
Structure of a File Oriented
Programming Language, GPLAN-BL-
1

Bonczek, R. & Whinston, A.B.

IIASA Working Paper

WP-75-164

1975

Bonczek R & Whinston AB (1975). Structure of a File Oriented Programming Language, GPLANBL1. IIASA Working
Paper. IIASA, Laxenburg, Austria: WP75164 Copyright © 1975 by the author(s). http://pure.iiasa.ac.at/id/eprint/264/

Working Papers on work of the International Institute for Applied Systems Analysis receive only limited review. Views or

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other
organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial
advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on
servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at

mailto:repository@iiasa.ac.at

STRUCTURE OF A FILE ORIENTED

PROGRAHHING LANGUAGE-GPLAN/BL/I

Robert H. Bonczek and Andrew B. Whinston

December 1975 WP-75-164

Working Papers are not intended for distri
bution outside of IIASA, and are solely for
discussion and information purposes. The
views expressed are those of the authors,
and do not necessarily reflect those of IIASA.

2361 ILaxenburg International Institute for Applied Systems Analysis
Austria

structure of a File Oriented

Programming Language~GPLAN/BL/I

Robert H. Bonczek

1. Introduction

Andrew B. Whinston

r

Modern computer science has developed languages along many

distinct paths; three are: Operating System Languages (e.g.,

OS/JCL), High Level Procedural Languages (e.g., FORTRAN), and

High Level Non-Procedural Data Base Languages (e.g., ALPHA,

SQUARE, GPLAN). The purpose of each of these is to solve a

particular problem, namely, to simplify the work of the pro

grammer, so that a majority of his time could be spent on his

own application. The development of data manipulation pro

cedures has also proceeded independently; of programming

languages only in the programming language LISP are data and

program expressed in a common manner.

We feel that the time has come for a new approach to computer

language evolution, especially for business oriented users. The

combination of data, programs, and operating system into a single

language would make a great simplification of the current state

of affairs. The BL/I language is presented as a prototype for a

data base oriented computer system, combining features from oper

ating systems, programming languages, and data base languages.

1.1 Operating System

Most operating systems include a job control language: a

procedural language for specifying job steps. This includes

device manipulation, large file manipulation, compilation and

execution. The transparL,nt part of the operating system is the

software for schedUling, queueing, and device operation. In the

proposed system, the file manipulation capability of a job control

language is extended to handle arbitrary sections of a data base.

Other features would remain the same.

•

-2-

.1.2 Programming Languages

Languages such as FORTRAN and COBOL suffer from the defect

of being record oriented languages, i.e., processing only a

single record at a time. BL/I will also handle the record

oriented programs, but it contains a set of D.B. oriented

manipulation routines, where entire sections of the D.B. can be

addressed from within a procedural language program. Since

FORTRAN and COBOL are subsets of BL/I, it is clear that an

increase in computing power is obtained.

1.3 Data Base Languages

Two kinds of data base languages have been developed.

Record oriented and Procedural Data Manipulation Languages (e.g.,

GPLAN/DMS) were proposed by the CODASYL D.B.T.G. These usually

consist of a set of COBOL or FORTRAN callable subroutines, which

maintain and manipulate record occurrances in the D.B. File ori

ented nonprocedural languages (e.g., ALPHA, GPLAN/QUERY LANGUAGE)

use data descriptions to generate output files from the data base.

However, the nonprocedural approach is limited by the difficulty

of comprehending complex statement and commands. Natural language

processing is (as of now) too time consuming for use in this

application.

2. Features of BL/I

As stated above, BL/I will attempt to combine many of the

features of operating systems, programming languages, and data

base retrieval into a single language. In this section are

listed some of the user oriented features that BL/I should contain.

2.1 Data Base

The fundamental underlying concept of BL/I is that it is

built upon a CODASYL type network data base. The entire BL/I

system is described by a network structure, in that all parts of

BL/I relate to others in both explicit and implicit ways. The

implementation of the data portion of the D.B. is described in the

GPLAN DMS Users Manual [1]. A useful feature of the GPLAN system

is the ability to maintain data ocanrances in LIFO and FIFO lists

•

-3-

(or stacks and queues), as well as sorted by key. This device

is useful for the implementation in the operating system of a

scheduling process.

