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Abstract

A method is developed for incorporating the effects
of environmental variability and judgmental uncertainty
about future production parameters into the design of
optimal harvest strategies, expressed as curves relating
stock size and exploitation rate. For the Skeena River Sock­
eye, the method suggests that optimal strategies are in­
sensitive to judgmental uncertainty about the Ricker
Stock production parameter, but are very sensitive to
management objectives related to the mean' and variance
of catches. Best possible tradeoffs between mean and
variance of catches for the Skeena River are developed
and a simplified strategy is suggested for improving
mean catch while reducing year to year variation.

1. Introduction

Pacific Salmon management in recent years has been based

on the concept that maximum sustained yield can be obtained

by holding escapements at some constant level determined by

analysis of the stock-recruitment relationship. Larkin and

Ricker (1964), and Tautz, Larkin, and Ricker (1969) showed

that such fixed escapement strategies should result in higher

mean yields than fixed exploitation rate strategies in the

face of high stochastic variation in productivity. However,

Allen (1973) has stressed the need to look at other possible

management strategies expressed as relationships between har-

vest and stock size; he shows for the Skeena River that fixed

escapement strategies should result in unnecessarily high var-

iance in catches from year to year, and he develops alterna-

tive relationships that should cut the variance of catches

nearly in half with only about a 15% reduction in mean catch.
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The intent of this paper is to present a set of optimal

harvest strategies for salmon, based on tradeoffs between the

mean and variance of catches. The Skeena River is used as an

example, and the optimal strategies are developed by using

stochastic dynamic programming. This formidable sounding op­

timization technique is actually a relatively simple method

for testing the multitude of possible future stock changes

that harvest and environmental variability may produce, weight­

ing each future change by its probability of occurrence.

Since the technique has seen little application in biol­

ogy, section II gives an intuitive introduction to stochastic

dynamic programming. Section III presents a variety of harvest

strategies for the Skeena River, under different assumptions

about environmental variability and using different management

objectives, and examines possible management strategies in

relation to current management practice on the Skeena River.

Section IV analyses potential tradeoffs between mean and var­

iance of catches, and suggests an overall optimal strategy

for the Skeena River. Hopefully it is demonstrated that op­

timal management policies should bear no clear relationship

either to the current (fixed escapement) practice or to the

strategy alternatives suggested by Allen (1973).

II Stochastic Dynamic Programming

The basic concept of dynamic programming was introduced

by Richard Bellman in the 1940's (See Bellman, 1961; Bellman
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and Dreyfus, 1962; Bellman and Kalaba, 1965). It is an op­

timization technique for systems in which a series of deci­

sions must be made in sequence, where each decision affects

the subsequent system state and thus each future decision.

Two key ingredients are necessary to apply the method: a

dynamic model to predict the next state of the system given

any starting state and any decision, and an objective func­

tion to specify the value of the return obtained in one time

step for any state-decision combination. In stochastic prob­

lems, the dynamic model must specify not a single future state

but instead must specify probabilities for each new state that

might arise after one time step from any starting state-de­

cision combination.

The dynamic model

Following most authors on salmon management theory, the

simple Ricker model is used in this study as the necessary

dynamic model:

[~

where

N
t

+l = Stock (recruitment) after one generation, in

standard stock units (approximately 2,000,000

for Skeena Sockeye)

St = Escapement or spawing population, in stock units

a = stock production parameter, assumed to be a random

variable.
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a
If St is held fixed, e represents the net stock productivity

or recruitment excess. This factor arises in nature as a pro-

duct of several survival factors that vary randomly but may

be considered more or less independent of one another. Thus,

a, the logarithm of e a is a sum of random variables and should

be normally distributed by the Central Limit Theorem of basic

statistics. Allen (1973) provides good empirical justification

for this assumption using data from the Skeena River.

is written as

o < u t < 0 1.0 [~

where u
t

is the exploitation rate, or decision variable, then

we have the first basic ingredient for dynamic programming.

The objective is to find an optimal relationship between u
t

and Nt' by examining sequences of decisions where the next

state arising from any Nt - u
t

combination is predicted with

the Ricker model using an appropriate probability distribution

for a.

