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PREFACE

Mathematical simulation of the dispersion and transformation
processes undergone by the pollutants discharged into the atmos-
phere is fundamental to the evaluation of alternative strategies
for the control and planning of emissions.

This paper is the first in a series in which mathematical
modeling of air quality is discussed theoretically as well as
in relation to application to real cases for both steady-state
and time-dependent situations. It is expected that this series
will contribute to rationalize and improve strategies for the
protection of the atmospheric environment.

The present paper introduces a new algorithm to compute
ground level concentrations of air pollutants for steady-state
conditions. The proposed method which is built on the classical
advection-diffusion continuity equation (named the K-model in this
paper) improves the currently applied technique known as the
Gaussian plume model.

-iii-




ABSTRACT

A numerical algorithm to compute steady-state ground level
concentration from elevated sources by means of a K-model which
takes into account the spatial variability of wind and
diffusivity and neglects horizontal diffusion is discussed.

The boundary value problem to be treated, also for a point
source, is always reduced to a two dimensional one and it is
solved on an optimized grid. 1In this way the proposed method
is made computationally comparable with the classical Gaussian
plume model.
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A PRACTICAL NUMERICAL ALGORITHM TO
COMPUTE STEADY-STATE GROUND LEVEL
CONCENTRATION BY A K-MODEL

E. Runca

1. INTRODUCTION

The most common way to compute ground level concentration
from an elevated point source is based on the application of the
following formula known as the Gaussian plume model:

2 2

- _nh (1)

2
2[oz(x)]

C(x,y,0) = — Q exp 4= Y >
non(x)oz(x) 2[0y(x)]

In eguation (1) the source is assumed to be located in the
origin of the reference frame; the x-axis is chosen parallel to
the wind direction; h is the plume axis (i.e. the stack height
plus the plume rise); Q is the emission rate; U is a represen-
tative value of the wind speed (in general it is the value of
the wind speed at the height of the chimney); Oy and o, are the
standard deviations of the concentration distribution in the

y and z directions, respectively.

Equation (1) is obtained under the assumptions (see, e.qg.
Seinfeld, 1975) that the turbulent diffusion process is stationary
and homogeneous; the emission rate is constant; the horizontal

diffusion is negligible with respect to advection; the ground
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is a perfect reflector and the atmosphere is unbounded, i.e.

no inversion is acting to suppress the vertical diffusion of the
airborne matter, or at least, the ratio between the mixing height
and the plume axis height is such that the influence of the inver-

sion layer is felt quite far downwind from the source.

The Gaussian plume model was initially proposed by Sutton
(1932), since then, in spite of the limiting assumption on which
it is based, it has been extensively applied also to complex
multiple source situations (see e.g. Turner 1964, Shieh et al.
1972; Runca et al. 1976).

Another way to model dispersion of air pollutants is pro-
vided by the classical advection-diffusion equation which for a
point source of constant emission rate Q, assuming steady-state,
wind horizontally uniform, negligible horizontal diffusion, and

the reference frame defined as for equation (1) takes the form:

2
aC 3 C 3
U(Z)H = KY(X,Z);? + E@Z (sz)g—g) + Q8 (x)8(y) 8 (z=h) (2)

where Ky and Kz are the eddy diffusion coefficients (crosswind
uniformity has been assumed) in the y and z directions, respec-
tively, and § (e) is the Dirac's function. As for equation (1)
the spatial resolution of equation (2) is limited by the Lagran-
gian length scale of the atmospheric turbulence. However, since
equation (2) aliows to take into account the spatial variation of
wind and eddy diffusivity it ﬁrovides a model more flexible than
the Gaussian one. Limitations of K-models have been discussed,

among others, by Lamb and Seinfeld (1973) and Corrsin (1974).

The Gaussian formula has been generally preferred to the
K-model as it avoids the costs and the problems connected with
the use of equation (2); specifically when the effects of dif-
ferent meteorological conditions and different source heights
on the ground level concentration (to which air quality standards
apply) have to be analyzed. With the Gaussian model, such analy-
Sis is computationally very simple, while the application of a
K-model requires (the analytical solution, being in general, not
available) the numerical integration of equation (2) on a tridi-

mensional grid for each one of the considered cases. Hence, it



appears that in order to make the K-model as usable as the Gaus-
sian one the integration of equation (2) has to be made inexpen-

sive in terms of both programing and computer time.

