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ABSTRACT 

We d e r i v e  t h e  L i p s c h i t z  dependence of t h e  s e t  of s o l u t i o n s  

of a  convex minimizat ion problem and i t s  Lagrange m u l t i p l i e r s  

upon t h e  n a t u r a l  parameters  from an Inve r se  Funct ion Theorem f o r  

se t -valued maps. Th i s  r e q u i r e s  t h e  use  of con t ingen t  and Clarke 

d e r i v a t i v e s  of se t -valued maps, a s  w e l l  a s  gene ra l i zed  second 

d e r i v a t i v e s  of convex func t ions .  



LIPSCHITZ BEHAVIOR OF SOLUTIONS 
TO CONVEX M I N I M I Z A T I O N  PROBLEMS 

Jean -P ie r r e  Aubin 

INTRODUCTION 

1 .  One of t h e  o b j e c t i v e s  of t h i s  paper  i s  t o  propose a  s o l u t i o n  

t o  t h e  much s t u d i e d  problem of t h e  l o c a l  L ipsch i t z  dependence of 

t h e  s e t  of s o l u t i o n s  of a  (convex) minimizat ion problem and i t s  

Lagrange m u l t i p l i e r s  upon t h e  n a t u r a l  parameters  of t h i s  problem. 

Namely, cons ide r  two f i n i t e  dimensional  v e c t o r  spaces  X and 

Y ,  a  l i n e a r  o p e r a t o r  A from X on to  Y and two proper  lower semi- 0 
cont inuous convex f u n c t i o n s  U:X+IP,V{+W) and v : Y + I R v { + ~ ) .  

The parameters  of t h e  op t imiza t ion  problem a r e  t h e  o p e r a t o r  * 
A. and t h e  v e c t o r s  y o E Y  and p o E X  belonging t o  

y o E I n t  (Dorn V - AoDomU) 

* * * 
p o E I n t  ( A o  Dom V + Dam U ) 

* * * * * 
where A O ~ L ( Y  , X  ) i s  t h e  t r anspose  of A. and U and V a r e  t h e  

conjuga te  f u n c t i o n s  of U and V r e s p e c t i v e l y .  

* 
Then we know t h a t  t h e r e  e x i s t  s o l u t i o n s  xo EX and q o E Y  t o  

t h e  minimizat ion problems 



= min (U (x) + V(Ag>; i yo )  - <pO , x > )  1 XEX 

r e l a t e d  by t h e  e q u a t i o n  

W e  d eno t e  by F-l ( p O , y O I A O )  t h e  set of  p a i r s  ( x o , q 0 )  s a t i s f y i n g  

t h e  t h r e e  p r o p e r t i e s  ( 2 ) ,  ( 3 )  and ( 4 ) ,  i . e . ,  o f  p a i r s  of  so lu -  

t i o n s  xo  t o  t h e  min imiza t ion  problem ( 2 )  and i t s  Lagrange mu l t i -  

p l i e r s  q  0 ' W e  s t a t e  t h e  fo l l owing  problems: 

a )  Do t h e r e  e x i s t  neighborhoods U of  ( x o , q 0 )  and V of  

A ) such t h a t  (P,!Y,I 0  

b )  Does t h e  map (p ,y IA)  E V - F-' ( p I y I A )  p o s s e s s  a  L i p s c h i t z  

behav ior?  

c )  Can w e  f i n d  t h e  e f f e c t  of  marg ina l  v a r i a t i o n s  6p, 

6y and 6A on t h e  s o l u t i o n  x o  and i t s  Lagrange 

m u l t i p l i e r  qo  ? 

For s o l v i n g  t h e s e  problems,  w e  s h a l l  d e f i n e  a  s u i t a b l e  concep t  

of  g e n e r a l i z e d  second d e r i v a t i v e  o f  convex f u n c t i o n s  U: f o r  
2  each  xo  and po E aU ( x o )  I t h e  second d e r i v a t i v e  a U (xO , p O )  i s  a 

monotone c l o s e d  convex p r o c e s s  from X t o  i t s e l f ,  i . e . ,  a  set 

va lued  map whose g raph  i s  a  monotone c l o s e d  convex cone. Such 

maps a r e  set  va lued  ana logs  of  p o s i t i v e  con t i nuous  l i n e a r  oper-  

a t o r s .  N a t u r a l l y ,  i f  U i s  t w i c e  con t i nuous ly  d i f f e r e n t i a b l e ,  



2 a U(xo,po) coincides with the second derivative in the usual 
sense. 

We shall prove the following result. If the monotone closed 

convex process from X x Y  to itself defined by the matrix 

is surjective, then there exist neighborhoods U of (xo,q0) and V 

A ) such that, for all parameters (p,y,A) in V, the of (P~;Y~' 0 
set F- (p,y,~)nU of solutions (x,q) to the problems (2) , ( 3 )  and 

(4) is nonempty. This set of solutions depends upon the param- 

eters p, y and A in a Lipschitz way. The marginal variations 

of the parameters bp, by and bA and the associated variations 

bx and bq are related by 

We shall arrive at this result by building a quite natural 

machinery and by piecing together independent results which may 

have intrinsic values. 

