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PREFACE

In commonly used Pareto optimality the notions reference,
preference, convexity and efficiency are interrelated and of
great importance. It is shown that the usual notion of convexity
on the base of straight lines is not consistent with Pareto
optimality. There are many possibilities to reach all efficient
points by using a parametrisized set of compromise criteria.

Especially important for the decision maker's goal is to
describe local wishes by corresponding reference points. It
is useful to describe these reference points by preference
levels or local utility fields. The method of direction diagrams
helps to introduce the decision maker's imagination. The penalty
scalarization method proves as a special case of direction
diagrams. Direction diagrams serve for the design of good
seeking procedures for efficient points expressed in terms of
the control space.
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REFERENCE, PREFERENCE, CONVEXITY
AND EFFICIENCY--
BASIC NOTIONS IN MULTIOBJECTIVE
DECISION MAKING

1. Peschel, J. Ester, Nguyen Thuc Loan

INTRODUCTION

We first interpret the basic notions reference, preference,
convexity and efficiency for the well-~-known Pareto optimality.
From this exercise we try to find generalizations, taking into
account the local or global utility imagination of the decision
maker. We restrict ourselves to a two-dimensional objective
space, although most of our consideration can easily be extended

to a finite-dimensional objective space.

The main technical tool used to construct fields for local
utility is the direction diagram; these diagrams reflect the
independent influences of the distance r and the angle ¢ of the
reference vector between the point under consideration and a

chosen reference point.

With direction diagrams we can interpret Pareto preferences
as well as Wierzbicki's penalty scalarization method and construct
many order-preserving local utility fields. This is important
in order to reflect the changing goals of the decision maker.
However, utility fields can also be used as models in the control
space and the information they provide can be used to find quali-

fied seeking procedures for the efficient points. Without reduction
of generality we seek to maximize all our objectives.
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PREFERENCE, REFERENCE, EFFICIENTY, AND CONVEXITY
IN THE SENSE OF PARETO OPTIMALITY

We assume that we are dealing with two objectives Q1,Q2
that are dependent on a set of control variables a1,a2,...,ak.
Very often the relationship between the objectives Qi and the controls

aj is a static vector function

Q.

i = fi(a1,a2,...,ak) i=1,2 ,

with some appropriate demands at the functions fi, such as differ-
entiability. For simplicity let us assume k = 2, where the model
Q = f(a) is a mapping from a two-dimensional control space into

a two-dimensional objective space. This vector function has a
certain definition area A. 2All controls a € A are called feasible
controls. The corresponding points Q € Q in the objective space
are called feasible objectives or feasible goals. In a control
space we represent the relationship Q = f£(a) by the fields of
isolines of Q4 and Q, separately, as shown in Figure 1. 1In an
objective space we prefer to show the area Q of all feasible

goals that can have a form like that shown in Figure 2. 1In

Pareto preference, a goal Q' is better than a goal Q:
Q' >0 ’

if Q! > Q. and there exists at least one i, with Qf > Q. .
i i 0 “1p 1o
There is a priori no differentiation between different goals

Q belonging to the same preference class: better, worse, indiffer-

ent, which are shown in Figure 3 for an arbitrary reference point.

An efficient point in Pareto optimality is a maximum point
(feasible) in the sense of vector halforder: Q* efficient, if
there is no feasible point Q' with Q' > Q¥. The set of all effi-

cient points is called the Pareto set.

Figure 2 shows an example of a Pareto set. We learn from
it, that the Pareto set can be disconnected, can contain isolated

points and can have convex and concave parts. An attempt can be
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Figure 3: The preference areas in Pareto-optimality

made to find the efficient points by using weighting coefficients
and linear compromises between the objectives--i.e., by applying
global criteria of the form

0 = >

Q )\1Q1 + >\2Q2 ’ )\l 2 0
Figure 2 also shows that with this approach we can only reach
those efficient points which belong to the convex hull of
the feasible goal set 2. The reason for this property is that
the common notion of convexity is not consistent with Pareto

optimality or expressed otherwise: Pareto optimality needs a

corresponding notion of convexity.

