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ABSTRACT

Several results concerning the problem of U.S. Congressional
apportionment are given which together indicate that a method
first proposed by Daniel Webster (also known as "Major Fractions")
is fairest judged on the basis of common sense, Constitutional
requirement, and precedent.
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THE WEBSTER METHOD OF APPORTIONMENT

M.L. Balinski and H.P. Young

Yale University, New Haven, Connecticut
and International Institute for Applied
Systems Analysis

§1. Introduction

The Constitution of the United States requires that the
House of Representatives be apportioned among the several states
according to their census populations. Various methods for so
doing have been advanced over the years, beginning in 1792 after
the first census. Four different methods have been used. 1In
studying the differences between the methods there emerge several
criteria which we believe to be most important by reason of

common sense, Constitutional requirement, and precedent.

The aim of this note is to set down, for the record, several
results describing the interplay between these criteria which
together indicate that one method best answers the needs. De-

tailed proofs will appear elsewhere.

Definitions and Elementary Properties

An apportionment problem is specified by an s-vector (s > 2)

of rational numbers p = (p1,...,ps), all p; > 0, and an integer

house size h > 0. An apportionment of h among s is an integer

s-vector a = (a1,...,as) > 0 with Xiai = h. An apportionment

method is a multi-valued function M(p;h) so that, for each p>0

and h};o, M is a set of apportionments a of h among s (sometimes



s)

unique, sometimes not). g( denotes a method for fixed s;

M(S'h) for fixed s and h. A particular g-solution is a single-

-~

valued function g, with g(g;h) = gezg(g,h).

The quota of state i for h,s is q; = pih/szj. The lower
quota is Lqu; the upper quota rqij.

The following elementary properties define more explicitly
what is meant by a method that apportions 'according to numbers'.
Method M is homogeneous when a €M(Ap;h) if and only if a€M(p;h)

for all rational A > 0. It is proportional if a = g is unique

in M(pi;h) whenever the quotas q; are all integer. These proper-

ties are essential to the very idea of proportionality. A method

is symmetric if for any permutation m of 1,...,s, (a“(f),...,
aﬂ(s))El\}((pﬂ“),...,pﬂ(s));h) if and only if gElﬁl(g;h). Thus

only the numbers count, not the names of states.

Finally, a method is non-degenerate if gn+ p and gezy(gn;h)
for all n implies gezy(g;h). So, if the En are a sequence of

increasingly accurate estimates of the true population p, all of
which admit the apportionment a by M, then so does p. This is a
technical property that allows for a just handling of ties.

These four properties are met by all methods which have, to
our knowledge, ever been proposed, and we assume them in the

sequel unless otherwise noted.

Divisor Methods

A rank-index r(p,a), a > 0 integer and p > 0 rational is

any real valued function satisfying r(p,a) > r(p,at1). The

Huntington method based on r(p,a) [6] is

M(p;h) = {a > 0: a; integer, Zai ='h, max; r(p;,a,) ;nu'_nai>0 r(pj,aj—‘l)},
A rank-index determines a method by assigning priorities in
the allocation of seats by the following recursive rule on the
size of the house (h'< h): at h' = 0 set all a; = 0; if a appor-
tions h' < h, then an apportionment of h' +1 seats is found by

giving one more seat to some state maximizing r(pi,ai).

*
Lx_| denotes the greatest integer < x, x| the smallest
integer > x.
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A divisor criterion d(a), a > 0 integer, is any real valued

monotone increasing function. The divisor method based on d(a)

is the Huntington method based on r(p,a) = p/d(a). We adopt the
convention that p > q implies p/0 > g/0.

A divisor method is regular if either a < d(a) < a + 1 for

all a, or a < d(a) < a + 1 for all a.

Lemma 1. A divisor method is proportional if and only if

it is regqular.

It is of interest to know that virtually all of the methods
proposed -- with the notable exception of Hamilton's -- have been
regular divisor methods. These have received different names and
descriptions in various countries and times. To the best of our
knowledge they should be credited in terms of earliest discovery
as follows. John Quincy Adams' method [1] has d(a) = a;

James Dean's method [17] (he was Professor of Astronomy and Math-
ematics at Dartmouth and the University of Vermont) has d(a) =
2a(a+1)/(2a+1). E.V. Huntington's method of equal proportions
[12,13] (he was Professor of Mathematics at Harvard) has d(a) =
Ya(a+1). Daniel Webster's method [17] has d(a) = a + 1/2.

