verify that convex funcﬁions are special examples of
lower-C . functions. The reader may have thought of this as obvi-
ous, because a convex function can be represented as a maximum of
affine (linear-plus-a-constant) functions, which certainly are c”.
The catch is, however, that a representation must be constructed
in terms of affine functions which depend continuously on a para-
meter s ranging over a compact set, if the definition of lower-C

is to be satisfied.
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We make use now of the concept of monotonicity of 9f defined

at the beginning of §3.

THEOREM 5. For a locally Lipschitzian function £:R">R,

the following properties are equivalent:
(a) £ is convex ;

(b) 3f <is montone ;

(e) for each X €R? there is a neighborhood X of x
and a representation of £ as in (1.6) with S a
compact topological space, F(x,s) affine in x

and continuous in s .

Proof. (a) = (c). In terms of the conjugate f* of the

convex function £, we have the formula

(3.11) f(x) = max {y*x -f*(y)} for all x ,
ye R!

where the maximum is attained at y if and only if y € 39f (%)
(see Rockafellar 1970, §23). Any x has a compact neighborhood
X on which 3f is bounded. The set

s = {(y,8) er™" |3xex with ye 3f(x),8=y-x~£(x)}

is then compact, and we have as a special case of (3.11)

f(x) = max {y-x-B8} .
(y.,B) €S
This is a representation of the desired type with s = (y,R),

F(x,s) = y*x-8 .

(c) = (a). The representations in (c¢) imply cer-
tainly that f is convex relative to some neighborhood of each
point. Thus for any fixed x and v the function Q(t) = f(x + tv)
has left and right derivatives Q' and Q; which are nondecreasing
in some neighborhood of each t. These derivatives are then non-

decreasing relative to t € (-»,»), and it follows from this that
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Q is a convex function on (-»,») (cf. Rockafellar 1970, §24)
Since this is true for every x and v, we are able to conclude

that f itself is convex.

(a) = (b). This is well-known (cf. Rockafellar
1970, §24).

(b) = (a). A direct argument could be given, but
we may as well take advantage of Theorem 3. Monotonicity of
3f trivially implies submonotonicity, so we know from Theorem
3 that £ is subdifferentially regular. Fixing any x and v,
we have by the monotonicity of 3f that

((x+t"v) - (x+t'v)) * (y"-y') > 0 when
t'< t, v'edf(x+t'v), y'"edf(x+t"v) .

This implies

sup y'ev < inf y'ev = -sup [-Y v],

y'EJE(x+ t'v) T oy"edf(x + t"V) Y= E(x+t"v)
or equivalently (by 1.4) and subdifferential regularity)
12) f'(x+t'viv) < -f'(x+t"v;-v) when t'<t" .
Since also

-f'(x';-v) < £'(x';v) for all x',v,
by the sublinearity of £'(x';+), (3.12) tells us that the func-
tion Q(t) = f(x +tv) has left and right derivatives which are
everywhere nondecreasing in t &€ (-«,«), Again as in the argu-
ment that (c) implies (a), we conclude from this fact that £

) n
is convex on R'. 0O

COROLLARY 5. Every convex function £:R" >R is in par-

ticular lower-C~.
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Proof. 1In the representation in (c) we must have F(x,s) =
a(s)*x-a(s) for certain a(s)ERn and a(s) €R that depend con-
tinuously on x. This is the only way that F(x,s) can be affine
in x and continuous in s. Then, of course, F(x,s) has partial
derivatives of all orders with respect to x, and these are all

continous in (x,s). O

Let us now define two notions parallel to Springarn's submon-

otonicity and strict submonotonicity: 23f is hypomonotone if

(x'"=-x)e (y'=y) > =0 for all x and y & 3f (%)

lim inf
(3.13) x'>x IX'—X|2
y'edf(x'")

and strictly hypomonotone 1if

1im inf (x"=x"') «(y"=-vy') > -» for all x .
x'>x \x"—x'|2
(3.14) x">x
y'eaf (x'")
y"EE(x")

Clearly hypomonotone implies submonotone, and strictly hypomono-
implies strictly submonotone. We have little to say here about
hypomonotonicity itself, but the importance of strict hypomonot-

onicity is demonstrated by the following result,

THEOREM 6. For a locally Lipschitzian function £ on Rn,

the following properties are equivalent:
(a) £ s Zower-Cz 3
(b) 8f 7is strictly hypomonotone ;

(¢c) For every X €RT there is a convex neighborhood X

of x on which f has a representation
(3.15) f = g-h on X with g convexr, h quadratic convez.

(d) For every X €R" there is a neighborhood X of X
and a representation of f as in (1.6) with S a
compact topologtical space, F(x,s) quadratic in

X and continuous in S.
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Proof.