The common convexity is based on straight lines. A set B
is called convex 1if it contains with any two points Q1 € B,
Q, € B all points on the linear segment

AQq + (1-X)Q, , 0 s <1

Figure 4 shows examples for convex and nonconvex sets.
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‘Figure #4: Some examples of convex and nonconvex sets
in the sense of common convexity
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Now we introduce convexity notions consistent with Pareto opti-

mality.

Maximum Convexity [1]

Instead of straight lines we use lines parallel to the
coordinate axes and angles to the left formed from them as shown

in Figure 5.

Minimum Convexity [1]

Instead of straight lines we use lines parallel to the
coordinate axes and angles to the right formed from them as
shown in Figure 6. For every two points Q1, Q2 the "segment"
Q1Q2 is uniquely determined although there is not necessarily

only one "straight line" connecting themn.

Figure 7 shows a convex set in maximum convexity and Figure
8 a convex set in minimum convexity. In Figure 7 the interesting
convex set lies "southwest" of the boundary, while that in
Figure 8 lies "northeast" of the boundary. Obviously in both

cases straight lines do not support these sets, but rather the
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Figure 6: New "Straight Lines"
in minimum convexity
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Figure 8: Example of a minimum
convex set together with
supporting "Straight
Lines"



"straight lines" of the corresponding new convexity notion.
The most important property for our aims is that shown in Fig-

ures 7 and 8.

The whole boundary without parts parallel to the coordinate
axes in Figure 7 consists of the efficient points of a maximum
problem, whereas in Figure 8 the corresponding boundary consists
of efficient points of a minimum problem. This leads to an

Effi¢ciency theorem: 1In every efficient point of a vector maxi-

mum {(minimum) problem there exists a supporting straight line

of maximum (minimum) convexity.

Returning to the example in Figure 2, we explore the following
result: The convex hull of a set contrasts the whole set of effi-
cilent points on the boundary. This is in contrast to the case

where we form the common convex hull.

Finally we can see from Figures 7 and 8 that the following
holds.

Duality theorem: 1If a set B i1s convex, in the sense of maximum
convexity, its complement B is convex in the sense of minimum

convexity.

Let us now introduce fields of indifference lines to reach
efficient points by optimizing suitable compromizing criteria.
We now consider the left lower angles L as indifference curves
for vector maximum problems and the right upper angles "1 as
indifference curves for vector minimum problems. In fact this
is not exactly true in Pareto optimality because only the corner
points are indifferent; however a very small variation of these
angles would lead to indifference curves k,and.a\ respectively.
Because of this duality we restrict the followincg considerations
to the left lower angles. In the whole plane (Q1,Q2) we have
such an angle, through every point, i.e., the whole set can be
described by two parameters. We are now trying to enumerate
otherwise all the angles following £he idea, by using one para-
meter for the description of the efficient set and the other as
a value of a compromising objective to find the corresponding

efficient points. This can be done in the following way:



We choose in the plane (Q1,Q2) a field

0, =g9; (00 i=1,2

of non-decreasing curves, i.e., only one of these curves goes
through a given point Q* of the plane. The parameter )\ enum-
erates the various curves, and O is the corresponding curve

parameter. é is chosen in such a way that for

~

it follows that

g(x,09) = g(x,Q,)
and conversely. Thus Q considered along a curve A is order
preserving.

Figure 9 presents some examples of this enumeration approach,

always with the same vector maximization problem.

We..now have another form of the Efficiency theorem: Every

efficient maximum point can be determined by maximization of a
global compromise criterion Q by choosing a certain value X of

the weighting parameter.

Under our assumptions the equations

can be solved uniquely after A,é and we get

A= Q(Q1IQ2) ’

0
Il

V0,0, .

We can then formulate an equivalent Efficiency theorem: Every

efficient maximum point can be reached by



max (Q,,Q,) |p(Q,,Q,) = const.
Q‘IIQ2

for an appropriate value of A = const.

Let us now turn to goal-seeking procedures or to the appli-
cation of reference points and their local utility fields. We
could interpret the result in Figure 9 in another way. Let us
choose on every curve g(A,é) an arbitrary reference point whether
it is feasible or not. There we can consider every field of
indifference curves (left lower angles in Figure 9) as preference
levels of the reference points on this curve. The corresponding
efficient point is obtained by maximizing the preference levels

related to a chosen reference point.