2.2 Data Base Manipulation

The foundation for all of BL/I's DB Manipulation capabil

ities is the GPLAN Query Language [2]. This is a nonprocedural

high level query language that can be used to compute simple

and complex expressions on data, as well as to perform condi

tional retrieval on the data stored in the D.B. The prototype

of a GPLAN is

<COMMAND> <ARGUMENTS> <CONDITIONS>

such as in: LIST STUDENTS FOR TEACHER = 'SMITH'.

However, by using a transformational grammar to parse the query,

the parts of the query can be convoluted, as in

FOR TEACHER = 'SMITH' LIST THE STUDENTS

For a fuller description, see [2].

The QL has the ability to modify the data base, as well as

perform retrieval. New and/or temporary record types can be

created/deleted by using the proper statements. The value of

having the QL as an integral part of the BL/I language is two

fold: (1) it provides quick data retrieval capabilities for non

technical users of the D.B. By presenting as english-like QL,

the system can be utilized by anyone requiring it. (2) it frees

the technical user from the chores of data manipulation, so that

more of his time can be spent on solving the problems of his

own application.

2.3 Record Manipulation

Some users of data information systems have need to actually

examine and retrieve data internally on a record by record basis.

To satisfy these users, BL/I includes the GPLAN Data Manipulation

Language. This set of routines perform all of the necessary data

base accessing functions for a program. Callable from any source

language, they provide another method for modifying and retrieving

-4-

information, so that the user only need be concerned with his

own computations.

What we actually have is a hierarchy of methods of access

ing the data base. At the most primitive level, a user can be

concerned with paging, pointers, etc. This chore is performed

for the user by the DML. The user of DML is then only concerned

with logical relationships among data elements, explicitly defi

ning and computing these. This task is performed by the query

system, leaving to the user the job of naming the sets of data

he desires. Finally, BL/I provides a means of working with these

sets of data, so that the user only need specify what processes

he wants performed, and not how to perform them.

2.4 Input/Output

The input/output functions of BL/I are performed by the

GPLAN/GENERALIZED LOAD PROGRAM (GLOP). GLOP has the capability

of transferring data from any kind of network structure into any

other kind of network structure. Note that this includes the

special case of transferring a sequential file (single record

type) into a network DB structure.

For example, suppose that the structure shown in Fig. 1a

(assumed to be input) is to be mapped into that of Fig. 1b. The

necessary structural information would be to :

Teacher Name # of Students

Student Name Grade STUDENT TEACHER

GIVE

Teacher Name # of Students

Student Name Grade

FIG. 1a FIG. 1b

CREATE RECORD TYPES STUDENT, GRADE, TEACHER, with relation

RECEIVE holding between STUDENT and GRADE and relation GIVE

holding between TEACHER and GRADE. The necessary GLOP file

description is:

-5-

FORMAT 1

TEACHER,NN1E: OvillER OF GIVE

DETAIL: 2

FORMAT 2

STUDENT ,NAME: OWNER OF RECEIVE

GRADE: MEMBER OF GIVE AND RECEIVE

The term DETAIL refers to the number of records of Format Type 2

that occur. Note that only specific structural information need

be given to GLOP; it is a high level language, in that only what

to do is specified, and not how to do it.

The GLOP structure contains formatting capabilities. Thus

GLOP can be used as a report generator for output (the GPLAN QL

has a similar capability). The same holds true for inpu~. The

important idea here, though, is that conceptuall¥ input and

output are just two pre-defined record types of the system. In

fact, all external devices on the computer can be (logically)

considered record types of the D.B. Thus GLOP can be used to

manipulate all input and output. Moreover, it is possible to

structure the record types for the mass storage devices,and so

logically obtain storage hierarchies.

2.5 Application Program

BL/I allows both FORTRAN and COBOL programs to be compiled

and executed as part of the BL/I system. In order to do this,

both compilers and a loader must be BL/I resident. Logically

this can be accomplished by defining COMPILER and LOADER record

types, and storing the appropriate programs by name as record

occurrances. In this way, many different compilers can be acc

omodated by the system, as well as several different versions

of loaders. All of the program compiled by BL/I would have

access to both the DML routines and the GLOP for processing

purposes.

Along these same lines, it is possible to store user appli

cation programs in a record type, either in source or binary

version. Having the program source code is useful, since

-6-

modifications can be made to it from the GPLAN QL. These stored

programs can be executed from BL/I by name.

2.6 Planning

BL/I is designed primarily for a manager who is interested

in getting results from the computer rather than programming it.