As an alternative to the Ricker model, we could simply

specify a separate empirical or judgmental probability distri-

bution of recruitment for each conceivable spawing stock (in

other words, treat the stock-recruitment relationship as a

Markov process). However, even for the Skeena River Sockeye

there is insufficient data to meaningfully interpolate recruit-

ment probabilities for high and low spawning stocks (Figure 1).
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The Ricker model appears to be as good a way as any for extra­

polation to extreme stock sizes.

The objective function

The other basic ingredient, the objective function, may

take a variety of forms. For maximizing mean harvest, we can

take it to be simply u t .Nt . If variance is important, we can

instead try to minimize the variance around some desired catch

level; for each time step the relative contribution to variance

is then

24.I ·N - jJ)t t

where jJ is the desired catch level. Note that if jJ is arbi-

trarily increased to high values that cannot be achieved in

nature, the variance contribution at each step becomes essen-

tially linear in Ut"Nt . This means mathematically that mini­

mizing the sum over time of squared deviations from high jJ val­

ues tends toward being equivalent to maximizing UtN t , as jJ is

increased. Thus by changing jJ we can generate a series of

objective functions that range from variance-minimizing to har­

vest maximizing as jJ is increased (this point will be clarified

in Section IV).

The computational procedure

Given the basic ingredients above, the next step required

for dynamic programming is to approximate the continuous var­

iables u t ' Nt and a by a series of discrete, representative
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levels or states. The concept here is the same as is used in

solving differential equations by taking short discrete time

steps. By trial and error, it was found necessary for this

study to use 30 discrete population levels, each representing

an increment of .05 stock units (Nt = 0.0,0.05, 0.1, ... ,1.45),

30 discrete exploitation rates at intervals of 0.03 (Ut = 0.0,

0.03,0.06, ... ,0.82), and 10 discrete a values (a discretization

will be presented in Section III) .

The reader is referred to figure 2 for the following ex-

planation. Suppose we look at any discrete stock size at some

time step, and think about applying many possible harvest

rates to it (left hand "decision branches" in Figure 2). For

each harvest rate a return (harvest or contribution to variance)

can be computed, but the recruitment subsequently resulting

from this escapement will be uncertain (right hand "probability

branches" in Figure 2). Suppose that we specify probabilities

for each possible new stock size that might be produced, and

suppose that we already know (somehow) what future returns can

be expected for each of these new stock sizes. Then for each

harvest rate, we can find an expected overall value: it is

simply the return this year, plus the sum of products of pro­

babilities of getting new stock sizes times the expected fu­

ture returns for these new sizes. In other words, we take

each possible future and weight it by its probability of

occurrence to give an expected value for future returns; this

expected future value is added to this year's return to give
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the overall value for the harvest rate-present stock combina­

tion, for the particular time step under consideration. The

process can be repeated for each possible harvest rate, and

afterwards it is a simple matter to choose which rate gives the

best overall return.

We can next choose another stock size, and try many pos­

sible harvest rates on it. Again providing that we already

know what future returns can be expected for each new stock

size that might result, and that we can associate a probability

with each possibility, it is a simple matter to choose the

best harvest rate for this second stock size.

The whole process is repeated for a third stock size, a

fourth, and so on until the optimal harvest rate for every

reasonable stock size has been computed. The result is a set

of stock-harvest combinations that can be plotted against one

another as a smooth curve; this curve is called the optimal

control law for the time step under consideration.

The real trick in dynamic programming is to get the ex­

pected future returns Eoreach new stock size that can result

for each startingu t - Nt combination. This trick, the key

discovery of Richard Bellman, is remarkably simple: we work

backwards in time from an arbitrary end point (t = K). Values

are assigned to different stock sizes at this endpoint, and

these values are used to look ahead at the endpoint from one

time step backward (t = K - 1). After getting overall values

for each stock size one step back from the endpoint, we can
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then move back another step (t K - 2), and look ahead to the

values just computed for t = K - 1. This backward recursion

process is repeated over and over (t = k - 3, K - 4, etc.)

After several backward recursion steps, a phenomenon

emerges that forms the central basis for this paper: the

endpoint values cease to have any effect, and the optimal ex­

ploitation rate for each stock size becomes independent of the

time step. The optimal control law or harvest strategy curve

is then said to have stabilized; this usually occurs within

10 - 20 steps for the Ricker model. Certain computational

tricks are necessary to insure that the stable control law is

valid, since the new stocks produced at each forward look may

not correspond exactly to any that have already been examined

for the next time step forward. This interpolation problem

is solved by being careful to examine enough discretized stock

sizes and exploitation rates.