This paper presents a practical method to compute ground
level concentration by a K-model. First, the numerical algorithm
is dicussed for the two dimensional case describing dispersion
from a crosswind infinite line source. Then, the proposed method
is tested for a situation having an analytical solution and
thereafter, it is applied to neutral stability conditions. Fi-

nally, extension of the method to three dimensions is discussed.

2. TWO-DIMENSIONAL MODEL

Assuming for the moment that the eddy diffusivity is only a
function of the vertical coordinate, the concentration downwind
from a line source is given by the solution to the following

boundary value problem:

aC _ 9 oC
Ulz)=x = 'B_'Z(Kz(z)fa_z> + 6(x) 68 (z2-h) (3)
oC _
Kz(z)§E = 0, z =0 (3a)
C(x,z) = 0, Z = ® (3b)
C(x,z) = O, X <0; x = (3c)
To generalize results given by the solution to eguation (3)
and related boundary conditions (3a)-(3c¢c), X, z, C, U, and
Kz have been expressed in units of H2U(H), H, Q , U(H), and
KZ(H) U(H)H

KZ(H), respectively. In this way the source strength Q (see
equation (3)) is normalized to one. H is a suitable vertical
length scale, hereafter, taken as the height of the planetary

boundary layer.

For the boundary wvalue problem (3)-(3c), the reciprocal

theorem (Smith 1957) gives:

Ch(xlo) = CO (X,h)
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where Ch(X,O) is the ground concentration due to a source of
height h and Co(x,h) is the concentration at height h due to a

ground level source.

By virtue of the above equation, the solution to the boundary value
problem (3)-(3c), with the source located at ground level (h=0),
allows one to derive the concentration at the ground for a source
of any height. Thus, as generally happens, if the objective is
the computation of the concentration at ground level as a function
of the source height, equation (3) needs to be integrated for a
given meteorological condition only for the case h=0. This obvi-
ously results in quite substantial saving of computer time and
poses the only problem of defining a numerical algorithm to pro-

vide accurate solution to equation (3) for the case h=0.

Definition of this numerical algorithm has to deal with the
following problems: (a) approximation of the 6-function repre-
senting the source term in equation (3) and (b) approximation of

the boundary condition (3b).

Approximation of the 6-function, as already proposed by Melli
and Runca (1979), can be achieved by finding an approximate analy-
tical solution to the boundary value problem (3)-(3c) in a region
close to the source. Such approximate solution is used to esti-
mate the concentration profile in a downwind section (located at
a suitable distance x) from the source) which is then taken as
the left boundary of the integration'region. Application of this

procedure is discussed further later.

More complex in some way 1is the definition of the upper boun-
dary of the integration region. Let us call call z_ the height
of the upper boundary and for the moment, let us assume it con-
stant. Since condition (3b) has to be approximately verified
at every point downwind from the source, Zs is determined by the
right extreme (the farthest downwind point) of the integration
region, as this is the point at which pollutant particles have
spread to the maximum height. At the right extreme, the vertical
concentration profile is quite smooth (assuming that this point
is sufficiently far from the source) and can be described by a

limited number of grid points uniformly spaced. Going backward
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towards the source, the concentration profile gets steeper

and pollution is confined to layers close to the ground. To
describe this situation, being zg constant, either the number of
grid points has to be increased in the vertical sections close
to the source or the grid points have to be unevenly spaced in
such a way to have more points close to the ground where the
concentration gradients are larger. Both these two approaches
do not look convenient. The increase of the grid points number
means increase of memory and computer time, the disuniform distri-
bution of grid points can create close to the source too much
large differences in the grid spacing and consequently, possible

reduction of the accuracy of the numerical solution.

From the above considerations it seems more appropriate
not to keep Z_ constant, but to consider it a function of the
downwind distance from the source by defining it as the level
at which in every section the concentration becomes negligible.
With this choice, assuming that Zs is known and considering, for
the sake of simplicity, uniform spacing, both in the vertical and
in the horizontal, the integration grid appears as in Figure 1.
Use of an upper boundary function of X clearly allows cne to
describe accurately the concentration profile in every downwind
section with the same number of points. This approach, as
Figure 1 illustrates, requires that the numerical integration
be done on an irregular grid. However, we will show below that
due to the type of the problem described by equation (3)-(3c),
a standard finite difference scheme can be applied to the grid

of Figure 1.

