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FOREWORD 

The public provision of urban facilities and services often 
takes the form of a few central supply points serving a large 
number of spatially dispersed demand points: for example, 
hospitals, schools, libraries, and emergency services such as 
fire and police. A fundamental characteristic of such systems 
is the spatial separation between suppliers and consumers. No 
market signals exist to identify efficient and inefficient geo- 
graphical arrangements, thus the location problem is one that 
arises in both East and West, in planned and in market economies. 

This problem is being studied at IIASA by the Public Facility 
Location Task, which started in 1979. The expected results of 
this Task are a comprehensive state-of-the-art survey of current 
theories and applications, an established network of international 
contacts among scholars and institutions in different countries, a 
framework for comparison, unification, and generalization of exist- 
ing approaches, as well as the formulation of new problems and 
approaches in the field of optimal location theory. 

This paper is both a unifying effort and a contribution to 
the formulation of such new problems and approaches. It explores 
the relationships between a recent area of geographic research, 
random-utility theory, and a recent area of applied mathematic 
research, the optimization of submodular functions. The frdit- 
fulness of this marriage is shown by some numerical results, 
which seem to suggest that the approach can yield new, powerful 
tools for location problems. 

Related publications in the Public Facility Location Task 
are listed at the end of this report. 

Andrei Rogers 
Chairman 
Human Settlements 
and Services Area 



ABSTPACT 

The most important part of a location-allocation model is 
the allocation rule, that is, the way clients are assigned to 
facilities. In the well-known models of the "plant-location" 
family, the embedded allocation rule is the assignment of the 
least-travel-cost facility, 

This allocation rule depends on the assumption that the 
cost, or more generally utility, associated with each possible 
facility choice is deterministically known. The simplest way 
to generalize a plant-location model is to add a random term to 
travel costs, with a known probability distribution. Such 
randomness may be shown to arise in many real-life situations, 
and the resulting choice models constitute the subject of 
random-utility theory, 

This paper introduces the use of the random-utility modeling 
philosophy in location-allocation problems, Some relevant prop- 
erties of the resulting family of models are derived, Among 
them, of special importance is the submodularity property, which 
relates the random-utility-based location models to a recent area 
of research in combinatorial optimization. Submodularity is 
exploited to develop simple heuristic algorithms, and the effec- 
tiveness of the approach is supported with some.numerica1 results. 
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THE USE OF RANDOM-UTILITY THEORY 
IN BUILDING LOCATION-ALLOCATION 
MODELS 

1. INTRODUCTION 

Some recent theoretical and computational innovations have 

revived interest in location problems in the last few years. 

On the theoretical side, the need to introduce more realis- 

tic and economically sound measures of customer benefits has 

been felt by many scholars. An outstanding contribution in this 

field has been given by the use of random-utility theory. This 

approach, mainly developed for transport demand analysis 

(Domencich and McFadden, 1975; ~illiams, 1977), has been rapidly 

extended to the spatial allocation of economic activities 

(~oelho,' 1977, 1979; Coelho and Williams, 1978; ~ a c ~ i l l  and ~ilson, 

1979). Its use in the facility location context first appeared 

in Coelho and Wilson (1 976) and independently in Leonardi (1975) , 
then, shortly after in many other contributions (Williams and 

Senior, 1977; Leonardi, 1978, 1980a, 1980b; Beaumont, 1979, 1980; 

Coelho, 1980a) . 
On the computational side, the major event has been the 

appearance of the dual ascent method, which amazingly outperforms 

all previously used methods to solve the classic uncapacitated 

plant-location problem. The method, first suggested by Bilde and 

Krarup (1977), has been developed by Erlenkotter (1978) and 



Van Roy and Erlenkotter (1980). More interesting than the method 

itself have been the theoretical investigations it stimulated, 

Among them, the most fruitful one has been the parallel develop- 

ment of a new framework to analyze cornbinatorial optimization 

problems with submodular objective functions. The method has been 

developed by Cornuejols, Fisher, and Nemhauser (1977); Nemhauser, 

Wolsey, and Fisher (1978); Fisher, Nemhauser, and Wolsey (1978); 

and its relationships with the"dua1-+scent method have been 

analyzed in Wolsey (1980). 

This paper tries a first step in putting the two theories 

together, Submodularity (the key property leading to the success 

of the above methods) is shown to hold for all objective functions 

based on the additive random-utility model. Some simple heuris- 

tics based on this property are proposed, and some (surprisingly 

good) numerical results are shown for a typical random-utility 

uncapacitated location problem. 

As a conclusion, it is argued that further investigation 

could yield a substantial improvement in the state-of-the-art of 

location mo6eling for the near future, and provide superior 

algorithms for a much wider class of problems than the ones 

usually considered in the operations research literature. 

2. A GENERALIZATION OF THE UNCAPACITATED FACILITY LOCATION 
PROBLEM 

The classic uncapacitated facility location problem 

(Efroyrnson and Ray, 1966; Spielberg, 1969) can be formulated in 

the following way 

min C C xij Cij + C a  
L,X j f ~  i j EL j 



where 

i labels customer locations 

j labels facility locations 

Pi is the total number of customers in location i 

x is the number of customers in location i served i j 
by the facility in location j 

X is the array Ixij] 

L is the subset of locations of open facilities, to 

be chosen among all subsets of feasible facility 

locations 

Cij is the cost paid to serve a customer in location 

i by the facility in location j; it includes 

transport costs and possible operating costs 

a is the fixed cost paid to establish a facility in 
j 

location j 

The goal of problem ( 1 ) - ( 3 )  is therefore to find a spatial 

arrangement of facilities, L, and an assignment of customers to 

them, X, which minimize total cost. 