The disadvantage of this interpretation is that the reference
point only plays a formal role because the field levels do not
depend on the distance of the field curves from the reference
point. However, reference points can represent the important
wishes of the decision maker. Thus it would be very useful
to give the reference points an essential influence on the
seeking process for efficient points. This can be done simply
by introducing local fields of preference levels that express

how far we are from reaching our aims.

We first represent local preference level fields for Pareto
optimality and then introduce for the first time the notion of
direction diagrams. We introduce a symmetrical field of Pareto
preference level lines as shown in Figure 10. The preference
levels show us a certain directional behavior which can be com-
bined with any scalarization depending on the distance r from
the reference point. This r-dependent scalarization is not
specific for Pareto optimality; it already reflects the local
utility of the decision maker in the neighborhood of the reference

point under consideration.

We give all zero level points the indifference value 0. The
scalarization f(r) should be chosen differently for the worse
and better classes. Thus we need two scalarization functions

fb(r) and fw(r).
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Figure 9: Possibilities to introduce different sets
of global compromise criteria
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Better

Zero-
level

Worse

Zero-
level

Figure 10: Direction diagram in Pareto-optimality

The model (fw(r),fb(r)) formalizes the wishes of the decision

maker in the neighborhood of the reference point.

As an example, let us consider one concrete case. We want
to reach a reference point coming out of "worse", having already
achieved a point in "better", to pass to points which are better

still. These wishes can be represented by demanding that:
S

should be a monotonously decreasing function, and that
£ ()

should be a monotonously increasing function. For example,
fw(r) = -r ’

fb(r)

|
-



-12~

k,1 are measures of the strength of drift into r = 0 or from
r = 0, Now we try to describe the preference isolines in Figure
10 in polar coordinates (p,a):
o = 45° + A, A =0 P cos @ = r cos U5°
a = 45° - A, A=20 P sin o = ¥ sin U5°
0 S A S 45
This leads to a uniform description

r = p(cos|A|-sin]|A]) -45 < A < 45 .

For the utility or local compromise criterion we get

(pQ(cos|A|-sin|A‘)2 Q € better

8) =J 0 Q € indifferent
—pk(cos|A'|—sin|A'|)k Q € worse
\

The direction diagram for a local utility field does not take
into account the p dependence and corresponding scalarization
but uses only the angle dependency, i.e., it considers the utility

variation on the unit circle.

Therefore Pareto optimality is characterized by the direction

diagram

( (cos|A|-sin]|A]) -45° < A < 45°
better
D =40 indifferent
\(coslA'|—sinIA']) -45° < A' < 45°

worse
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CONSTRUCTION OF LOCAL UTILITY FIELDS
BY DIRECTION DIAGRALS

Local utility fields are described here as a stepwise decompo-

sition of distance and angle indluence by

~ _ . l
Q(p,a) = £, (p)Y; (a) i €D
D1 U D2 u... U Dk = whole space
D" N DI =y

i
D~ cones

This means that we assume a cone decomposition of the whole neigh-
borhood of a reference point and allow that on each componeht
cone DT the field can be defined in a different way that reflects

the imagination of a decision maker.

We normalize fi(1) = 1 and demand that all functions fi(p)
are strictly monotonous. We further demand wi(a) =2 0 by intro-
ducing any sign into the factors fi(p). The corresponding

direction diagram of the local utility field is then
D(a) = p;(a) , i €D° 4 =1,2,...,k

Obviously the roots ao* with

are important because they lead to the asymtotes of the preference

lines. How we study some special cases of local fields.

Hyperbolic preference

The fact that the lower left angles L in Pareto optimality
are no-indifference lines is unfavorable, because it can lead
to catastrophe-like switching properties, as demonstrated in

Figure 11.



-4~

>
Q4

Figure 11: Catastrophe properties of Pareto-optimality

With only a small variation of the constraints, all efficient
points on P,P, can switch to either P, or P,. To eliminate
unwanted properties of this kind we introduce preference curves
that are hyperbolic in form as shown in Figure 12 instead of left

lower angles.