Thomas Jefferson's method [15] has d(a) = a + 1. These are all
regular, hence proportional. Huntington unified these "historic
five methods" through his test of inequality approach [12,13]

and showed how they could be computed recursively using divisor
functions. 1In the eighteenth and nineteenth centuries the methods
were described in different (though equivalent) terms using the

idea of an ideal district size or common divisor, X. First a

A is specified, then the numbers pi/k are used to determine the
apportionments a ., whose sum determines h. For example, Adams'
method rounds up all fractions, that is, sets a, = rpi/xw;
Jefferson's drops all fractions, that is, sets a; = Lpi/kJ; and
Webster's method rounds to the nearest integer, that is, sets

a; = Lpi/x-+1/2J.

Jefferson's method was used for the apportionments based on
the censuses of 1790 through 1840. Webster's method was used for
1910 and 1930. Huntington's method of equal proportions was used
for 1930 -- it happened to agree with Webster's -- and since 1940
it has been the law of the land.



House Monotonicity

Another early method is Alexander Hamilton's [11], re-invented
and used for the censuses of 1850 through 1900 under the name
"vinton's Method of 1850". It first gives to each state i its
lower quota Lqu; then assigns one additional seat to each of the

i
it admits the infamous Alabama paradox in which an increase in

Z(qi -~ Lqu) states having the largest remainder g, - Lqu. But

the house can result in some states losing seats.

A method M is house monotone if there exists for any p some

y—solution f f;r which f(g;h+1)'; g(g;h) for all h. Congressional
debate makes clear that only house monotone methods can be counte-
nanced. All Huntington methods are house monotone; indeed the
quest for house monotone methods is what motivated Huntington's

work (see also Willcox [18]).

Uniformity

An inherent principle of fair division is: every subdivision
of a fair division must be fair. In the context of apportionment
this principle can be formulated as follows: M is uniform [8]
if (a,b) €M(p,qg;h) implies (i) gelld(g;ziai), and (ii) if also
g'(E@(g;Iai) then (g',?)ez@(g,g;h). That is, an apportionment
acceptable for all states is acceptable if restricted to any
subset of states considered alone; moreover, if the restriction
admits a different apportionment of the same number of seats then
using it instead results in an alternate acceptable apportionment
for the whole.

Theorem 1. If a method is uniform and proportional, then

it is house monotone.

In fact the proof requires, in addition to uniformity, only
that two states having identical populations cannot have appor-
tionments differing by more than one seat. (This result was
later independently noted by Hylland [14].) Since the Hamilton

method 1s not house monotone it is not uniform.

Theorem 2. A method is uniform and proportional if and

only if it is a Huntington method.
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This follows directly from an earlier characterization of

Huntington methods [6] and Theorem 1.

Population Monotonicity

Uniformity inhérently_bears the idea that a method should
be applicable to all problems with all possible house sizes and
numbers of states. A critic might counter that in many situations
s and h are fixed: in the United States h = 435 and s = 50. So,

let us fix s and h.

A census provides populations p = (p1,...,ps). But these
change over time, and errors in census numbers may yield various
p's. A method must behave reasonably when applied to different

~

E's. Many definitions for such behavior are conceivable. The
obvious mathematical choice is to compare two p's identical in

all state populations save one, and ask that a method never assign
to the one state having greater population fewer seats. Actual
population changes over the years do not produce such situations.

A method M(s’h)

= M*{p) (having fixed s and h) is population
monotone if gegg*(g), §:€5¥*(§') and pi/pﬁ > pi/pj imply that

ai < a; and aé > aj occurs only if pi/pé = Pi/pj and (a1,...,ai,
...,aj,...,as)ezg*(g). This avers that if populations change,
apportionments should not change by giving more seats to a state
with relatively smaller population and less seats to a state with

relatively greater population (unless there is a "tie").

bil(s,h)

Theorem 3. Fix s # 3 and h. is population monotone

if and only if it is a divisor method.

The result is not true for s = 3: a counter-example exists

for h = 7. And, of course, the divisor is a function of s and h.

Corollary. M is uniform and population monotone if and

only if it is a regular divisor method.