Thus it is useful to include in BL/I a planning mechanism, like

STRIPS [3], so that the manager can be aided in making whatever

decisions must be made. But an economic planning module must be

able to do more than a robotic planning module, because the former·

must often choose between alternatives according to some criteria,

e.g., maximizing profits by investment.

The only way such a mechanism can be realized is to have it

operate interactively with the manager. In this way, the system

can query the manager concerning the decisions that must be made,

in order to use his judgement on reducing the possible choices.

Only with a guided interactive search can this form of planning

mechanism operate.

2.7 Security

A security system has already been designed for the GPLAN

Query System [4]. In this system, both operators and data

values can be locked out for a particular user. This system

could be extended to BL/I application programs and system routines

in a simple and straightforward manner. Thus, no operation not

allowed for a user could be performed by that user, nor could data

values be retrieved to which that user was not entitled.

3. BL/I Control

The BL/I language uses a general recursive control structure

that is quite flexible for meeting the needs of users. Since all

of BL/I is defined with respect to the universal data base, the

control structure is also so defined.

3.1 Storage of Semantic Information

Consider the context free grammar G = (N,E,P,S), where

N = {S,T,O}, E = {(,) ,-,+,x,7,a1 ,a2 ,a3 , •.. ,ak }, and P contains

•

..

-7-

productions 8 -+ 808, 8 -+ 8, 8 -+ (8) , 8 -+ T, o -+ +, o -+ x,

0 -+ *, o -+ .. , T -+ a 1 , T -+ a 2 ,···,T -+ ak . This granunar is called

a picture grammar if we let the terminals ai' i = 1 , ... , k be

arrows (-+) , and define the operators by

a b
a+b means -+ -+ hd(a+b) = hd(b), tl(a+b) = tl (a) , hd (a) = tl(b)

axb means a,l\,b hd(axb) = hd(b), tl(a+b) = tl (a) = tl (b)

a*b means aob hd(a*b) = hd(a) = hd (b) , tl(a*b) = tl(a) = tl(b)

a.;-b means a\lJ hd(a';-b) = hd(a) = hd (b) , tl(a';-b) = tl(a)

where hd(x) = head of arrow x, tl(x) = tail of arrow x. (over-

score) is a special operator; if x appears in a string, it means

that this occurance of x is the same as the previous occurance

of x, if one exists.

Using this picture grammar, a network data base structure

can be described as a string in the language of the picture

grammar. For example, the network pictured in Fig. 2 can be

described by

FIGURE 2

as x [(a4+a9) x (a3.;-[(a1+[a6.;-(a2+[aaxa7])])xa2])]

Another description is

A problem, t.hen, is that for each data base structure there

exist more than one picture language string describing that

structure. Any algorithm described for translating networks

-8-

into picture language strings then will be dependent upon the

order the links of the networks are processed in. For a given

network, the problem of finding a best representation of the

network by a string is yet to be solved.

However, each well defined string in the picture language

describes one and only one network structure. Thus, given a

string, it is possible to completely determine the network data

base the string describes. Moreover, the semantic information

about the links (relations), which define the data base, can

easily be stored with the string in a network structure. (Fig. 3).

FIGURE 3

Each terminal symbol of the string represents an occurance of

the record type string. Each link in the string is owned by

a relation, as well as two record types (head and tail). The

semantic information stores corresponds to information now

stored in the record table and set table of the GPLAN Data

Manipulation Language [1].

The structure allows full flexibility to be achieved in

the storage of the data base schema information. One can access

this information by relation name, record type name, partial

semantic data, or by part of the defining string itself. This

latter capability is most useful when a restructuring of the

D.B.structure is requiredi by specifying changes in the structure

of the string, the structure of the D.B. is modified.

3.2 General Description of Routines

Consider the universal data base, with record types for

all progrmus and devices as well as data. Suppose a program

-9-

stored as an occurrance of record type A is to be run, and

this program may need results from two other programs of type

Band C (see Fig. 4).

FIGURE 4

The execution of Band C is dependent upon the arguments supplied

to A. The control routine for program A might look like this

(in a loose LISP framework)

(EXECUTE X (COND ((C 1) (AND (REQUEST B) (REQUEST C»)

((C 2) ((REQUEST B»)

(T T»)

where if C1 is satisfied, both Band C must be run; if C2 is

satisfied, then only B must be run; otherwise neither need be

run, so the value of EXECUTE would be T. The request function

might look like:

(REQUEST X (COND ((C1) (EXECUTE X»

(T NIL)))

where if C1 is true then X should be run; if C2 is true then X

need not be run, i.e., X halts with no output; otherwise X can

not be run, and hence the request has failed. Clearly, when

EXECUTE X is issued, it may need to recursively request other

routines, etc.