The lines of the field are given by
(Q‘l_é) (Qz_é) = K '
with fixed value of K. Obviously for K - 0 we obtain an approxi-

mation of the Pareto preference lines. For the utility values

we get the following expression:

2 1/2
- Q1+Q2 Q1_Q2 .
Q = 3 - | K+ 5 , (Q1,Q2) € better
5 1/2
5 - Q1:Q2 . K+(Q1;Q£) (Q1,Q2) € worse .

This is very similar to Pareto optimality, but with fixed K it

has no direction diagram representation.
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Better

Worse

Figure 12:

z

ero-

level

of parallel hyperbola

However,

2

K=KQ [}

with k > 0,

preference lines for § = 0 and an increasing deviation for § = «.

if we put

The utility function is now

Q 3 —Q1+Q2

T 2(k=-1)

5 - Q1+Q2

2(k=1)

for « > 1. For k <
If we now put

Q1 = p cos

Q2 = p sin

.

Q,+0
1795
+ (?(K—1)

0,+Q,
3(<=1)

) .
).

‘T
Q19Q,
(k=1)

0,9,

(k=1)

1/2

1/2

14

14

Modification of Pareto-optimality by a set

arbitrarily, we get a small deviation from Pareto

Q1,Q2 € better

Q1’Q2 € worse

1 the sign of the root must be changed.
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we get corresponding direction diagrams

y I 2 172
( —cos o+Sin o 4. (cos atsin o) COs asin a
- +
2(k-1) 4(K—1)2 (k=1)

D = D(a) =14 _

. : 2 1/
~-cos o+sin a - |(cos a+sin a) + cos asin o

\ 2(k-1) 4 (k=1)2 (k=T) J

2

We get a more remarkable deviation from Pareto-optimality

by using not translated hyperbola as preference lines but

-~

0.0, =0

which means K itself shall be the compromise objective, see

Figure 13. Obviously in this case we have

~ 2 .
Q = p~ cos o sin o

This produces the following direction diagram

-45° < A < 45°
better

ﬁcoszA—sinzA)
D = D(a) =J 0 indifferent

- o] - ' < ©
(coszA'—sinzA') 457 < A 45
\ worse

This is very similar to the direction diagram of Pareto

optimality.
Direction Diagram for Penalty Scalarization
Approach (Wierzbicki et al. [3])

We start with an arbitrary cone D spanned by the linearly

independent vectors e 18y All directions
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belong to this cone.

Better

Indifferent

Worse Indifferent

Figure 13: Modification of Pareto-optimality by a set of
hyperbola
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We then construct the dual cone D+ on the basis of the

dual base (f1,f2) corresponding to (e1,e2), which is given by
f1 = (e2,e2)e1 - (e1,e2)e2

f, = —(e1,e2)e1 + (e2,e1)e2

(F1,e9) = £y,0,) = (ey,e,) (e,e) —(e1,8))° =G >0

f = n1f1 + n2f2 ng =0 ,

f then spans the dual cone D+. Q = (Q1,Q2) is the objective
vector relative to the reference point.

Then the utility function, after the penalty scalarization

concept, is given by

x 2 2
g = -lell”® + ol PD+QII

o > 1 and P +Q is the projection of Q on the cone D+.
D

Let us now find the direction diagram representation for

this case. From Figure 14 we obtain the following information.

Figure 14: Scheme of preference cones used in the penalty
scalarization method
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The whole neighborhood of the reference point is obviously
decomposed into the four cones D, I, II and D . The angles
A, A' (0 < A,A' < 90°) are introduced as shown in Figure 14.
Thus for

Q€D - P Q=29
D
- (Q, £5) ol T
Q€I > P Q=,+—F.,f, =cos A|llQ||l E £
ot (£,,£5) 72 2 2
(Q, £)
REILT PO S Ey T 08 il ell £4 11 £41]

Therefore we obtain the following result for the penalty

scalarization function:
{

(o= || o] Q €D

| ol 2 (-1+pcos®s) Q€ I

1O
I
A

||Q|,2(‘1+pcoszA') 0 € 1II

10
m
)]