Invoking uniformity together with population monotonicity
results in a divisor independent of s and h, which is what one
would naturally expecf. In fact, we have shown that uniformity
and proportionality, together with the very weak demand that
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Py > pj must imply a; 2 aj, suffices to characterize divisor
methods (actually a somewhat more general result obtains if pro-
portionality is dropped) [2]. Hylland [14] has recently found a

similar result.

Satisfying Quota

The most primitive request for a method of apportionment is
that it should guarantee to each state at least its lower quota
and at most its upper quota, Lqu 2 a; = rqij, for all i. Methods

with this property are said to satisfy quota. The Hamilton

method is predicated on it, as is the Quota method [3,9]. It is
an unfortunate fact that it is simply impossible to have a method

which satisfies quota together with other fundamental criteria.
Theorem 4. There is no uniform method that satisfies quota.

Theorem 5. Fix s > 4 and h large (h > s+3 suffices). There
is no population monotone method @(S’h) that
satisfies quota.

(s)

So even for fixed s there is no method M which reconciles
the primitive wish to satisfy quota with the necessity of popula-

tion monotonicity. For s = 3 a special result obtains.

Theorem 6. The method of Webster is the unique divisor

method which satisfies quota for s = 3.

Satisfying quota -- as desirable as it may be -- is incom-
patible with uniformity and with population monotonicity for
fixed s and h. We conclude that it must be abandoned. And this,
we will see, can be done at essentially no cost. 1In particular,
we discard the Quota method as well as all guotatone methods

[71.

We are left with the class of regular divisor methods.

Bias

Why has Huntington's method of equal proportions been re-
tained for U.S. Congressional apportionment from among the five
historic divisor methods? If one inspects examples, it is im-

mediately evident that as application of Adams' method it succeeded



by application of Dean's, then Huntington's, Webster's and
Jefferson's, solutions tend more and more to favor large states
over small. This behavior can be proved ([9], Theorem 1).

Two reasons were used to adopt Huntington's method: (1) it is

in the middle of the five from the point of view of favoring

small as versus large*, (2) it is based on a measure of pairwise
inequality of representation between states which (while arbitrary)
seems preferable to those measures of inequality which character-

ize the other four methods ([10,16]1).

In these reports no absolute standard for determining whether
a method favors small as against large states was set down. The
desire to choose a method which is "unbiased”" in its award of
seats to small and large states is well founded, and is rooted
in the "historic compromise" in which the Senate was given re-
presentation independent of population, and each state was as-

sured of at least one seat in the House.

Suppose that a pair of states with populations (p,q), p> g

receive (a,b) seats. If a/p > b/gq then the larger state is

favored whereas if a/p < b/g the smaller state is favored.

Inherent to uniformity is the true-to-life fact that a state
judges how well or how badly it has been treated by making com-
parisons with its sister states' allocations. Indeed, this ob-
servation was at the origin of Huntington's approach, although
he then developed methods based on admittedly arbitrary measures
of inequality between states' representation. By definition a
uniform method apportions seats among every two states in the
same manner as it would were the two considered alone. There-
fore, consider the set S(a,b) of all two state problems (p,q)
(normalized, by homogeneity, to p + g = 1) which yield the ap-
portionment (a,b), a > b > 1 (implying, by population monoton-
icity, p > q). A divisor method d(*) is unbiased if the measure
of the subset of S(a,b) of those populations for which the small
state is favored is the same as the measure of the subset for
which the large state is favored, for all pairs (a,b), a > b > 1.
So, independently of the magnitudes of a and b, an unbiased method

d(*) neither favors small nor large over the set of all problems.

%
It was fortunate, for this logic, that the number of methods
considered was odd.
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Theorem 7. The unique uniform, population monotone, and
unbiased method is that of Webster.

Dually, one might approach the concept of "bias" by fixing
(p,q), p+q =1, p + q, and considering the apportionments of
h=1,2,3,...,h* seats, where h¥ is the smallest integer for
which ph* and gh* are integer. A method is "unbiased" if the
number of times the small state is favored is the same as the
number of times the large state is favored, for all pairs (p,q),
p+g =1, p ¥ q. By this definition the method of Webster is
again the unique uniform, population monotone, and "unbiased"
method.