The key feature of stochastic dynamic programming is that

it explicitly takes account of all the possible futures that

are considered likely enough to be assigned probabilities of

occurrence. Furthermore, it makes no difference whether these

probabilities are chosen to represent judgmental uncertainty

(Raiffa, 1968) about deterministic parameters, or true sto-

chastic variation in parameter values, or some combination of

these sources of uncertainty.

III Optimal Strategy Examples

This section develops a set of judgmental probability
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distributions for the a parameter of equation 1, using the

Skeena River Sockeye as an example. These probability dis-

tributions are then used to demonstrate the form of optimal

harvest curves obtained by the procedures outlined above, for

different objective functions. Simulation results are pre-

sented to show the likely consequences of applying the harvest

curves, in terms of probability distributions of catches and

stock sizes. Finally, alternative harvest curves are compared

to actual management practice on the Skeena River.

a distributions for the Skeena River

Using the data in Figure 1, a set of empirical a values

can be computed as

where i is the data point

R., S. are the recruitment and spawner values
1 1

Se is the replacement number of spawners in the

absence of harvest.

S was taken to be 2,000,000 spawners, and the results for a
e

are presented in Figure 3, top panel. As Ricker (1973) points

out, there has been a decrease in the mean value of a in recent

years. With some imagination, one might conclude that the

frequencies had been drawn from a normal distribution; luckily,

no such assumption is necessary in order to apply stochastic

dynamic programming.
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The bottom panel of Figure 3 shows three judgmental pro­

bability distributions that a decision maker might draw after

examining the top panel. These test distributions are all

truncated at 0 and 2.3, for computational convenience (test

runs showed that extreme values have little effect for the

present problem). The distribution marked "pessimistic"

(for obvious reasons) assumes an even distribution of a val-

ues in the future. The distribution marked "natural" is the

author's artistic (?) rendition of the data, weighting recent

years more heavily. The "optimistic" distribution might be

drawn by a decision maker who believes that the good produc­

tion rates of recent years (Figure 1) will continue in the

future due to better management practices of some sort. An

important concept behind these distributions is that the

stochastic dynamic programming solution can be made to take

a variety of intuitive judgments into account,. beyond the

hard facts of past observations.

Form of the optimal solution

The judgmental probability distributions in Figure 3,

combined with equations (1) and (2) and with several objective

functions, were used to obtain a variety of optimal solutions.

For the computer freaks, I used a PDP 11/45; each solution

required about 100 sec of computer time (30 Nt levels x 30 u
t

levels x 10 probability levels x 20 time steps). The discrete

Nt - u t optimal solutions were connected as smooth curves for

presentation here.
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Let us first examine the dome shaped band of optimal

harvest curves indicated by horizontal shading in Figure 4.

All three curves were generated by trying to minimize the

2objective function (H .6), that is by trying to minimize

the variance of catches around a mean value of 0.6 million

fish. The top curve represents the strategy that should be

followed if the optimistic probability curve for a (Figure 3)

is considered best; the lower two curves represent optimal

strategies for the natural and pessimistic a probabilities

of Figure 3, respectively. The most important conclusion to

be drawn from these curves is that the optimal strategy (for

minimizing (H - .6)2) is quite insensitive to the judgmental

probability distribution for a, except when stock size is between

0.4 and 1.0 million fish. In hindsight, it is easy to give

intuitive reasons for the shapes of the curves: very low

stocks should not be fished since recovery will be showed, and

high stocks should be fished lightly so as to avoid high,

variance-generating catche& An assumption of the Ricker curve

becomes important for high stock sizes, namely that large num-

bers of spawners will not result in very low recruitment in

later years.

Similar results are obtained for the objective of trying

to minimize the variance of catches around a mean value of

1.0 million fish (vertical shaded curves in Figure 4). Again

the prediction is that low stocks should not be fished at all,

while high stocks should receive moderate exploitation.
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The most interesting curves in Figure 4 are for the max­

imum harvest objective function. These curves essentially

call for a constant escapement of around 0.8 - 1.0 million

spawners, as suggested by earlier authors. Also, the optimal

strategy is almost independent of the judgmental probability

distribution for a. In other words, current management pol­

ices on the Skeena River should result, if they can be fol­

lowed, in maximum average catches even if the future distri­

bution of a values is quite different from what it has been.