2 -
-1l

If we maximize the local utility coming form worse D~ we drift

to the reference point. Having passed it, which means being
already in D+, we go in the direction of better and better
points. This local utility function has the following directions

diagram:
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1 0 € D+
pcoszA—1
+| =7 | QEI
D = D(a) =<
2,
1 -

p-1 is a drift factor. This representation is not very convenient;
it seems better to choose those cones whose sides are asymptotes
of the direction diagram. Taking this into account we obtain

a decomposiiton into only two cones bounded by straight lines

defined by

ol

. 2
Ao with cos AO

=Y

°|

' : 2.
AO with cos AO
Figure 15 shows the result qualitatively. Obviously the behavior
of this approach in pt and D is similar to that proposed

by Salukvadse [53].

This is a notable difference to Pareto optimality: we
now have not an indifference area, but a curve. Obviously this
behavior is good for a vector minimum problem, because with
high velocity (~1) we are approaching the reference point from
the "northeast", and leave it ta._the "southwest" with a lower
velocity (TE%TT). For a vector maximum problem the role of
"northeast" and "southwest" cones should be interchanged. This

could be done by a penalty scalarization function of the form
p 2 2
Q= [leH"-pello-P 0] ° .
D

leading to the direction diagram
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Zero-level f2

Figure 15: The indifference lines in the penalty
scalarization method

(

. 2
|D_S;_I_I1A_1| Q€1
D = D(a) =< 5
psin”A'-1 e
=== Q&I
1 Q €ED

THE RELEVANCE OF LOCAL UTILITY FIELDS FOR
FINDING EFFICIENT POINTS
It seems quite natural that the decision maker expresses
his goals in the language of local utility fields in the objective
space. In the seeking process for efficient points this is
confronted with the real possibilities and thus he gets a

proposed point as a compromise between his goals and reality.
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However we think that for decision makers who are themselves
analyzing the relationship between controls a and objectives Q
it should be useful to formulate local utility fields on the
control space, taking into account a priori experience from
past seeking steps and goals expressed in control terms. Par-
ticularly in technical engineering are people able to express
what is good and what is bad in terms of control variables. The
direction diagram method exposes two features of local utility

fields:

(1) reward or punishment of directions (leading or leaving
a reference point);
(2) evaluation of the distance r from the reference point

independently from the direction.

The reward of directions is formalized by the direction diagram

which is often decomposed into

D(a) = y, (a) , a € I, = (o5,0;,4)
where oy is a root D(ai) = 0 or a first-order discontinuity point
+ -
D(ai ) - D(OLl ) # 0

In the inner points of I, the components wi(a) should be contin-

uous functions. For discontinuity points we put
D(a;) = 2(D(al) + D(a])
i’ T Z\P\% ¢i
It is possible to express good imagination of a decision maker
in the language of direction diagrams.

Let us give some examples:

(1) The decision maker is already at a reference point

and wants to leave it into the angle "better" with high velocity.
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The corresponding local utility field could be

2 +
K[l || Q€D =D
Q = r
0 else
as shown in Figure 16. This goal belongs to approaching efficient
points with a "cooperative strategy". The more we approach

efficient points the more difficult it will be to succeed with
cooperative steps. Now "contradictory" steps become more and
more important. This means we first apply direction diagrams,
taking into account indifferent points, and after some time

the indifferent points should increase in weight. Figure 17
shows an intermediate stage and Figure 18 a stage in the neigh-
borhood of efficient points. These figures reflect an ideology
which is good if we have already reached the reference point:
they should be combined with the monotonously increasing radius
function f(r) or fi(r); for example, fi(r) ~ r2 (Salukvadse-

ideology) .

However, if the reference point is a goal (feasible or not)
we need a corresponding direction diagram for the landing. 1If
we assume that the goal is feasible and not efficient, we could
try with "cooperative" landing using the direction diagram of
Figure 19. The nearer the goal lies to efficient points the
more we should use the possibilities of landing from contradic-

tionally points, as shown in Figures 20 and 21.

If we want to reach the goal reference points and to go
further we have only to superpose the "landing" and "starting"

fields with different weights.

Let us now study how this thinking could be expressed in
the control space. First let us remark that this kind of
thinking is not new but has been used formerly in stochastic
seeking procedures of monetary optimization (see for example [6]).