A well known property of ( 1 ) - ( 3 )  is that customers are 

assigned to the least-cost facility. Indeed, for L fixed, 

problem ( 1 ) - ( 3 )  is separable for each customer location, and 

the subproblem associated with a customer location i is 

min Z xij 
X jEL 'i j 



with the trivial solution 

The assignment rule ( 4 )  can be given two different interpretations. 

If the assignment of customers to facilities is controlled by the 

decision maker, it is the optimal solution to the total cost 

minimizing problem. If customers are free to choose the facility 

they want, it is a model for rational choice behavior, stating 

that customers choose according to the minimum-cost criterion. 

The last interpretation is the point of departure for the gener- 

alization which will be developed. 

Let it be assumed that facilities belong to the second 

class discussed above, so that customers choose facilities, have 

to travel in order to get served, and pay for transport and 

possible operating costs. The behavior implied by (4) is not 

only rational but also deterministic, since no uncertainty, lack 

of information, or variation in tastes and preferences is ac- 

counted for. On the other hand, everyday experience suggests 

that cost is not the only criterion determining customer choice. 

If the assumption of rational choice behavior is kept, it can be 

said that customers maximize their utility, which is basically 

a function of costs but also includes many other variables. 

Moreover, not all the components of this utility can be measured 

easily, since they vary greatly among individuals, and possibly 

among different points in time for the same individual. 

A simple model which accounts for the above requirements is 

as follows. Let it be assumed that the utility of choosing a 

facility in location j, for a customer in location i, can be split 



in two parts, a measured (or deterministic) one and a random one 

w u = vij + Fj i j (5) 

where 

.. 
u i j is the total utility of choosing a facility in 

location j, for a customer in location i 

v ij is the measured part of utility 

Fj is the random part of utility 

The 9 are random variables with a joint distribution function, 
j 

from which all customers are assumed to draw. 

Each customer in i will choose in order to maximize his 

utility, that is, he will solve the problem 

max ii 
jEL ij 

But the quantity (6) is a random variable. The expected utility 

for a customer in i is therefore 

Ui (L) = E max G 
(,EL ij) 

where E denotes the expectation operator. The random-utility 

counterpart of problem ( 1 ) - (3) is therefore 

max CP.U.(L) - C a 
L i 1 1  j EL j 

Notice that the rnax operator has replaced the min operator, 

since utility maximizing rather than cost minimizing, is used. 



Notice also that constraints (2) and (3) have been dropped, and 

the array X has disappeared, since the assignment subproblem has 

already been solved by introducing (6) and (7). Problem (8) 

looks therefore simpler than problem (1)-(3). What price is 

paid for this "simplicity"? Basically, the linear-integer 

programming features of (1 ) - (3) are lost. While problem (1 ) - (3) 
can be easily solved by dual ascent and related methods (Bilde 

and Krarup, 1977; Erlenkotter, 1978; Wolsey, 1980), problem (8) 

cannot. It is a general combinatorial optimization problem for 

which satisfactory exact algorithms are not known, except for 

problems of small size. However, the random-utility assumption 

will be shown to give problem (8) some special properties, which 

can be exploited to develop f.airly good heuristic approaches. 

3. BASIC PROPERTIES OF THE ADDITIVE RANDOM-UTILITY MODEL 

In order to operationalize the model loosely introduced in 

Section 2, some basic notions from random-utility theory are 

needed. Most results presented in this section can be found in 

the recent literature (Domencich and McFadden, 1975; Williams, 

1977; Daly, 1978; Ben-Akiva and Lerman, 1978). 

Some of them are new, and specially tailored to give insight 

into problem (8) . 
The following notation will be used. An upper case X,Y, 

etc., is a vector; a lower case x,y, etc., is either a scalar or 

a vector with all elements equal to x,y, etc. Therefore 

Functions of vectors are defined element by element, e.g., 



2 is a random v a r i a b l e ,  u sua l ly  t h e  j t h  element of a random 
j 

vector .  2 i s  a random vec to r ,  whose d i s t r i b u t i o n  funct ion is  

A l l  t h e  d i s t r i b u t i o n  func t ions  considered i n  t h i s  paper a r e  

assumed t o  be continuous and t o  have d e r i v a t i v e s  of any order .  

The cond i t iona l  dens i ty  of 2 i s  denoted by F . (X)  and def ined  
j I 

by equat ions  

Fj ( X )  = aF (X) 
ax 

j 

- 
The extreme-value d i s t r i b u t i o n  of X i s  t h e  d i s t r i b u t i o n  func t ion  

of t h e  random v a r i a b l e  

max 2 
j j  

I t  i s  w e l l  known from t h e  theory  of  extreme o r d e r  s t a t i s t i c s  

(see Galambos, 1978, f o r  i n s t a n c e )  t h a t  t h e  fo l lowing  equat ion  

ho lds  t r u e  

t h e r e f o r e ,  from (13) and (9)  it fol lows 

The extreme-value probabiz i ty  f o r  element 2 i s  t h e  p r o b a b i l i t y  
j 



From equation (10) it is easily derived that 

Let now the additive random-utility model be introduced. 

In order to simplify notation, the subscript labeling customer 

location will be dropped, since it will be kept constant. From 

( 5 ) ,  the total utility when alternative j is chosen is 

Let F(Y) be the distribution function of Y = {?;I. Then the 
J 

distribution function of 6 = {G. is 
3 

where V = {v.) is the vector of measured utilities. 
3 

The extreme value distribution for 5 is, according to (14) 

and its first moment is 

Equation (19) gives the expected utility for a rational customer. 

The extreme value probability for alternative j is the 

probability that the facility in j is chosen. According to (16) 

it is given by 



where F . (X) is defined by (1 1 ) . 
3 

The following propositions state some noteworthy properties 

of the additive random-utility model. 