Specific apportionments for a given problem can be analyzed
for bias. Inspect each pair of allocations to states (a,b) where

a >b > 1 and define the bias ratio to be the number of times

the smaller state is favored divided by the total number of com-
parisons. One cannot expect any regular divisor method to yield
a perfect bias ratio of .5: for some problems the ratios tend to
be high, for others low. Bias is a concept concerning many
problems and so must be applied over many problems. We have
taken the 19 census populations of the United States (1790-1970
inclusive) and found apportionments by each of the historic five
methods together with their respective bias ratios for every case
(see Table 2).

To compare the overall tendencies of the five methods count
for each method the number of times the smaller state is favored
over all 19 problems and divide by the number of comparisons to
obtain the bias ratio over the course of U.S. Congressional
history (see Table 1). Huntington's method of equal proportions,
now in use, has bias ratio .562 and decidedly favors the small

states.

J.Q. Adams J. Dean E.V. Huntington D. Webster T. Jefferson

.780 .583 .562 .518 .199

Table 1. Bias ratio over 1790-1970 U.S. Censuses



1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960

1970

J.Q. Adams

.592
.678
.720
.850
.866
.678
.658
.756
.785
.688
741
.795
.829
.781
.824
.795
.822
.786

.783

Table 2.

J. Dean E.V. Huntington D. Webster T. Jefferson
.592 .592 426 .235
.456 456 456 .280
472 LU72 472 .331
.643 .623 . 481 .198
.508 431 <431 .198
401 401 401 .250
460 .452 452 .214
.653 .581 . 481 . 151
.637 .528 491 .113
416 416 .395 .200
.542 .542 .u84 .270
.637 .619 .570 .219
.684 .684 .657 .246
.618 .618 .522 .159
.621 .535 514 .198
.588 .588 .568 .154
.656 .656 614 214
.542 542 .506 .162
.548 .526 472 .201

Bias ratio for each U.S. Census population
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The more detailed yearly figures of Table 2 show that for
some specific problems (1880 is the one example) Huntington's
method is less biased than Webster's, while for others (e.g.,
1820, 1920) the reverse holds. This is unavoidable. Overall
the statistics sustain the analysis: the Webster method is in-

dicated if bias is to be avoided.

Minimum Requirements

The U.S. Constitution requires that each state receive a
minimum of 1 seat, France assures each of its departements at
least 2 seats, the European Parliament has fixed minimum numbers
of seats attached to each of the countries and ranging between
6 and 36. None of the above developments has explicitly accounted
for a minimum requirement other than zero. However, with ap-
propriate modifications of definitions, the theorems can be ex~
tended and the fundamental conclusions are the same.

Conclusion

Methods of apportionment must be analyzed by identifying
the criteria they satisfy (or do not satisfy) and by observing

their behavior when used for actual problems.

The argument of this paper may be summarized as follows.
Population monotonicity for fixed s (=50) and h (=435) means
that a divisor method must be used. Adjoining uniformity narrows
the choice to a regular divisor method defined independently of
s and h, and guarantees house monotonicity. The requirement
in addition that a method not be biased towards small or large
states leaves but one method: that of Webster.

The major casualty appears to be the lack of a guarantee
that apportionments satisfy quota. Insisting upon that guarantee
would rule out all population monotone methods and all uniform
methods. That is too great a price. 1In fact the method of
Webster does "best" among the regular divisor methods in satis-

fying quota, and for three reasons.

First, as we have seen, it satisfies quota for s = 3, and

is the only divisor method which does. Second, we say a method
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M is relatively well rounded -- "almost" satisfies quota -- if for
a €M there is no pair of states with a; < 4q; - 1/2 and aj > qj

+ 1/2. The method of Webster is characterized as the unique
divisor method which is relatively well rounded [4]. Third,
empirical observation makes clear that the event of a Webster
apportionment not satisfying quota is extremely unlikely. A
Monte Carlo experiment confirms this: for s = 50, h = 435,
20,000 populations were chosen uniformly over the simplex
{pijp; =1 » 435p; > .5}. The method of Webster violates quota

37 times. This extrapolates to less than one violation of gquota

in 5000 years.

We conclude with Daniel Webster, "...let the rule be, that
the population shall be divided by a common divisor, and, in
addition to the number of members resulting from such division,
a member shall be allowed to each state whose fraction exceeds
a moiety of the divisor" ([17], p.120).
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