2. We already observed that the solution of the third problem 

requires a convenient definition of a derivative of the set-valued 

map F, because we cannot assume uniqueness of the solutions with- 

out restricting too much the validity of the result. 

We also observe that the generalized gradient of a convex 

function U is a set-valued map x+aU(x). Therefore, the defini- 

tion of a generalized second derivative requires a suitable con- 

cept of a derivative of a set-valued map. 

Finally, the only available strategy for solving the above 

problems is to define the set F-' (pO,yO,AO) of solutions as the set 

of solutions to the equivalent (hamiltonian) system of inclusions 



* 
i P, E au (x,) + ~,s, 

* 
ii) yo E -A,x, + a7 (so) 

\ 

and use a sort of Inverse Function Theorem for the "matrix" of 

set-valued maps 

* * 
mapping X x Y to X x Y. 

This is a third reason for introducing one or several concepts 

of derivatives of set-valued maps which allow to state Inverse 

Function Theorems for set-valued maps involving reasonable and 

checkable assumptions. 

Inverse Function Theorems for nondifferentiable maps or for 

special set-valued maps are already known and widely used. Let 

us mention, among other papers, the paper of Clarke [ 3 ]  using 

generalized Jacobians, the papers of Ioffe [I], [2] using fans 

andaseriesof uapers of Robinson [I], [21, [61, [7], [9] studying 

inverse functions for sums of differentiable maps and maximal 

monotone operators. Robinson used his results in [9] for study- 

ing the dependence of the set of solutions upon parameters and 

Cornet & Laroque [I] used the Clarke Inverse Function Theorem for 

solving the above problems for o~timization problems relevant 

to economic theory. 

3. In this paper, we use an approach due to Ekeland for proving 

the Inverse Function Theorem which involves his powerful theorem 

(see Ekeland [I]). This approach was used in Aubin [7] for de- 

vising an Inverse Function Theorem for set-valued maps, which was 

both simplified and dramatically improved by Lebourg [I]. We 

shall adopt Lebourg's approach to suit our purpose. 

So, we have to tackle the issue of defining a derivative 

to set-valued maps. We follow a very simple strategy, which is 

the ancient Fermat's geometrical view, which regards the graph 



of the derivative at a point as the tangent to the graph of the 

map. 

If the graph of a single-valued map is a smooth manifold, 

then the tangent space at a point is a vector subspace, and thus, 

is the graph of a linear operator. 

If the graph of a set-valued map is convex, there is still 

no ambiguity for defining a tangent cone to the graph, which is 

a closed convex cone: then it is the graph of a closed convex 

process (see Aubin [6]). When the graph of a set-valued map is 

neither smooth nor convex, we have to make a choice of a tangent 

cone among the many suggestions proposed in the fast growing 

specialized literature. We shall retain only two tangent cones, 

the contingent cone, introduced by Bouligand (see for instance 

Aubin [7]) and the Clarke tanqent cone (see for instance Clarke 

[I], [21 and Rockafellar [4], [S], [6] among the many papers 

dealing with this topic.) These two cones are closely related 

since the Clarke tangent cone at xo is some kind of limit of the 

contingent cones at x when x converges to xo. Therefore, prop- 

erties of the Clarke tangent cone at a point xo yield (weaker) 

properties of the contingent cones at the points of a neighbor- 

hood of xo, properties which are most of the time sufficient to 

suit our purposes. 

The Clarke tangent cone is always a closed convex cone con- 

tained in the contingent cone. Therefore, we shall define both 

contingent and Clarke derivatives to a set-valued map, whose 

graphs are the contingent cone and the Clarke tangent cones to 

the graph. 

Maps with closed convex graph are called closed convex 

processes (see Rockafellar [ I  1 , [2] ) which are the set-valued 
analogs of continuous linear operators. So, Clarke derivatives 

are closed convex processes. Closed convex processes enjoy many 

properties of the continuous linear operators, and, specially, 

the Banach open mapping principle, which plays an important under- 

lying role in the Inverse Function Theorem. Robinson [2] and 

Ursescu [I] proved that the inverse of a surjective closed convex 

process is a Lipschitz set-valued map. 



The Inverse Function Theorem that we shall propose has a very 

simple formulation. 

L e t  F be a  s e t - v a l u e d  map w i t h  a  c l o s e d  g raph  and l e t  

(xO,yO) b e l o n g  t o  t h e  g raph  o f  F. Assume t h a t  t h e  C l a r k e  

d e r i v a t i v e  o f  F a t  (xO,yO), which  i s  a  c l o s e d  c o n v e x  p r o c e s s ,  

i s  s u r j e c t i v e .  Then  t h e r e  e x i s t  n e i g h b o r h o o d s  U o f  xo and V 

o f  yo s u c h  t h a t  y E  V +F-' (y)nU has  nonempty  v a l u e s  and i s  q u a s i -  

L i p s c h i t z .  

4. The Inverse Function Theorem is certainly as useful for other 

applications as the classical one. We propose in this paper to 

use it for "computing" the Clarke tangent cone to subsets of the 

form L nA-' (M) where L C X  and M C Y  are closed subsets and where 

A is a continuously differentiable map from X to Y. We denote 

by CK(x) the Clarke tangent cone to K at x. 