PROPOSITION 1. (Translation of expected utility) 

P r o o f  

OD 

- - ydF (y - V) + a dF (y - V) = $ (V) + a 

(The transformation y = x - a has been used.) 

PROPOSITION 2. (Translational invariance of choice 
probabilities) 

P r o o f  

(The transformation y = x - a has been used.) 



PROPOSITION 3. (Hotelling consistency of expected utility) 

Proof 

[Equations (11) and (20) have been used.] 

PROPOSITION 4. (Logit-like representation of choice 
probabilities) 

The Function 

'4 (W) = exp4 (log W) 

is linear homogeneous, and 

where 



Proof:  

$ (aw) = exp4 ( l o g  W + l o g  a )  = exp [$I  ( l o g  W) + l o g  a ]  = a Q ( W )  

hence l i n e a r  homogeneity fo l lows  

[Proper ty  (2  1 ) has  been used. I 

To prove ( 2 5 ) ,  l e t  (24) be  used t o  w r i t e  t h e  expected 

u t i l i t y  i n  t h e  form 

4 (V) = l o g  $ (eV) 

t h e n  

[Proper ty  (23)  has  been used. 1 

PROPOSITION 5. (Equivalence wi th  an en t ropy  maximizing 
problem) 

.4 j 
@ (V)  = max - L  qj l o g  f : L qj = 1 

Q j j j 

where 

Q = 

and $ .  ( 0  ) is d e f i n e d  b y  ( 2 6 )  
I 



P r o o f :  

Define 

1 H(Q) = - Z  q .  log 
j I 

j 

Then for any Y = {yj } 

1 yj Yk Hjk (Q) = -E 2 - < 0 
jk j qj 

hence H ( Q )  is concave. 

The solution to the mathematical program 

satisfies the conditions 

qj 
= cif 

j 

where v is a Lagrange multiplier and a = e -(1 + v) 



Elimination of a by the constraint yields 

and the concavity of H(Q) ensures that this solution 

globally maximizes H (Q) . But from (28) 

[The linear homogeneity of $ ( a )  has been used.] 

Hence the q obtained by solving the above mathematical 
j 

program are the same as the ones given by ( 2 5 ) .  Sub- 

stitution into H(Q) yields 

H(Q) = -zq. log v = log lb(e = Q(V) 
j J $ (eV) 

[Equation (24) has been used. ] 

PROPOSITION 6. (Nondecreasing submodularity of expected 
utility) 

The set function 

U(L) = E(max i i . )  
jEL J 

is submoduZar nondecreasing. 



Proof  

The f u n c t i o n  

G ( L )  = max ii 
j EL j 

i s  submodular nondecreasing (Nemhauser, Wolsey, and 

F i s h e r ,  1978) 

This  p rope r ty  can be s t a t e d  a s  

G ( s  U i j ) )  - fi(s) - > G ( T  ~ { j ) )  - G ( T )  1 0 

f o r a l l S , T , j  , S C T  - , j F T  

Applying t h e  expec t a t i on  o p e r a t o r  t o  bo th  s i d e s  o f  t h e  

above i n e q u a l i t y  one g e t s  

hence U ( L )  is  submodular nondecreasing.  

Besides  t h e  above p r o p o s i t i o n s  ano the r  p rope r ty  w i l l  be 

u s e f u l ,  s t a t i n g  t h e  r e l a t i o n s h i p  between (19) and (29 ) .  The 

r e l a t i o n s h i p  is  

u (L)  = l i m  $ (V) 

v~ + - w  

1FL 

Most p r o p o s i t i o n s  above a r e  s e l f - exp lana to ry  and need on ly  a few 

comments. 



Propositions 1 and 2 state that choice behavior is unaffected 

by shifts in utilities. In other words, the "zero" of the utility 

scale may be set arbitrarily. 

Proposition 3 is perhaps the most important one, since it 

states the integrability condition for choice probabilities. The 

importance of this property is well known, and it has been dis- 

cussed by many authors (for instance, Williams, 1977; and Daly, 

1978). 

Proposition 4 gives a useful representation of choice 

probabilities, and shows how the general additive random-utility 

model is related to the well-known logit model (included as a 

special case). Equation (25) qeneralizes a result first obtained 

by McFadden (1978) under much more restrictive assumptions. 

Propositions 5 and 6 state some useful properties to analyze 

the optimal location problem. Equation (27) relates the additive 

random-utility model to the wide and well-known class of entropy 

maximizing models (Wilson, 1970; Wilson and Senior, 1974; 

Willekens, Por, and Raquillet, 1979). The submodularity property 

relates the location problem discussed in this paper with the 

problems analyzed by Nemhauser, Wolsey, and Fisher (1978), for 

which some approximate optimization results have been produced. 

4. BASIC PROPERTIES OF SUBMODULAR SET FUNCTIONS 

Most results given in the preceding section were aimed at 

providing theoretical insight and economic justifications for 

the behavioral models based on the additive random-utility 

assumption. At least one of them (namely proposition 6), however, 

is specially tailored on the more operational goal of providing 

techniques to solve problems of type (8). Since the submodularity 

property is the key premise to all subsequent results (the non- 

decreasing property is not essential), it will be shown to hold 

true for functions built like (8). First, since the functions 

Ui(L) are submodular because of proposition 6 and since any 



positive linear combination of submodular functions is sub- 

modular (Nemhauser, Wolsey, and Fisher, 1978), the function 

is submodular. Let the set function 

be defined. Then 

Because of submodularity of g(L), the inequality 

holds true for all L,T,j, L - C T, j T. Subtracting a on 
j 

both sides of (34) and using (33), the inequality 

for all L,T,j, L - C T, j P T follows, thus stating submodularity 
of G(L). The general optimization problem is therefore to find 

the unconstrained maximum of a submodular function 

max = G(L) 
L 

If G(L) were also nondecreasing the solution to problem (36) 

would be trivial, i.e., a facility should be established in a22 

possible locations. However, the presence of (usually nonzero) 

fixed charges a prevents the nondecreasing property from being 
j 

true. By means of a economies of scale are introduced, and 
j ' 



the higher their value the smaller will be the number of facili- 

ties to be established. 