If we have only a single objective Q, we can write

Q = f(a1,a2,...,ak) .
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Figure 16: A direction diagram in an initial point far from
efficiency

Figure 17: A direction diagram Figure 18: A direction diagram
in an initial point in in an initial point in the
medium distance from neighborhood of the efficient

efficiency set
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v

Figure 19: A direction diagram i
efficiency

ot

Figure 20: A direction diagram
in a medium distance from
the efficient set

n a goal point far from

Figure 21: A direction diagram
in a goal point near the
efficient set
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Having done a seeking step from a to a' and being successful

we like to reward the corresponding direction distinctly, or

to reward more or less all directions of the corresponding
half-space. Sometimes we also give a certain chance to the
opposite direction. Figures 22 to 25 show corresponding direc-

tion diagrams.

Some years ago we interpreted these direction diagrams as
probability densities of directions and got highly efficient

stochastic seeking procedures from this kind of thinking.

Now we interpret the different direction diagram models
for the design of the next seeking step, then the coordinates
Q1 and Q2 should be substituted by their corresponding gradient

vectors e, = grad Q1 and e, = grad Q2. But the cone ."better"

1
is not spanned by eqr€y but by the corresponding dual base

£, = (eyrey)eq = (eq,e3)e,
f2= —(e1,e2)e1 + (e1,e1)e2

This means the Pareto cone decomposition from the objective
space is transformed into the cone decomposition shown in

Figure 26.

Starting from an initial point far from efficiency we
should by analogy with Figure 16, use a direction diagram as
shown in Figure 27. After some time and taking into account
the larger angle between the gradients, we are already using
contradictory steps obtained form the direction diagram in
Figure 28 by analogy with Figure 17. If we come nearer to
efficient points the angles between gradients usually approach
7 and then we should stress more and more the contradictory
directions using the direction diagram of Figure 29 by analogy

with Figure 18.

This tendency to switch between different forms of the
direction diagrams is automatically realized in approved seeking
procedures. Let us show how this is done in the antiparallel

gradient method (Ester [3]).



-27-

a—a ad—a
Figure 22: Reward of a direction Figure 23: Uniform reward of a half-space
a—a a—a
Figure 24: Reward of a half-space Figure 25: Reward of a half-space by a
by a forward direction diagram forward direction diagram with a

little back-looking

Indifferent

Better

Worse

Indifferent

Figure 26: Cone-structure in the control space using information from
the gradient-directions



~-28-

Figure 27: Direction diagram in
control space in an initial point
far from efficiency

Figure 28: Direction diagram in an
initial point with medium distance
from the efficient set

Figure 29: Direction diagram in
control space in an initial point
in the neighborhood of the efficient
set
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This proposes a step of the following form

e

€1 2
Aa = k + ’ O< 4
Tk1” pﬂele °

p exposes (for p > 1) a tendency for the selfish optimum of Q,-

Between the base (e1,e2) and the corresponding dual base

(f1,f2), we have the following transformations:
£ = (eyrepleq = (eqrey)e, ey = (£, 5508, = (£, 508,

f

H
[\
|
!
1}
—_
(]
N
(0]
—
+
()]
—_
(]
N
(]
[\
()]
[\

-(Ey, 08, + (£, £ E,

2 1
G = (e,,eq)(e,,e,) - (e;,e,)" =+ = -
e 1 1 2'72 1 2 Gf (f1,f1)(f2,f2) (f

(e.,e.) (f.,£.)
= l J N — l

(£,,f

If we express the step in the dual base (f1,f2) we get the

following representation:

pa = || £,]] T|] £4]] sin a'| (1-kcos a') + (k-cos o'
: 1 [ £,1 P £,
o ‘ 1. 2
with
2
||f‘]|| (e1le2)
— 1 —_
K = p—2 7 a =TT = o ’ COs o = .
£, lleq Il Tle, |l

In 'the antiparallel gradient method, p > 1 is chosen. However,
for variable k: 0 <k < 1, we will discuss the step in terms

of a direction diagram without evaluating it explicitly.
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(1) 0 <o < 90° = o' > 90°
- 1 - kcos a' >0
Kk — cos a' >0

we obtain a diagram only in D+. This means that we look

for a cooperative step.