When L and M are convex and A is linear, we know that the 

condition 

(6) 0 E Int (M - A (L) ) 

implies that 

(See Aubin [2], [3] and [6], for instance). 

For nonconvex subsets, Rockafellar [4] has proved that the 

condition 

(8 0 E Int CM ( ~ x )  - VA(x) CL (x) 

implies that 

The Inverse Function Theorem allows to relax assumption (8) and 

to replace it by the weaker assumption 



(which i s  e q u i v a l e n t  t o  0 E I n t  ( C  (Ax) - VA(x) CL ( x )  ) . T h i s  a s -  
M 

sumption does  n o t  r e q u i r e  t h a t  t h e  C l a r k e  t a n g e n t  cone t o  M h a s  

a  nonempty i n t e r i o r .  Such fo rmulas  a l l o w  t o  d e v i s e  a  s a t i s f y i n g  

c a l c u l u s  f o r  C l a r k e  d e r i v a t i v e s .  

5. W e  d e f i n e  i n  a  f i r s t  s e c t i o n  t h e  c o n t i n g e n t  and C l a r k e  t an -  

g e n t  cones  and,  i n  t h e  second s e c t i o n ,  t h e  c o n t i n g e n t  and C l a r k e  

d e r i v a t i v e s  o f  a  s e t - v a l u e d  map. W e  d e v o t e  t h e  t h i r d  s e c t i o n  

t o  t h e  I n v e r s e  F u n c t i o n  Theorem, which w e  a p p l y  i n  t h e  f o u r t h  

f o r  p rov ing  t h e  formula  CL(xO)  n V A ( X ~ ) - ~ C , ( P . ~ ~ )  C C  
.. - L ~ A - 1  (Y )  ( x o )  . 

The f i f t h  s e c t i o n  d e a l s  w i t h  t h e  proof  o f  t h e  r e g u l a r i t y  of t h e  

s o l u t i o n s  o f  an o p t i m i z a t i o n  problem. S i n c e  t h e  s u r j e c t i v i t y  o f  

t h e  C l a r k e  d e r i v a t i v e  p l a y s  such a n  i m p o r t a n t  r o l e ,  w e  a d a p t  i n  

t h e  l a s t  s e c t i o n  t h e  Lax-Milgram Theorem t o  c l o s e d  convex pro-  

c e s s e s .  

1 .  CONTINGENT AND CLARKE TANGENT CONES 

W e  r e c a l l  t h e  d e f i n i t i o n s  o f  R o u l i g a n d ' s  c o n t i n g e n t  cone 

t o  K a t  x  and of  t h e  C l a r k e  t a n g e n t  cone and w e  mention t h e  

p r o p e r t i e s  w e  need. L e t  K be  a  nonempty s u b s e t  o f  a  Banach 
0 

s p a c e  X.  W e  d e n o t e  by EB and EB t h e  b a l l  ( r e s p .  open b a l l )  of 

c e n t e r  0 and r a d i u s  E > 0 .  W e  s e t  BK ( x O ,  E )  : = K ~ ( x ~  + EB)  and 

t h e  symbol x + x  d e n o t e s  t h e  convergence  of  x  t o  x o  i n  K.  
K 0 

D e f i n i t i o n  1  

W e  s a y  t h a t  t h e  s u b s e t  

i s  t h e  " c o n t i n g e n t  cone" t o  K a t  x. 

I n  o t h e r  words, v € T K ( x )  i f  and o n l y  i f  

( 2  

VE > O r  V a >  0 ,  & E V  + EB, ~ h € I O , a l  

, s u c h  t h a t  x  + h u ~ K  



or, equivalently, V E T  (x) if and only if there exists a sequence K 
of strictly positive numbers hn and of elements un€X satisfying 

( 3 )  i) lim un = v, ii) lim hn = 0, iii) ftn>o, - x + h n u n € ~  , 
n+m 

We characterize the contingent cone by using the distance 

function dK ( ) to K defined by dK(x) : = inf { l l  x-yll 1 y E K )  : 

dK(x + hv) 
( 4 )  v E TK (x) if and only if lim inf h = O . r  

h + 0+ 

It is quite obvious that the contingent cone is a closed cone, 

which is trivial when x belongs to the interior of K: 

(5 When x E Int (K) , then TK(x) = X . 

For all xEX, we have TX(x) = X. We shall set T (x): = 19. 
19 

m 

It is convenient to recall the definition of the "limitinf" of 

a family of subsets F(u). 

Definition 2 

Let U be a metric space, uo belong to U and F be a set- 

valued map from U to X. We set 

(6) lim inf ~ ( u )  : = n u n (F (u) + EB) 
u +u0 E>O q>O u=(uO,n) 

We observe that 

( 7  lim inf F(u) CF(uO) 
u + UO 

and that F is lower semicontinuous at uo if and only if 

(8 F (uo) = lim inf ~ ( u )  . 
u + u  0 

Let us set d(v,K) := inf Ilv-wll . 
WEK 


















































