(a) = (c). Choose any X and consider on some neighborhood X
of X a representation (1.6) of f as in the definition of f as in
the definition of f being lower—C2: F(x,s) has second partial de-
derivatives in x, and these are continuous with respect to (x,s).
Shrink X if necessary so that it becomes a compact convex neigh-
borhood of x. The Hessian matrix Vi F(x,s) depends continuously

on (x,s) ranging over a compact set X xS, so we have

min v -V2 F(x,s)v > ==
(x,s) EXx8 X
|v| =1

Denote this minimum by -p and let

(3.16) G(x,s) = F(x,s) + (p/2) |x|2
Then
2 2
(3.17) v -Vx G(x,s8)v =v - [V°F(x,s8) +pI]lv 3_0
for all (x,s) €X xS when |v| =1 and hence also in fact for all

VGERn, because both sides of (3,17) are homogeneous of degree 2
with respect to v. Thus Vi G(x,s) 1is a positive semidefinite
matrix for each (x,s) €X xS, and G(x,s) 1is therefore a convex

function of x€X for each s€8. the function

g(x) = max G(x,s)
SES

is accordingly convex, and we have from (3.16) and (1.6) that
(3.15) holds for this and h(x) = (p/2) |x|2 .

(c) = (d). Given a representation as in (c¢), we can translate
it into one as in (d) simply by plugging in a representation of

g of the type described in Theorem 5(c).

(d) =(a). Any representation of type (d) is a special case
0of the kind of representation in the definition of £ being lower-

C2 (in fact lower-Cm); if a quadratic function of x depends
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continuously on s, so must all its coefficients in any expansion

as a polynomial of degree 2.

(c) = (b). Starting from (3.15) we argue that J3f(x) =
dg(x) - dh(x) (cf. Clarke 1980, §3, and Rockafellar 1979, p.345),
where 3g happens to be monotone (Theorem 5) and 9h is actually
a linear transformation: yeodf(x) if and only if y =Ax, where
A is symmetric and positive semidefinite., For y'€odf(x'), y"eof(x"),
we have y'+ Ax'€3g(x') and y"+ Ax"€3g(x"), so from the monoton-

icity of 3g it follows that

0 < (x'=x")«([y'+Ax'] =~ [y"+Ax"])
(3.18)

(X'-X")‘(Y'—yu) + (X"‘X")'A(X'—X") .
Choosing p >0 large enough that
veAvV < p[vl2 for all v er"

we obtain from (3.18) that

(3.19) (x"=-x"')(y"-y") iohﬂ—xﬂz when x'eX, x"eX,
y'esf (x'),
y"e 3f (x") .

Certainly (3.14) holds then for x =x, and since x was an arbi-

trary point of R” we conclude that 3f is hypomonotone.

(b) = (c). We are assuming (3.714), so for any x we know we
can find a convex neighborhood X of x and a p >0 such that (3.19)
holds. Let g(x) = f(x)-+(p/2)|x|2, so that 9g = 9f + pI (cf. Clarke
1980, §3, and Rockafellar 1979, p 345). Then by (3.19), 3g is
monotone on X, and it follows that g is convex on X (cf. Theorem 5;
the argument in Theorem 5 is in terms of functions on all of Rn,
but it is easily relativized to convex subsets of R™). Thus (3.15)
holds for this g and h(x) = (p/z)lx|2. a
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COROLLARY 1., If a function £:R">R is Zower—Cz, 1t
18 actually lower-C . Thus for 2 <k < the classes of

Zower—Ck functions all coinecide.

Proof. As noted in the proof that (d) = (a), any re-
presentation of the kind in (d) actually fits the defini-

tion of f being lower~C .

COROLLARY 2. Let £:RU'>R be Zower—Cz. Then at almost
every x €R®, £ is twice-differentiable in the sense that
there is a quadratic function q for which one has

£(x') = q(x') +o(|x"-x|2) .

Proof. This is a classical property of convex func-

tions (cf. Alexandroff 1939), and it carries over to gener-

al lower-C2? functions via the representation in (c¢).

Counterexample

Since the lower—Ck functions are all the same for k>2, it
might be wondered if the lower—C1 functions are really any dif-
ferent either. But here is an example of a lower-C! function

that is not lower-C2. Let f(x) = -lxlyz on R. Then f is of

?

class C1, hence in particular a lower-(C7 and there would exist by

characterization (d) in Theorem 6 numbers a,B,Y, such that

2

£ (x) > a+ Bx + vx for all x near 0,

with equality when x=0.

Then a=£(0) =0 and -|x[/2 > 8x +yx?, from which it follows on
dividing by |x| and taking the limits x +0 and x 4+ 0 that B =0.
Thus y would have to be such that —|x|3/2 > y|x[2 for all x suf-
ficiently near 0, and this is impossible. Therefore f is not

lower-C2 .
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