The properties of submodular set functions, in the light 

of cornbinatorial optimization, have been thoroughly analyzed 

recently by Cornuejols, Fisher, and Nemhauser (1977); Nernhauser, 

Wolsey, and Fisher (1978); Fisher, Nemhauser, and Wolsey (1978); 

and Wolsey (1980). The reader is referred to their work for 

further results. Here only a few statements will be needed, 

which do not go far beyond alternative definitions of the sub- 

modularity property itself. 

Let the following quantities be defined as 

pj (S) = G(SUfj1) - G(S) the incremental value of 
adding element j to the (37) 
set S, for j 9 S 

The p.(S) give information on how the value of the objective 
3 

function changes when the solution set S is augmented by one 

location j. 

Often use will be made of the change in the value of the 
objective function due to the deletion of one location j E S .  

From equation (37) it follows that this change is given by 

The statements on submodular set functions which will be 

used in the rest of the paper are summarized in the following 

proposition. 

PROPOSITION 7. 

Each of the following inequalities defines a submodular 

s e t  function 

pj(S) 2 p.(T) , 
3 for all S - C T  a n d  j 9 T (38 



G(T) <G(S) + 1 pj(S) - Z pj(SUT-{j]) 
j ET-S jES-T / (39) 

f o r  aZZ S and T 

f o r  aZZ S C T - (40) 

G(T) <G(S) - 1 p.(S-{j)) f o r  aZZ T - C s 
jES-T 3 

The proof of the above propodition is found in the four refer- 

ences listed above. 

For an intuitive feeling of how a submodular set function 

looks, compared to the usual functions of sets of real numbers, 

one could note that the submodularity property is a kind of 

generalization of concavity. Indeed, if the quantities p.(S) 
3 

are considered as analogous to derivatives, property ( 3 8 )  

suggests the notion of decreasing return to scale; i.e., adding 

one more element to the solution set is always more beneficial 

for smaller sets than for bigger ones. 

In order to devise techniques to solve problem (36), a 

first step is to impose some restrictive requirements on possi- 

ble solution sets. One is thus led to look for some analog of 
ZocaZ maxima, i.e., sets which are optimal within some suitably 

defined neighborhood. 

The simplest local properties for maxima are stated in the 

following definitions 

DEFINITION 1. 

A weak ( o r  f i r s t  o r d e r )  ZocaZ maximum o f  a  s e t  f u n c t i o n  

G(S) i s  a  s e t  S such  t h a t  

I 

pj(S) 5 0 , f o r  aZZ j E s 
( 

~~(s-{j])lO , f o r a t 2  j E S  



DEFINITION 2. 

A s t r o n g  f o r  second o r d e r )  Zocat maximum o f  a s e t  

f u n c t i o n  G ( S )  i s  a  s e t  S such  t h a t  

pj(s) = min pk(sU{jl-{kl) 2 0  , f o r a t t  j P S  
kESUC j l 

2 o r ,  e q u i v a t e n t t y  

pj(S- {jl) = max %(S-{jl) 1 0  , f o r a t t  j E S  
kqs-C j 1 

Stated in words, a weak local maximum is a set which cannot 

be improved by the addition or deletion of a single element. A 

strong local rnaxir-um is a weak local maximum too; moreover, it 

cannot be improved by any paired interchange between two elements. 

Of course generalizations to higher order local maxima can 

be devised, requiring stability under interchange of n elements, 

for n > 2. But the numerical results shown later seem to suggest 

that going beyond the second order is seldom needed. 

If G(S) is submodular, the following propositions can be 

stated for weak local maxima. 

PROPOSITION 8. (Dominance over all supersets) 

I f  S i s  a  weak ZocaZ maximum and S - c T, t h e n  

Proof 

from (42) p.(S) < 0, for j E T-S; substitution into 
3 - 

(40) yields 



PROPOSITION 9. (Dominance over all subsets) 

I f  S i s  a weak l o c a l  maximum and T - C S, t h e n  

Proof 

from (42) pj(S-{jI) 2 0 , for j E S -T; 

substitution into (41) yields 

The above two simple propositions surprisingly widen the 

neighborhood dominated by a weak local maximum. What they state 
is that if a weak local maximum is detected, then any of its 

subsets or supersets can be dropped from further search. 

Two further propositions will be useful to build rules of 

improvement for a possible trial solution. 

PROPOSITION 10. (Nondecreasing point detection) 

I f  pj(~) 2 0 f o r  some j 9 T, t h e n  no S c T  is a weak 

loca  Z maximum 

Proof 

from (38) , Pj(s) 2 Pj(T) - 0 , for some j 9 S 

which contradicts (42). 

PROPOSITION 11. (Nonincreasing point detection) 

~f p j ( ~ -  {j}) 5 0 f o r  some j E T, t h e n  no S 3 T i s  a - 
weak l o c a l  maximum 



Proof 

since S -  {j) - 3 T -  {j), from (38) 

pj (S - {j)) pj (T- {jl) 5 0, for some j E S, 

which contradicts (42) . 

Propositions 10 and 1 1  are useful for building possible tree- 

search algorithms. If the search goes downward, that is 

building small and smaller subsets, then Proposition 10 may be 

used as a rule to stop searching in a subset. If the search 

goes upward, that is building bigger and bigger supersets, then 

Proposition 1 1  may be used as a rule to stop searching in a 

superset. 