In general, for each node (record type) in the control

structure network, there is an associated list of "EXECUTE ri

-10-

conditions, which form the COND clause of the REQUEST function.

Similarly, for each line (relation) there is a corresponding

list of "REQUEST" conditions, which form the COND clause of

the REQUEST function. Then to perform any step in the control

process, all required steps must be executed (with a value of T).

3.3 Examples of the Use of the Control Process

The interface of application programs with the data portions

of the DB can be facilitated by means of the Control Structure

(Fig. 5).

FIGURE 5

The execution of program B from program A can be effected by the

process described above. Suppose program A needs some data from

the D. B. in order to run. Record C would then only need contain

(1) a call to GLOP and (2) the description of the desired data

and the form of the retrieved data. If the data is unavailable,

the request would fail.

It is occasionally useful to store a program as part of a

data record occurancej this is feasible when the program is small

er than the output generated. The program itself must then have

an associated "EXECUTE" list. In performing retrieval on this

data occurance, the execute list could have in it a reference to

EXECUTE the stored program. In conjunction with the previous

example of program interfacing, this technique can become quite

powerful.

Complex BL/I programs can be constructed using this technique.

By providing a user defined control structure capability, a pro

grammer can build an EXECUTE-REQUEST network of BL/I subprograms.

Moreover, if BL/I is operating in a multi-processor environment,

then the control structure can be used to specify routines which

can be processed in parallel.

,

'-"--..'!III!

-11-

3.4 BL/I Control Monitor

The actual BL/I Control Program is designed according to

th~ BL/I Control Structure. For each kind of BL/I instruction,

there is a record occurrance, with its associated "EXECUTE"

list of conditions. Each record occurrance is then linked to

appropriate other occurrances. In this way, security is a

fairly reasonable thing to implement: if the user does not have

the proper security clearance, then his request will fail (have

value NIL).

Of course, the BL/I Monitor is also an operating system,

so that it must also contain routines for resource management

and scheduling. The Control Structure is a logical description

of the method of program execution. The interface of the applica

tion side of BL/I with the operating system side must be made

consistent.

The actual form of the Monitor has yet to be established.

To proceed in this direction, the external routines of BL/I must

be completely specified. Once this is done, we can proceed to

implement the internal structure of the language, using the

criteria specified by the requirements of the routines. This is

the next step in the development of the BL/I language.

However, it is clear at this time that, besides being a

language oriented toward management applications, it also has

many of the properties of LISP that are desirable. The D.B. cap

ability is at least as powerful as data structures definable in

LISP; by using the QUERY LANGUAGE to do retrieval, the burden

of using CAR and CDR is removed. The control language is

recursive. Further, a LISP compiler or interpreter could be

included as part of the compiler record type, so that existing

LISP routines could be incorporated into the system. with the

Planning System, BL/I becomes a useful tool for researchers in

artificial intelligence.

-12-

4. Conclusion

This paper is an outline for a new, high level procedural

computer language that would encompass ideas from operating

systems, programming languages, and data base technology. The

language would incorporate many features of these three areas,

with more interrelations among them than is commonly found today.

However, much work still needs to be done on this subject. In

particular, the control structure for BL/I needs to be worked

out in greater detail. Furthermore, the economic planning

mechanism must be designated to easily interface with the data

base. We believe that the realization of BL/I will be a great

step in the evolution of management oriented computer languages.

References

[1] Bonczek, R.H., Cash, J.I., Haseman, W.D., Holsapple, C.W.,

Whinston, A.B., Generalized Planning System/Data

Management System (GPLAN/DMS) ,Users Manual, Krannert

Graduate School of Industrial Administration, Aug. 1975.

[2] Bonczek, R.H., Haseman, W.D., Whinston, A.B. "Structure

of a Query Language for a Network Data Base,"

Working Paper.

[3] Fikes, R.E., Nilsson, N.J. "STRIPS: A New Approach to the

Application of Theorem Proving to Problem Solving,"

Artificial Intelligence 2 (1971), 189-208.

[4] Cash, H.1., Haseman, W. D., and Whinston, A.B. " Security

For the GPLAN System," submitted to Information

Systems, Feb. 1975.