Predicted catch and stock size distribution

Since the stochastic optimal solutions are based on the

assumption that there is no certain future population trend,

the anticipated returns by applying them are best presented as

probability distributions. The simplest way to approximate

these distributions is by making very long simulation runs,

using equations (1) and (2), with an appropriate random number

generation procedure for a values.

Figure 5 presents catch distributions from 5000 year

simulation trials, for the optimal harvest curves from Figure 4

that should be used if the "natural" a distribution is con­

sidered most credible. Results are also presented for a har­

vest curve shown in Figure 7, that was obtained by trying to

minimize the variance of catches around a mean value (not

achievable) of 2.0 million fish. The results in the top

panel of Figure 5 were generated by actually using the "na­

tural" distribution to choose different a values for each
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simulated year; the results in the bottom panel were generated

by choosing a values from a normal distribution with mean 1.3

and standard deviation 0.5 (after Allen, 1973). The results

are quite similar, again suggesting that the optimal strategies

should be insensitive to the realized future distribution of

a values. The roughness of the curves for the "natural" a

distribution is due to the numerical approximation procedure

used in the simulation program.

Thereshould be an additional benefit from the variance­

minimizing strategies, as shown in Figure 6. The variance of

recruitment stock sizes increases progressively, and the mean

stock size decreases for strategies that place more emphasis

on maximizing mean catch. This is a surprising result, since

the catch maximizing strategies tend to produce stabilized

escapements.

Comparison to actual Management Practice

Catch and escapment statistics kindly provided by F. E.

A. Wood, Environment Canada, were used to compute actual har­

vest rates for the Skeena River Sockeye (Figure 7). It is

apparent that management practice in recent years has been

able to follow the best fixed escapement policy quite closely.

The optimal harvest curves in Figure 7 (all for "natural" a

assumption) represent a spectrum of possible objectives based

on trying to minimize the variance of catches around a series

of increasing values.

Forthe 15 year period before 1970, Figure 7 suggests that
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management practice more closely followed a strategy of trying

to minimize the variance of catches. The correlation could be

purely spurious, but it is tempting to speculate. Management de­

cisions are open to pressure from the industry to allow higher

catches in low stock years, and the industry may be unwilling

to accept excessively high catches in the good years. If fish­

ing decisions have been affected in these ways in recent years,

one wonders about the wisdom of pursuing fixed escapement po­

licies. This question is the central topic of the following

$ection.

IV Tradeoffs between Mean and Variance of Catches

The results in Allen (1973) and Figures 5 and 6 clearly

suggest that management strategies can be devised to signifi­

cantly reduce the variance of catches without intolerable losses

in average yield. The aim of this section is to quantify the

best possible tradeoff relationship between mean and variance

of catches, so that the question of what is "intolerable" can

be subjected to open negotiation. This analysis leads to a

simplified optimal harvest law that can be practically imple­

mented as an alternative to fixed escapement policies.

Definition: The Pareto Frontier

It is necessary to introduce a concept at this point that

may be unfamiliar. Suppose one picks a value for the variance

of catches, and then asks for the maximum mean catch that can

be obtained at this level of variance. Presumably.there is

some answer to this question, and some optimal harvest strategy
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that will do the job. One can then pick another variance val­

ue and ask the same question about mean catch. If one demands

0.0 variance in catches from the Skeena River, then the maximum

mean catch is not likely to exceed about 0.4 million. On the

other hand, if one says that any variance is tolerable, then

he can be presented with the maximum harvest strategy from

Figure 7 with its associated mean value. The set of variance­

mean combinations that can be generated in this way is known

as a Pareto Frontier. In any decision problem where there

are tradeoffs between different kinds of benefits, the highest

achievable combinations are said to define the Pareto Frontier.

Presumably the only management strategies worth considering are

those which generate points along the frontier.