Proposition 8-1 1 refer to weak local maxima. One would 

hope to find some more restrictive conditions when strong local 

maxima are used. Unfortunately, this does not seem to be the 

case. No further property of strong local maxima has been 

found as yet, except those stated in the definition. 

5. SOME ALGORITHMS 

To be safe, one could approach problem (36) via some tree- 

search scheme. This would surely yield the exact optimal solu- 

tion, but the computing time required might become prohibitive. 

On the other hand, one could try to develop some heuristic 

approaches exploiting submodularity as far as possible, hoping 

to find at least a good local maximum. This would usually 

require negligible computing time, but unfortunately submodularity 

alone does not provide any sufficient condition for a global 

maximum. 

However, the successful experience with simple heuristics 

applied to maximizing submodular functions (although of a less 

general nature than the one considered here, see Wolsey, 1980) 

suggests that the actual performance of such heuristics could be 



very good. In an exploratory stage of research, it is therefore 

worth checking the results obtained with heuristic algorithms 

against the result obtained with an exact method. If numerical 

experience shows that heuristics work almost or just as good as 

the exact algorithms, then good reasons for further theoretical 

investigation are provided. 

A tree search can be easily organized by exploiting proposi- 

tions 7-11. Suppose, for instance, the search goes downward, 

i.e., building smaller subsets. Then the search within a given 

subset S can be stopped when: 

a. S is a local maximun; 

b. S is a nondecreasing point (see Proposition 10); 

c. an upper bound to G(T), T - C Sf as computed by (41), is 
less than the highest value of the objective function 

found so far. 

For condition c, an upper bound can be computed from (41 ) as 

follows 

for all T - C S 

where 

The procedure outlined above is based on the submodularity 

property only. Another method should be mentioned, which has 

been developed and used in Erlenkotter and Leonardi (forthcoming). 

This method, referred to as INTLOC, does not use any submodularity 

at all, but rather works with the continuous relaxation of (36) 

to get approximate integer solutions and bounds in the tree 

search. 

More precisely, let the function 

9(X) = EPi$i(~+log~) - Ex. a 
i j I j 



be defined over all real nonnegative vectors X = x ,  where the 

4 .  (V) are the functions defined by equation (1 9) . Then, if 
1 

it follows from (30), (31), and (32) that 

Therefore the solution to the mathematical program 

max .(R(X) : O  - < x j -  < 1 ,Vj) 
X 

provides an upper bound to the optimal solution of 

If problem (48) is solved by a simple Frank-Wolfe method, 

feasible integer solutions are also generated as a by-product 

at each iteration. The best of such solutions can therefore be 

taken as an approximation to the solution of the problem 

max CQ(X) : x E {0,1) , ~ j )  
X j 

which is of course equivalent to (36). 

Such a procedure can be easily embedded into a branch-and- 

bound search scheme. In its present version INTLOC is not 

designed to work with a general function of type (46). It 

assumes a special structure, the same one described in Section 6 

of this paper. 

The heuristic procedures will be kept as simple as possible. 

The first proposed heuristic tries to find a weak local maximum, 

while monotonically increasing the value of the objective function. 

This can be done as follows. Assume a given iteration starts with 



a  t r i a l  s o l u t i o n  se t  S  which does  n o t  meet c o n d i t i o n s  ( 4 2 ) .  T h i s  

means t h a t  t h e  c u r r e n t  v a l u e  of t h e  o b j e c t i v e  f u n c t i o n ,  G ( S ) ,  can  

b e  i n c r e a s e d  by add ing  o r  dropping one e lement .  Le t  t h e  change 

g i v i n g  t h e  h i g h e s t  i n c r e a s e  i n  t h e  o b j e c t i v e  f u n c t i o n  b e  i n t r o -  

duced and r e p e a t  t h e  s t e p .  The p rocedure  s t o p s  when no e lement  

c a n  b e  con ven i en t l y  added o r  d e l e t e d ,  t h a t  i s ,  when a  weak local 

maximum i s  d e t e c t e d .  T h i s  p rocedu re  w i l l  be  s t a t e d  fo rma l ly :  

HEURISTIC 1 .  (Ascent  towards  a weak l o c a l  maximum) 

1 .  gue s s  a  s t a r t i n g  S  

2. f i n d  pi  (S)  = max p . (S)  and 
jgs I 

pk(S  - { k l )  = min p .  (S - { j l )  
jEs  I 

3 .  i f  p i (S)  - < 0 and pk(S - { k ) )  2 0 s t o p  

i f  p i (S)  > - p ( s - { k } )  r e p l a c e  S  by s U { i }  
k  

i f  pi (S)  - < -p  k (S  - { k])  r e p l a c e  S  by S - { k) 

The s t a r t i n g  g u e s s  i s  q u i t e  a r b i t r a r y ,  and d i f f e r e n t  s t a r t s  may 

l e a d  t o  d i f f e r e n t  l o c a l  maxima. When no b e t t e r  s t a r t  i s  a v a i l -  

a b l e ,  a  r e a s o n a b l e  one  i s  

The second h e u r i s t i c  t r ies  t o  f i n d  a s t r o n g  l o c a l  maximum, 

wh i l e  monoton ica l ly  i n c r e a s i n g  t h e  v a l u e  o f  t h e  o b j e c t i v e  f u n c t i o n .  

I t  works a s  f o l l ows .  Suppose a  g iven  i t e r a t i o n  s t a r t s  w i t h  a  weak 

l o c a l  maximum. I f  a t  l e a s t  one p a i r e d  i n t e r c h a n g e  improves t h e  



value  o f  t h e  o b j e c t i v e  f u n c t i o n ,  a  new and b e t t e r  weak l o c a l  

maximum i s  produced by r e s t a r t i n g  H e u r i s t i c  1 w i t h  t h e  i n t e r -  

changed s o l u t i o n ,  and t h e  i t e r a t i o n  i s  repea ted .  The procedure 

s t o p s  when no p a i r e d  in te rchange  can improve t h e  c u r r e n t  weak 

l o c a l  maximum, which w i l l  t h e r e f o r e  be a  s t r o n g  l o c a l  maximum 

too .  