3. NUMERICAL ALGORITHM

Considering the possibility of using disuniform grid spacing,
both in the horizontal and in the vertical, the Crank-Nicolson
scheme (see e.g. Richtmyer and Morton1967) has been applied to

equation (3), yielding the finite difference equation:

b1 {

U Az z
Ubzy (b5 q+8%))

1 (4)
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In equation (4) Axi is the horizontal interval between

-1

points i-1 and 1i, Azk is the vertical interval between points X

and k+1, and N is the number of points in every section.

The immediate consideration arising from the analysis of
equation (4) is that, in order to compute the concentration in
the 1tﬁ section, the concentration values in the jﬁh section
have to be known at the same levels of the grid points of the
ith section. This is obviously not the case for the grid re-
ported in Figure 1. However, assumiing that the concentration
is known at the jﬁm section, the concentration values at the

th .
" section can be deter-

levels corresponding to the points of i
mined by an interpolation algorithm. Due to the definition of 2g
to the concentration in the points falling at or above zg is

assigned the value zero. Thesituation is illustrated in Figure 2.

In the application of this algorithm the condition to be
fulfilled in every section is:
z
S(x)
U(z)C(x,z)dz = 1 (5)

0
The finite difference analog to equation (5) has the form:

R
v Az, .+ AZ
LGy k=T L (6)

k=1 . 2

Equation (6) must not be violated when the profile concentra-
tion in the f$1 section is described by the interpolated points.
This implies (see Figure 2) that accuracy is not lost when the grﬁd

spacing is changed in 1dﬁ section from the value (Az) .

zs(xl)

I S I
p01ntsb1mustchosenJxxsucha way that in the 1kH section the true

i-1 ° N 1

to the value (Az) In other words, the number of grid
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concentration profile can be approximated by a piecewise linear

function described by N values distributed once on the interval

O——Zs(xi_1) and once on the interval O——ZS(Xi). Achievement
of this condition, given N, depends on Axi_1 and on dzs . Since
: dx

the highest growth rate of z, occurs close to the source, small
values of AX are required close to the source. Thus the use of
uniform horizontal grid spacing is not very convenient as it can
require a very large number of points to describe the integration
region. An horizontal grid spacing increasing with the distance
from the source is then more suitable, as it will be shown later

to the application of the above described numerical procedure.

Considering that the largest concentration gradient occurs
at the ground, it seems convenient to use, also in the vertical,
not a uniform grid spacing; specifically a vertical grid size
increasing with the distance from the ground. However, in the
tests performed, a variable vertical grid spacing did not give
the same increase in accuracy like the use of variable horizontal
grid spacing. The improvement due to a more appropriate distri-
bution of the points in the vertical was probably counterbalanced
by the decrease of the order of the truncation error of the
Crank-Nicolson scheme from A22 to Az, which occurs when disuni-

form spacing is used.

Up to now the choice of N and its relation with Z has not
been explained. Analysis of equation (4) indicates that concen-
tration in the ith section depends only on the igﬁ section. Thus,
the "key-section” in the application of this algorithm is the one
at X =xt. Aséuming that Zg is known, N must be such that the
concentration profile can be described by a piecewise linear

function in this section.

Estimation of the concentration profile at x =xp implies
the approximation of the source term of equation (3). This is

discussed below,.

3.1 Source term approximation

The simplest way to approximate the source term is the
replacement of the §-function with a step function in such a way

that equation (6) is satisfied. This approach for a source



located at ground introduces very large errors as the wind speed
is zero at the source level. 1In addition, the representation

of the &-function by a step function implies that some diffusion
of the pollutant matter has occurred. Thus the step function
has to be located at some undefined downwind distance. To give
a better representation of the §-function term of equation ( 3),

the method proposed by Melli and Runca (1879) can be used.

This method is based on the concept that in the region
close to the source diffusion of pollutants depends substan-
tially on wind and diffusivity values close to the source.
This suggests to replace in equation (3) the wind and diffusivity
with approximating functions which maintaining the basic charac-
teristics of the wind and diffusivity close to the source
allow at the same time the derivationof an analytical solution to
equation (3). Such analytical solution can then be assumed
as an approximation of the true concentration distribution
in the region close to the source and used to compute the
concentration profile at x = Xy - The analytical solution at
X = Xy is then approximated by a piecewise linear function over
N points chosen in such a way that equation (6) is satisfied.
The quote zs(xb) is the one at which concentration is approxi-

mately zero. Computation of zg is discussed below.