The variance minimizing objective functions used to obtain

the harvest curves of Figure 4 and 7 are asking essentially the

same questions, but in reverse; for any desired mean value, they

ask for a minimum variance harvest curve. Unfortunately, sto­

chastic dynamic programming does not permit us to ask the ques­

tions the other way around without doing excessive additional

computation. As we ask for higher and higher mean values with

the variance-minimizing objective functions, the optimal solu­

tions place more and more weight on getting higher catches, and

correspondingly less on reducing variation (which is always

large if the desired mean value is impossibly high).
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Application to the Skeena River Sockeye

Thus the harvest strategies in Figure 7 should generate

(approximately) values along the mean-variance Pareto Frontier.

Figure 8 presents this frontier for two possible a distribu­

tions. Points along the upper frontier were obtained by 5000

year simulations with "natural" a probabilities and associated

optimal harvest curves, while points along the lower frontier

were obtained by simulating with the pessimistic a probabili~

ties and their associated harvest curves. Observed catch­

variance combinations for the past two decades have been well

below the potential suggested by the "natural" a distribution.

Since the catch-variance combination since 1960 has been well

above the pessimistic frontier, and stocks have increased

steadily over this period, the pessimistic frontier is clearly

too conservative. The main suggestion of Figure 8 is that the

average catch of the past decade could be either:

(1) maintained with an extreme reduction in variance

(using an (H - .8)2 strategy curve)

(2) increased by 25% (0.2 million fish) while maintaining

the same variance (using an (H - 2)2 strategy curve)

(3) or increased by (perhaps) 39% (0.3 million fish)

while increasing the variance by about 50%.

The average catch over the 1970-1974 period has actually been

around 0.9 million fish, as it should be according to figure 8,

but a variance estimate for this short period would hardly be

meaningful.
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A simplified strategy for practical implementation

The optimal ~trategy curves based on variance minimization

would be difficult to implement in practice, since they call

for very good control of annual exploitation rates. Figure 7

suggests that such control is not yet available, even if it

were possible to negotiate a best point along the Pareto Fron­

tier of Figure 8. Thus a simplified strategy is suggested in

Figure 7. This strategy recommends to:

(1) take no harvest from stocks less than 0.5 million

fish

(2) use exploitation rates between 0 and 50% for stocks

between 0.5 and 1.0 million fish

(3) use a 50% exploitation rate for all stock size

above 1.0 million.

This strategy should result in a mean-variance combina-

tion (Figure 8 and 9) nearly on the frontier of best possible

combinations, with a mean catch (0.94 million fish) near the

1970-74 observed average and a 20% reduction in variance from

the 1955-1974 average. By calling for a fixed exploitation

rate (and thus fixed effective fishing effort) most of the

time, the simplified strategy should be less costly to imple­

ment since it should not require close monitoring of escape­

ments during each fishing season.



-18-

v. Conclusions

While I have concentrated on the Skeena River as an

example, the methods outlined in this paper should be appli­

cable in many fisheries situations. The stochastic program­

ming solutions can be performed with any stock model that has

relatively few state variables (~7for modern computers), and

it is certainly possible to design more complex objective

functions to take a variety of cost and benefit factors into

account.

To summarize the previous sections:

(1) Stochastic dynamic programming provides a mechanism

for incorporating judgmental uncertainty about pro­

duction parameters into the design of optimal manage­

mental strategies.

(2) Optimal strategy curves (exploitation rate versus

stock size) are relatively insensitive to the judge­

mental probability distribution for the Ricker stock

production parameter.

(3) Optimal strategy curves are very sensitive to chang­

ing management objectives related to mean and variance

of catches.

(4) Strategies for reducing the variance of harvests

should also lead to higher and more predictable

stock sizes.

(5) Potential tradeoffs between mean and variance of

catches can be quantified along a Pareto Frontier

for decision negotiations.
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(6) Simplified strategy curves can be developed that

give nearly optimal results.

Acknowledgements

The ideas in this paper are the result of discussions

with scientists at the International Institute for Applied

Systems Analysis, Vienna, especially Jim Bigelow, John Casti

and Sandra Buckingham. Special thanks to Peter Larkin and

F. E. A. Wood for suggesting the direction to look.



-20-

References

[lJ Allen, K. R. 1973. The influence of random fluctua-
tions in the stock-recruitment relationship on
the economic return from salmon fisheries. Con­
seil Internat. Pour L'Exploration De La Mer,
Rapport~164, pp 351-359.