This procedure w i l l  be s t a t e d  formal ly:  

HEURISTIC 2 .  (Ascent towards a s t r o n g  l o c a l  maximum) 

1 .  use  H e u r i s t i c  1 w i th  any s t a r t  t o  gene ra t e  a  weak 

l o c a l  maximum S  

2. set  So = S and T = S 

3. i f  T = % s t o p  

4.  choose some j E T and 

r e p l a c e  T by T - { j )  

5. use  H e u r i s t i c  1 w i th  s t a r t  So-  { j )  t o  gene ra t e  a  

weak l o c a l  maximum S 

J u s t  a s  f o r  H e u r s i t i c  1 ,  no uniqueness of  t h e  f i n a l  s o l u t i o n  i s  

a s su red  i n  p r i n c i p l e .  However, a  l a t e r  s e c t i o n  on numerical  

experiments w i l l  show t h a t  t h e  performance of H e u r i s t i c  2 i s  

s u r p r i s i n g l y  b e t t e r  than might be fo re seen  from theory.  

A SPECIAL CASE 

The random-ut i l i ty  model considered s o  f a r  is q u i t e  

g e n e r a l ,  s i n c e  no r e s t r i c t i v e  assumption has  been in t roduced  f o r  

t h e  d i s t r i b u t i o n  f u n c t i o n s  F ( Y )  . 



A simplifying assumption often found in the literature 

(Domencich and McFadden, 1975; Daly, 1978; and Van Lierop and 

Nijkamp, 1979) is that Y is a sequence of independent identically 

distributed random variables with a common distribution function 

where a and B are called the shape and the location parameters, 
respectively. This distribution is known as the Gumbel distri- 

bution, and it plays an important role in extreme order statistics 

(Gumbel, 1958; and Galambos, 1978). 

The mean of (5 1 ) is known to be 

IJ = B xdD (x) = - + y 
a a 

where y = 0.5772157... is Euler's constant. 

Because of independency, F(Y) takes the form 

B -aYj F(YI = IID(yj) = exp [-e i e  
j j I 

and the extreme value distribution is, according to (18) 

F (x - V) = exp [-e' h(v) e-ax] = exp 1-e - [ax - B - 109 h(~) I (53) I 
where 

Comparison of (53) with (51) shows that F(x-V) is still a 

Gurnbel distribution, with shape parameter a and location para- 

meter B + log h(V). Therefore, according to (19) and (52), the 

expected utility for a customer in a given origin is 

0 (V) = 1 B v xdF (x - V) = - log h(V) + - + - a a a 



Since, because of Propositions 1 and 2, a shift in the origin of 

the utility scale does not affect customer choice behavior, addi- 

tive constants can be dropped from (55) and the expected utility 

can be redefined as 

The choice probabilities can be found using (23) and (54). They 

are 

This is the well known multinominal logit model, extensively used 

in transport demand analysis (Domencich and McFadden, 1975; 

Williams, 1977). 

Let all these results be introduced in problem (36). From 

(30) one gets 

Substitution in (3 1 ) yields 

1 avi j g(L) = ,E Pi log E e 
i j EL 

and substitution of (58) in (32) gives the objective function 

1 G(L) = c , ~  pi log E eavij - L a 
i j EL j a  j 

Since no generality is lost if the fixed charges are rescaled by 

a and G(L) is multiplied by a, the objective function can be 



redefined as 

where 

Under the above assumptionsl problem (36) takes the form 

max C Pi log L fij - C a 
L i j EL jEL 1 

Problem (60) may be given an alternative formulation, in the 

spirit of ~roposition 5. Since this formulation is closely rela- 

ted to the one extensively used by Coelho (1977, 1979, 1980a, and 

1980b) the following will be called 

PROPOSITION 12. (Coelho representation) 

Proof 

the proof parallels the one of Proposition 5. 

In order to implement the algorithms of Section 5, compu- 

tational formulas for the incremental values p.(S) and p.(S - (j)) 
3 3 



a r e  needed. From (37)  and (59)  t h e s e  a r e  

7. SOME NUMERICAL RESULTS 

The e x a c t  and h e u r i s t i c  a lgo r i t hms  of  S e c t i o n  5 have been 

a p p l i e d  t o  a t es t  problem. The problem d a t a  r e f e r  t o  t h e  l o c a t i o n  

o f  h igh  s choo l s  i n  Tu r in ,  I t a l y .  A d e t a i l e d  d e s c r i p t i o n  o f  t h e  

d a t a  and t h e  geog raph i ca l  s e t t i n g  can be found i n  Leonardi  and 

B e r t u g l i a  (1981) and i n  Ermoliev,  Leonardi ,  and V i r a  (1981 ) ,  

where t h e y  have been used t o  t es t  somewhat d i f f e r e n t  op t ima l  

l o c a t i o n  a lgo r i t hms  (namely, a problem wi th  c o n s t r a i n t s  on 

f a c i l i t y  s i z e  and a s t o c h a s t i c  programming approach) .  The i n p u t  

d a t a  used i n  t h e  tests are r e p o r t e d  i n  t h e  Appendix. From t h e  

p o i n t  of  view o f  numer ica l  t e s t i n g ,  s a l i e n t  f e a t u r e s  o f  t h e  

problem a r e :  

a .  Tur in  i s  d i v i d e d  i n t o  23 d i s t r i c t s ,  each d i s t r i c t  be ing  

bo th  a p l a c e  o f  r e s i d e n c e  o f  h igh  s choo l  demand and a 

p o s s i b l e  l o c a t i o n  f o r  a h igh  s choo l  f a c i l i t y .  No 

l i m i t a t i o n  i s  p l a c e d  on t h e  c h o i c e  o f  d i s t r i c t s  o f  

d e s t i n a t i o n ,  s o  t h a t  i n  p r i n c i p l e  a customer l i v i n g  i n  a 

g iven  d i s t r i c t  can u s e  a f a c i l i t y  i n  any o t h e r  d i s t r i c t .  