3.2 Definition of the upper boundary

Once zs(xb) is defined by taking it as the level at which
the concentration is approximately zero, the ratio Y = C, /Cz=o
is known at section x = Xy - The profile z, can then be
computed under the assumption that Y be the same in every
section. Computation of z is obviously trivial should the
problem (3) = (3c) have an analytical solution. In the general
case z_ has to be determined by means of some approximate solution
which guarantees an overestimate of it, as it is shown in the

example reported below.

Verification of the method in a case for which the boundary
value problem (3)-(3c¢c) has an analytical solution as well as
application to a situation representative of neutral atmos-

pheric stability is now discussed.
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4. VICRIFICATION AND APPLICATION

For wind and diffusivity expressed by U = z% and

Kz = zB, respectively, the solution to the boundary value
problem (3) - (3c), with h = 0, is (see Smith 1957):
S
- z 0~ B+2
Colxs2) = aﬂ%;f Lr : 2] exP [‘ —2] (7)
' (a=B+2) “x (a=B+2) “x
where s = (a+1)/{(a-8+2) and a-8+2>0

Defining zg as the height at which Co(x,z ) ='YCO(x,o)

s

equation (7) gives:

1

a-B+2

~ 1
ZS = Ua—8+2)2 x log TJ (8)

With the above defined Z g first, equation (3) has been inte-
grated in the rectangular region (0 < x < 0.15, 0 £ z < zs(x=0.15ﬂ
by distributing uniformly M points in the horizontal and N

ooints in the vertical. Successively it has been integrated over
the same number of points allowing z, to change with x according
to equation (8). In this computation Az changes with x and is
kept uniform in every vertical section (see Figure 1). Finally,
equation (3) has been integrated over the same number of points

by taking z function of x and by using both in the horiznntal

and in the vertical a variable grid spacing.

The computations utilized for figures 3 and 4, which will
be illustrated below, refer to o = 0.15 and B = 1 and were done
with M = 151 and N = 121. Ecuation (7) provided the concentra-

tion profile at x = Xy r which was taken equal to Ax In defin-

1°
ing the geometry of the integration grid N must be chosen in such
a way that the constant flux condition (equation (6)) is verified
also bLs :the concentrationprofile obtained after the application

of the interpolation procedure.* This implies that N must be

* Rescaling of the concentration values, in order to verify

equation (6), is only allowed at x = Xy, -
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sufficiently large. In the tests performed, equation (6) was
always accurately approximated at '21 points. Satisfactory
approximation was also achieved at 80 points. However, results

here are reported for N = 121 in order to show that even in

the case of a relatively refined uniform grid an upper variable
boundary produces aremarkable increase in the accuracy of the
numerical solution. Such an increase is more pronounced with
course grids.

Figure 3 displays the percent error computed in every
vertical section by comparison with the analytical solution
(equation (7)) at the point where the maximum absolute error
was found. The error is reported both for z, = const and
zg = f(x) as given by equation (8) with vy = 10-2. Use of zg
function of x reduces the error of one order of magnitude.
Further reduction of the error is achieved by taking Ax = f(x)
and Az = f(z) as shown in Fiqure 4. The plots of Figure 4
were obtained by defining both Ax1 and Azi’1 equal to one-tenth
of their respective values corresponding to the uniform grid
spacing distribution. The successive values of Ax and Azi were
then increased in such a way to reach with 150 and 120 intervals
respectively the horizontal coordinate x = 0.15 and the vertical
coordinate z; = zs(xi). The plot of Figure 4 indicates that the
accuracy of the results depends strongly on the geometry of the
grid. However, this point is here not further investigated.
More relevant is the application of the proposed algorithm to
the general case in which the analytical solution to the
boundary value problem (3) - (3c) is unknown. This is described
in the following with reference to dispersion in a neutral

atmosphere.