(2) a > 90° - 0 <qg' < 90°

- 1

. +
For cos o' < K<ZEB§—ET— - step in D

o' > 0 , this interval becomes smaller and smaller.

1
cos a'

21 >k - cos a' > 0 = step in II,
k <cos a' <1 >1 -k cos a' >0 > step in I.

This occurs more and more, if a > 7
No step will be done into D .

It is useful to interpret the antiparallel gradient method
in terms of local utility fields. To superpose the interests
of Q4 and Q, means the interaction of selfish local utility

fields each for the benefit of these criteria.

If we stay within the neighborhood of a reference point

where linear models are valid we get two local utility fields
AQi = (grad Qi,Aa) , 1=1,2

The corresponding levels are straight lines parallel to the dual
vectors fi as shown in Figure 30. We see in "better" cooperative
interests, in I and II competitive interests of both criteria. The
direction diagram should be a compromise between this knowledge

and the local goals of the decision maker.
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Figure 30: Local utility fields using the linear models
for both objectives

Obviously in an antiparallel gradient method the compromise
local utility field consists of straight lines parallel to the
axis e,. We distinguish two cases: 0 < a <-%, Figure 31, and
% <o <71, Figure 32.

We see, for 0 < o <-% and k¢ > 0 that all steps are cboper—
ative ones not exhausting all cooperative possibilities. For
k < 0 we would first get additional indifferent steps for the
benefit of Q1 and afterward even worse steps. In % < a €1 and
k > 0 we get cooperative steps, for small k indifferent steps for
the benefit of Q4 and for large k indifferent steps for the bene-
fit of QZ' not all indifferent possibilities being exhausted.

For ¢ < 0 we would only get more indifferent steps for the

benefit of Q1.
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Z K= COHSI‘.
Y
N

K = const.

NI

_42‘¢

Figure 31: Local utility field for Figure 32: Local utility field for
the antiparallel gradient methgd the antiparallel gradignt method °
with a small angle (0 < a < 907) with a large angle (90  <.a < 1807)
between the gradients - between the gradients

CONCLUSION AND QUESTIONS FOR FUTURE RESEARCH

1. There is a strong interrelationship between the notions

preference, reference, convexity and efficiency in Pareto opti-

mality in a two-dimensional case. This could be generalized

to higher dimensional space but not with a convexity concept

based on special curves as generalized straight lines. The

generalization of supporting hyperplanes is quite obvious.

2. In the two-dimensional space other curves, for example

hyperbola, can be used instead of angles for

the definition of

an optimality notion. The interrrelationship between preference,

reference, convexity and efficiency obviously will be very

similar to the Pareto case discussed above.

It is natural to

introduce the preference relation by a local field defined by

corresponding direction diagrams. We come to a successful

convexity notion only if we refer to a field with a given form

to every point of the plane. The guestion arises, under which

conditions for the uniform local field the following field

property in the plane will be fulfilled [see

[7]). Every pair
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of points P P, defines a single sequence P belonging to a

P
17 172
curve of the field through these two points for a deduced maxi-

mum convexity and another single sequence P for a deduced

P
172
minimum convexity. Figure 33 illustrates the question. The
curves in "better" and II define angles to the left and lead
to maximum convexity, whereas the curves in I and "worse" define

angles to the right and lead to minimum convexity.

'igure 33: Local curve field for the generation of
a generalized maximum and minimum convexity

3. Local utility fields can be interpreted as membership
functions for a fuzzy goal, if the reference point is a goal
or as membership functions for a fuzzy lower or upper threshold.
How do we make use of fuzzy set theory to construct good local
fields which help the seeking process for efficient points

according to the agreed optimality notion?

4. We have shown how useful information from linear models
can be used in control space to construct good goal seeking
local utility fields.

The problem is, how can this be done with the possible

benefit of larger step-widths if we make use of local gquadratic
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models instead of linear ones? How will Pareto optimality be

represented in control space if we have reliable gquadratic models
Aa
329

dada'

AQ = (grad Q,Aa) + AaT

in the neighborhood of a reference point?
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