b. The u t i l i t y  h a s  been s imply set e q u a l  t o  t r a v e l  t i m e  

changed i n  s i g n ,  i .e . :  



where 

C ij is the travel time from district i to district 

j, in minutes 

Travel times are measured on the public transport net- 

work. The within-district travel time has been given a 

standard value of five minutes, in accordance with 

empirical findings. 

The parameter a has been given a value 

According to more recent origin-destination surveys on 

home-to-school trips, this parameter should be set 

equal to values around 0.15. 

However, the value (65) has been kept, in order to make 

results comparable with previous studies (Erlenkotter 

and Leonardi, forthcoming). 

c. The quantities Pi appearing in (60) are the number of 

high school students living in each district, as of 1977 

(Provincia di Torino, 1978). The values of these quan- 

tities range from 500 to 2,500, approximately. 

d. The fixed charges a have been set equal for all 
j 

districts 

and the algorithms have been tested for values ranging 

from 500 to 5,000.  his range has been used for testing 

purposes only [the difficulty of (60) usually increases 

with a], and there is no claim of realism in it. 



The r e s u l t s  of  t h e  numerical  t e s t i n g  a r e  summarized i n  

Table 1 .  The r e s u l t s  f o r  H e u r i s t i c s  1 and 2 have been produced 

wi th  t h e  s t anda rd  s t a r t  (50 ) .  

Table 1 i s  s u r p r i s i n g  i n  many ways. F i r s t  of  a l l ,  it shows 

t h e  unexpected power of  H e u r i s t i c  1 .  I f  t h e  2nd and 4 th  column 

a r e  compared, it i s  seen  t h a t  H e u r i s t i c  1 f a i l e d  t o  f i n d  t h e  

e x a c t  solu ' t ion on ly  f o r  a f i x e d  charge of 2,500. Even i n  t h a t  

c a s e ,  t h e  va lue  of  t h e  o b j e c t i v e  func t ion  (boxed i n  Table  1 )  i s  

very  c l o s e  t o  t h e  op t imal  one. Comparison of t h e  3rd and 4 th  

column i s  a l s o  r evea l ing .  The 3rd column shows t h e  r e s u l t s  

ob ta ined  i n  t h e  f i r s t  s t a g e  of t h e  INTLOC a lgo r i thm,  t h a t  i s  t h e  

b e s t  lower bounds produced b e f o r e  e n t e r i n g  t h e  branch-and-bound 

r o u t i n e .  Except f o r  a f i x e d  charge va lue  of  500 ( f o r  which a l l  

methods g i v e  t h e  op t imal  s o l u t i o n s ) ,  t h e s e  v a l u e s  are a l w a y s  

nonoptimal. Even f o r  a f i x e d  charge of  2,500 t h e  va lue  found 

w i t h  H e u r i s t i c  1 ,  a l though nonoptimal, i s  c l o s e r  t o  t h e  op t imal  

one than  t h e  one produced wi th  t h e  f i r s t  s t a g e  of  INTLOC. 

H e u r i s t i c  1 seems t h e r e f o r e  t o  d e f i n i t e l y  outperform t h e  f i r s t  

s t a g e  of INTLOC. 

H e u r i s t i c  1 has  a l s o  been t r i e d  wi th  starts d i f f e r e n t  from 

( 5 0 ) ,  and t h e  r e s u l t s  ( n o t  r epor t ed  h e r e )  have n o t  always been 

s o  good. The procedure o f t e n  terminated on nonoptimal l o c a l  

maxima. However, even i n  t h e  worst  c a s e s ,  t h e  comparison wi th  

t h e  f i r s t  s t a g e  of INTLOC has  always been i n  f avor  of H e u r i s t i c  1 .  

The second impor tan t  f a c t  shown by Table 1 i s  t h e  e f f e c t i v e -  

n e s s  of H e u r i s t i c  2, which seems t o  work much b e t t e r  than  e x a c t  

a lgor i thms .  This  e f f e c t i v e n e s s  i s  a c t u a l l y  much h ighe r  than 

shown i n  t h e  t a b l e .  H e u r i s t i c  2 has  been s y s t e m a t i c a l l y  t e s t e d  

wi th  many d i f f e r e n t  s t a r t s ,  and it never  f a i l e d  t o  reach  t h e  

optimum f o r  every f i x e d  charge value.  

The comparison of computing times is a l s o  r evea l ing .  For 

t h e  exac t  s ea rch  methods, on ly  t h e  CPU t imes  f o r  t h e  method based 

on submodulari ty bounds have been recorded,  b u t  they  a r e  of t h e  

same o r d e r  of magnitude a s  f o r  INTLOC. The a s t e r i s k s  i n  t h e  6 t h  

column i n d i c a t e  t h a t  t h e  t r e e  sea rch  w a s  t o o  slow t o  reasonably 

w a i t  f o r  a s o l u t i o n ,  and t h e  a l r eady  a v a i l a b l e  s o l u t i o n  



Table 1. Comparison of the performance of exact and heuristic 
algorithms for the Turin high school. test problem. 

a 
Objective function (changed i n  s ign)  CPU time (seconds) 

F i r s t  
Fixed Tree s t age  of Heuris- Heuris- Tree Heuris- Heuris- 

C 
charge search INTLOC t i c  1 t i c  2 search  t i c  1 tis 2 

500 25899 25899 25899 2 5899 1.2 4.1 15.7 

a On t h e  IIASA VAX computer. 

bBoth with t h e  search based on submodularity bounds and with INTILX: [ the 
Frank-Wolfe based branch-and-bound algori thm used in  Er lenkot ter  and 
Leonardi (forthcoming)]; the r e s u l t s  a r e  t h e  same, and correspond t o  t h e  
exact  so lu t ion .  