Both theoretical (see, e.g. Shir, 1973; Wyngaard et al,
1974) and experimental work (Robins, 1978) have shown that the
neutral vertical eddy diffusivity profile can be represented
by an exponential law, which, following Shir and Shieh (1974)

can be expressed in normalized units by the function:

~P(z-1)
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In equation (9) p is a dimensionless parameter (approximately
equal to 4 for neutral conditions) whose reciprocal gives the
fraction of the height of the planetary boundary layer at

which the maximum value of Kz occurs.
With U = z% and Kz given by relation (9) equation (3)
takes the form:

- 0(

z-1)
a 8C _ 9 9CY\ + 5(x)6(z2) (10)
2 3% %z <? € 0z

Straightforward analysis of equation (10) shows that the
concentration close to the source can be approximated by the

solution to the equation:
Za§E=iGepa_§ + §(x)6(z) (11)

obtained by replacing in equation (10) the vertical eddy
diffusivity profile with its tangent in the origin. Consider-
ing the scaling factor e and noticing that 8 = 1 the solution

to equation (11) is derived from equation (7) in the form:

-P z1+a —P
Q)X (1+a) °x

Equation (12) provides the required approximation of the
concentration profile at x = Xp- In this way no arbitrary
approximation of the source term has to be done for the appli-

cation of the finite difference equation (4).

Equation (12) can be also used to provide the estimation

of the upper boundary z This stems immediately from the

comparison of equation ?10) with (11). Being K, =z exp(p)
greater than K, =2 expl[-z (p-1)] at any level, equation (11)
describes a process in which the material diffuses faster, and
therefore to higher levels, than in the situation described

by equation (10). Hence equation (12) guarantees an over-

estimate of zg-
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It is expected that, in the majority of the cases, it
should be possible, by proceeding in a way similar to the
example discussed above, to determine for the boundary value
problem (3) - (3c) both an approximation of the concentration
in the region close to the source and an estimate of the
upper boundary zs(x) of the integration region. With this
assumption the method acquires a general applicability. Its
computational efficiency is apparent in a multiple source
situation. In fact, said (xk hk) the location and the effective
height of the kth—source, reséectively, the concentration at
the ground due tob%;sources is simply given, for a given

meteorological condition, by:

N
Zs
C(x,0) = = Co(x—kx,hk) (13)
with Co(x - xk,hk) = 0 for (x - xk) < 0.

In equation (13) the concentration C, is the matrix given
bv the numerical integration of eqguation (3) with h=0. Simple
interpolation procedures are used for the (x - xk,hk) locations
which do not follow in the points of the grid.

Since the reciprocal theorem proved by Smith (1957) does
not depend on the functional form of the diffusion coefficients
the proposed method and the related equation (13) hold also for
diffusivity profiles which are a function of the downwind
distance from the source. However, for the sake of complete-
ness, we recall that if the diffusivity profile can be expressed

as:

KZ = f(x)g(z) (1&)

the definition of the new variable (see also Csanady, 1973):
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X
g = / f(X')dX' (15)

reduces the problem to the one described by equation (3)-(3c),

in which x and K, are respectively replaced by & and 9 (z2).

5. THREE-DIMENSIONAL MCDEL

Extension of the proposed method to the three dimensional
situation described by equation (2) with boundary conditions
similar to the ones given by the relations (3a)-(3c) has no

specific limitation. The equivalent of equation (13) is:

s
1 Co(x—xk,y-yk,hk) (16)

C(XIYIO) =
k

I ~1 2

However, two difficulties arise. The first one concerns the
loss of computational efficiency with respect to the two
dimensional case. The second one derives from the fact that
for equation (2), even in the case of U, Ky and Kz expressed

by power law of the vertical coordinate, an analytical solution
is generally not available, thus making problematic both the

approximation of the source term and the estimation of Zg-

Both the problems mentioned above can be solved if it is
assumed that the concentration profile in the y direction is
gaussian. This assumption which was proposed by Smith (1957)

(see aiso Demuth and Berger 1977) is suggested by the way in which y
variations appear in equation (2). There are also experimental
evidences that the crosswind concentration distribution is
approximately Gaussian. On this basis the solution to

equation (2) for a ground level source can be assumed to have

the form:
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2
_ Y
2[oy(x,z)]2
Chlx,y,2) =X (x,z)»e (17)
0 0 T o (x,2)

Defining the following momentums of the concentration
distribution:

+oo +oo

= _ 2
C00 = J Cody and C02 = I Yy Cody

- 00

it is immediately seen that C00 = 0 (x,z) is the solution

to the two dimensional boundary-value problem (3)-(3c) while

1
CaoN\2
y(x,z) = <_C02> (18)

Use of equation (17) reduces the tri-dimensional problem

to the two dimensional one. Equation (16) can be replaced by

the most convenient expression:

2
(y-yk)
- 2
NS . 2[oy(x-xk,hk)] 19)
C(x,y,0) = ) X, (x-x,,h) "
k=1 O KK on oy (x-x, ,h,)

However, use of equation (19) implies the knowledge of
oy(X,Z), which is given by equation (18).

Hence, C02 has to be
determined;

this involves the solution of the following boundary
value problem:

3C 3C
02 _ 3 02
U 5% " 3z (Kz ‘Fi“) t 2 KCoo (20)
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aC
k —02 _ o -0 (20a)
Z

0z
Coz(x’Z) = O, Z = ™ (20b)
COZ(XIZ) = 0, X =0; X = (20c)

In deriving equation (20) use has been made of the Dirac's
function property:
4
f(y)o(y-y )dy = fly,)

- o

The solution of equation (20) with the related boundary
conditions presents no difficulty. The same grid adopted for
computing Chn and a modified equation (4) to take into account
the forcing term (2K},C00) can be used to integrate the boundary
value problem (20)-(20c). Large errors occur at the upper
boundary z, where both Cyy and Cyy go to zero. The evaluation
of o, cannot therefore be extended up to Zi the computation

Y
must terminate few grid points below Zg-

with the above formulation the tri-dimensional case is
reduced to the solution of two bi-dimensional problems. For
the sake of completeness, it must be added that for the special

case of lateral diffusivity having the form

Ky = £(x)U(z) (21)

equation (20) has the simple solution

C02 = 2 C00 f(x')dx'
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Thus, for those circumstances in which equation (21) holds
the tri~-dimensional problem is computationally equivalent to

the bi-dimensional one.

6. CONCLUSION

Use of the reciprocal theorem proved by Smith (1957) and the
definition of a simple finite difference algorithm have made
possible the computation of steady-state ground level con-
centration downwind of both single and multiple source situa-
tions by a K-model without any loss of computational efficiency

in comparison with the classical Gaussian plume model.

The proposed method requires also in a point source situa-
tion the solution of only bi-dimensional boundary value problems.
It can therefore be programmed on a very small computer and is
suitable to interactive languages, in this way providing the
user with the capability to analyze in a very straightforward
manner concentration profiles due to different source distri-
butions as well as effects of grid geometry and parameters

on the solution.

It is well known that K-theory provides only an approxi-
mate description of the processes which affect atmospheric
diffusion. For those situations in which K-theory can be
applied the proposed method can replace the Gaussian plume
model. At more or less the same cost it provides the user
with the possibility to analyze the effect on the steady-state
ground level concentration of wind and diffusivity spatial

variability, both in single and multiple source situations.
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Figure 1 - Integration grid geometry with both horizontal and

vertical uniform spacing.

Z_ is the level at which

the concentration becomes negligible (i.e. a very
small fraction of the ground level concentration);
X. 1s the location of the section where the vertical
concentration profile is determined analytically.

'/‘

Figure 2 - Illustration of the application of the finite

difference equation (4)
Figure 1.

(see text) to the grid of
¥ indicates the points of section (1-1)

corresponding to the points of section i. At these
points the concentration is estimated by a linear

interpolation.
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Figure 3 - Comparison of analytical and numerical solution.
The plots represent the per cent error recorded in
every vertical section in the location where the
maximum absolute error occurred. The solid line
refers to a constant upper boundary, the dashed one
to an upper boundary function of the downwind
distance (i.e. to a grid geometry as in Figure 1).
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i ~ rison of analytical and numerical solutlgn.
Figure 4 %ﬁgp;lots represent the per cent error as defined
in Figure 3 for an upper boundary fgnctlon of the
downwind distance. The different llges refer to:
———- AX and Az uniform {same as in Figure 3);
—e—s— Ax uniform and Az=f(z); —-++=-+°~ AX=f(X) and
Az uniform; —— Ax=f(x) and Az=£f(2z).