[~ Bellman, R. 1961.
guided tour.
N. J.

Adaptive Control Processes: A
Princeton Univ. Press, Princeton,

[~ Bellman, R., and Dreyfus, S. 1962. Applied dynamic
programming. Princeton Univ. Press, Princeton,
N. J.

Bellman, R., and Kalaba, R. 1965. Dynamic Programming
and modern control theory. Academic Press, New
York.

Raiffa, H. 1968. Decision analysis: introductory
lectures on choices under uncertainty. Addison­
Wesley, Reading, Massachusetts.

[6J Ricker, W. E. 1964. Stock and recruitment. J. Fish.
Res. Bd. Canada, 11:559-623.

Ricker, W. E. 1973. Two mechanisms that make it im­
possible to maintain peak-period yields from
stocks of pacific salmon and other fishes. J.
Fish. Res. Bd. Canada, 30:1275-1286.

Shepard, M. P., Withler, F. C., McDonald, J., and
Aro, K. V. 1964. Further information on spawing
stock size and resultant production for Skeena
Sockeye. J. Fish. Res. Bd. Canada, 21:1329-31.

Tautz, A., Larkin, P. A., and Ricker, W. E. 1969.
Some effects of simulated long-term environ­
mental fluctuations on maximum sustained yield.
J. Fish. Res. Bd. Canada, 26:2715;26.



.19

3.6 .14

3.2 .44

036

42Q47 031

O.B 017 024

52~ 028
33 050

560038

0.4 043
055

0
a 0.2 OJ. 0.6 0.8 1.0 1.2 1.4

PARENT SPAWNERS (MILLION S)

2.8

2.4
018 04825 Cl09

0
040

057 015

2.0
070

069
.10

013
063 067

060
~20 .08

1.6 032 fil26 e68

e66 022 023
c64

J~ 027039 053
021 34 54

065 0111.2 ~37 041
046

062

lJ)
z
o
H
.....J
.....J

~

~
U
o
r­
lJ)

r­
z
~
......J
::>
lJ)
llJ
a::

Figure 1. Stock-recruitment relationship for the Skeena
Sockeye. From Shepard, et ale (1964), with
recent points from unpublished data provided
by F. E. A. Wood, Environment Canada.



A
LT

ER
N

A
TI

V
E

D
EC

IS
IO

N
S

ST
O

C
H

A
ST

IC
PO

SS
IB

IL
IT

IE
S

EX
PE

C
TE

D
FU

TU
R

E
R

ET
U

R
N

S

D
IS

C
R

E
T

E
S

T
O

C
K

S
IZ

E

E
X

P
L

O
IT

A
T

IO
N

R
A

T
E

=
0

E
X

P
lD

IT
A

n
O

N
r

..
I

R
A

T
E

=
0.

1

E
X

P
L

O
IT

A
T

IO
N

R
A

T
E

=
0.

2

I I I I I

O
T

H
E

R
R

A
T

E
S

N
E

W
S

T
O

C
K

,

O
N

E
E

X
P

E
C

T
E

D
FU

TU
R

E

I
'

,
v

y
..

..
..

,,
,
.
.

-
=-!

O<
=.3

1
e.1

N
E

W
S

T
O

C
K

,
S

E
C

O
N

D
F

U
T

U
R

E

I~~
.6\

1
E

T
C

.
I

I I I I

O
TH

E
R

o
(S

F
ig

u
re

2
.

D
e
c
is

io
n

b
ra

n
c
h

e
s

an
d

p
ro

b
a
b

il
is

ti
c

o
u

tc
o

m
e
s

fo
r

a
n

y
s
ta

rt
in

g
s
to

c
k

s
iz

e
(e

x
p

la
n

a
ti

o
n

in
te

s
t)

.



10

---U VALuE~ N.~ 194"0

• RECENT VALUES (1940-1970), (X:; 1.3

CX=1.5 (ALL DATA)

~

O~
~~0::: 0W w
~o:::
OlJ...

5

o
<0 0

% 1%
0.2 0.4 0.6 0.8 to 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2,6 28 3.0

OBSERVED VALUE OF <X

0.3

o 0.5 to 1.5

TRIAL VALUE OF ()(

OPTIMISTIC
(CX=1.5)
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