C 
Recorded CPU times r e f e r  t o  t h e  search  based on submodularity bounds, which 
provided an answer i n  reasonable t i m e  f o r  f ixed charges up t o  3000. For 
h igher  f ixed  charge values t h e  computing t i m e  was too  long t o  wai t  f o r  an 
answer. Although exact  times f o r  INTLOC were not  recorded, it had t o  be 
run one n ight  t o  provide the  r e s u l t s  f o r  high f ixed  charge values. 



previously produced with INTLOC (which was just as slow, 

although its users were less impatient) was kept. 

The CPU time of tree search methods is very low for small 

fixed charge values, but it starts a fast increase after a fixed 

charge of 2,500 and becomes infeasible for fixed charge values 

higher than 3,000. 

The CPU times for Heuristic 1 are all around 2-4 seconds, 

no matter what the value of the fixed charge. (In Table 1, 

they seem to decrease with the fixed charge, but this cannot be 

generalized, since it depends on the starting solution used.) 

Heuristic 1 seems therefore a bit slower than the tree search 

for small fixed charge values, but this is more than counter- 

balanced by its performance for high fixed charge values. 

The CPU times for ~euristic 2 vary roughly between 10 and 20 

seconds, again independently of the fixed charge value. They are 

not negligible, but they are still much lower than the ones for 

the tree-search algorithms in the hard cases. This must be 

coupled with the fact that apparently ~euristic 2 n e v e r  fails to 

reach the optimum, 

Although the numerical tests discussed above cannot be 

claimed to be exhaustive, they seem to be enough to state that 

a. Heuristics 1 and 2 provide a uniformly superior start 

than any other method for a further tree-search 

refinement. 

b. The high performance of Heuristic 2 deserves further 

theoretical investigation, along the lines of looking 

for possible sufficiency conditions. 

c. For real sensitivity analysis problems, Heuristic 2 can 

be safely recommended; for a preliminary rough analysis, 

Heurisitc 1 can be enough, 

Of course the validity of the above statements is provisionally 

limited to objective functions of the form (60), although it 

might be argued that the performance would be just as good with 

many other submodular set functions. 



Statement a is perhaps the most intriguing one. Indeed the 

tree search starting with the results of Heuristic 2 has been 

attempted, but this has led to no significant improvement in its 

performance. In other words, recognizing the starting solution 

as an optimal one seems to take just as long as building an 

optimal solution from a bad start. Improving the tree search and 

tightening its bounds is therefore another subject for further 

investigation. 

Statement b is related to the possible development of an 

effective duality theory for problems of type (60), or more 

generally of type (8). The effectiveness of dual relationships 

is the main reason for the successful algorithms recently devel- 

oped to solve problems of type (1)-(3) (Bilde and Krarup, 1977; 

Erlenkotter, 1978), and this encourages the search for similar 

results for the more difficult problems (8) and (60). 

Statement c reminds us that the mathematical interest in 

finding an exact solution is not necessarily realistic. Assuming 

an impatient decision maker would have used only'Heuristic 1, 

according to Table 1 his maximum loss (in terms of relative 

difference between obtained and optimal objective value) would 

have been (for the fixed charge value of 2,500) 

that is about 0.3%. How many input data have measuring errors 

less than this figure? 

8. CONLCUDING COMMENTS AND ISSUES FOR FUTURE RESEARCH 

The main aim of the last sections of this paper has been to 

show the effectiveness of simple ascent heuristics when applied 

to nonconventional facility location problems (i.e., whose 

objective function is based on random-utility theory!. The key 

property leading to these results seems to be the submodularity 

of the objective function. The problem formulation itself may 

lack some realistic features, since actual location problems 



often have constraints not considered here, like budget and size 

constraints. However, the successful solution of the simple 

problem is the main step towards solving more complex ones. 

Related work has shown (Leonardi and Bertuglia, 1981) that 

effective ascent heuristics can be built for problems with 

capacity constraints as well. Future progress can be expected 

in solving problems of the type recently explored by Coelho (1980b), 

including fixed charges, capacity constraints and p-median type 

constraints (that is, constraints on the number of facilities to 

be established). 

Another strand of future research is the exploration of 

different objective functions. The numerical results reported 

in this paper are based on the special assumptions introduced 

in Section 6. Other forms of random-utility distributions could 

be tried, leading to other objective functions. However, the 

submodularity property would still hold because of Proposition 6. 

Further mathematical investigation is also required, as 

already stated in Section 7. The reason why the proposed 

heuristics outperform other methods is far from being fully 

understood, although some theoretical results for related 

simpler problems (Wolsey, 1980) seem to suggest that such a good 

performance is not too surprising. This paper is only an 

exploratory one, showing a way which might be worth following. 



APPENDIX: INPUT DATA USED FOR NUMERICAL TESTING ( T u r i n  High S c h o o l s )  

Travel times (minutes) on public transport 

High schoo l  t o  d i s t r i c t  
demand 

D i s t r i c t  
1 2 3 4 5 6 7 8 9 10  11 12  13 14 15 16  17 18  19  20  21  2 2  23 

(No. s tudent s )  from d i s t r i c t  

Travel time discount rate: a = 0.194. 
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