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ABSTRACT

This paper studies various extensions of the minimax

principle to select unique optimal behavioral strategies in

zero sum games in extensive form. Formal comparisons of the

different extensions are carried out in the context of zero

sum sequential games with incomplete information. There it

appears that the various extensions are related to different

approaches to the exploitation of the opponent's mistakes.



1. Introduction

Our basic motivation ~s to understand the rationale

associated with an optimal behavioral strategy in a zero sum

game defined in extensive form.

The traditional approach to solve such games is to reduce

them to their normal form and derive the optimal behavioral

strategies from the optimal mixed strategies. This procedure

has the conceptual drawback of not providing much insight for

the extensive solution. Furthermore it has the technical

drawback of enlarging the dimension of the problem considerably

(while the dimension of the behavioral strategy set grows

linearly with the number of information sets in the game tree,

the dimension of the mixed strategy set grows exponentially),

as a result the optimal mixed strategies are in general non

unique though the optimal behavioral strategy might be unique.

(This of course generates some frustration after tedious

computations!)

Some recent approaches, however, propose direct procedures

to solve games in extensive form I}l, H-R, wJ. All these

approaches use the fact that optimal behavioral strategies are

"Bayesian" in the sense that they maximize the conditional

expectations at each information set given the other player's

optimal strategy. Now, there is a difficulty in this fact,

it concerns non optimal play. Indeed after a non optimal

move, conditional expectations might not be mathematically

defined. The purpose of this paper is to extend the Bayesian

interpretation in this precise case.
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Three £-Bayesian extensions will be studied, first a

"normal" one in which each pure strategy has to be played

with a small probability £ and an "extensive" one in which

each personal information set has to be reached with a small

probability £. These extensions were suggested by John

Harsanyi. A third extension due to Melvin Dresher [D] will

also be studied. Formal comparisons will be made in the

framework of zero sum sequential games with incomplete

information [p-ZJ.



2. The Main Ideas

This section presents the ma1n ideas by means of examples.

The first example is elementary; it demonstrates why non-

uniqueness arises after a non optimal move. However, in this

case, the non uniqueness is trivially solved. In the second

example, each extension will generate a different optimal reply.

2.1 An Elementary Example

Consider the following zero sum game in extensive form

1n which Player 1 1S the maximizer and Player 2 the minimizer.

Player 1

1

Player 2

The normal form of the game is

c d

a 1 -1

b o o

Clearlyconvex

Player 2's optimal strategy 1S non un1que and may be any

combination of (Oc + Id)!J and (1/2c + 1/2d).

if Player 2 wants to maximize his conditional expectation if

he gets to play he should select (Oc + Id) and any intuitive

rationale would call this his optimal reply. The reason why

the normal form fails to identify this unique solution is

1/ (ac + (l-a)d) means that Player 2 selects move c with
probability a and move d with probability (I-a). This
notation is used consistently. .
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simply because it is concerned with unconditional expectations.

Whatever Player 2 does after move a contributes nothing to the

unconditional payoff so long as move a remains a mistake.

2.2 The Main Example

The zero sum game described by the following game tree

may be interpreted as a one stage simplified poker. Player 1

receives one card which may be low (L) with probability 2/3

or high (H) with probability 1/3. Then he may drop (D), raise

1 unit (Rl) or raise two units (R2). If Player 1 raised then

Player 2 may drop (d) or call (c). There is one unit in the

pot at the beginning of the game and the payoffs have been

computed so that Player 1 is the maximizer.

o

CHANCE PLAYER1

1
"-H~=~--"""'3

1=:\~~_-1

-1

1

-8=:::::::]==== -2

PLAYER 2



The normal form of this game is already quite large:

P~Player dd 2 ) dc cd cc
DDl ) 0 0 0 0

DRI 2/3 2/3 -2/3 -2/3

DR2 2/3 -4/3 2/3 -4/3

RID 1/3 1/3 2/3 2/3

RlRl 1 1 0 0

RlR2 1 -1 4/3 -2/3

R2D 1/3 1 1/3 1

R2Rl 1 5/3 -1/3 1/3

R2R2 1 -1/3 1 -1/3

Player l's optimal mixed strategy 1S un1que: (2/3 R2D, 1/3 R2R2).

Player 2's optimal mixed strategy set has four extremal points

MSl: (1/3dd, Odc, 1/3cd, 1/3cc)

MS2: (Odd, 1/3dc, 2/3cd, Occ)

MS3: (1/6dd, 1/3dc, 1/2cd, Occ)

Ms4: (1/2dd, Odc, 1/6cd, 1/3cc)

However its optimal behavioral strategy set has only 2

BSl: (1/2d + 1/2c

BS2: (1/3d + 2/3c

Rl) and (2/3d + 1/3c

Rl) and (2/3d + 1/3 c

R2)

R2)

(It is early seen that MSI and MS2 collapse into BSI and,

MS3 and Ms4 into BS2).

1) (D,D) stands for (drop with a high card, drop with a
low card) and so on.

2) (d,d) stands for (drop if Player 1 raises 1, drop if
Player 1 raises'2) an~ so on.
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Hence this second example 1S similar to the first one in the

sense that non uniqueness occurs after a non optimal move,

namely move Rl. BSI and BS2 are the two extremal behavioral

strategies (just as (1/2c + 1/2d) in example 1) such that Rl

remains a mistake. Note that Player 2's optimal behavioral

strategies guarantee that he should not pay more than 5/3 if

the card is Hand 0 if it is L. Now the exploitation of the

mistake should somewhat improve these security levels.

How to improve them is another story as we shall see.

Let us first get a clearer picture of the situation by

drawing a diagram of Player 2's conditional expectation

given Rl.

L

1

O~-----,~-.,;c------_J...-_------t

-1/3

-1

H

2

5/3

3/2

1

PROS (HI

PLAYER 2 ' S CONDITIONNAL EXPECTATION
GIVEN R1

FIGURE 1



Mathematically speaking this expectation conditional on

Player lIs optimal strategy does not exist since Hl should

never be played. Taking a normal point of'view any convex

combination of BSl and BS2 makes good sense since it

guarantees that HI is dominated and should not be played. It

operates like a threat and the precise exploitation of the

mistake becomes somewhat irrelevant. Now in the game in

extensive form the rationale should be just the reverse:

threats ought to be explicitly modelled as at what time they

can be made binding and known to the opponent, whereas the

precise exploitation of a mistake becomes interesting since

it may very well be committed and known.

Coming back to our example, the exploitation of the

mistake HI is controversial since it would require the know-

ledge?f the a posteriori probability Prob (H I Hl). Taking

a Bayesian view, once an assumption about Prob (H I Hl) is

made, Player 2's best reply is determined. However note that

any convex combination of BSI and BS2 can only be consistent

with Prob (H I Hl) = 2/3. This in turns implies a great deal

about how HI may be played, namely Prob (HI I H) =

4 Prob (HI L). So that

Prob ( H I HI) = Prob (H)"Prob (HI H)
Prob (H)"Prob (Hl H) + Prob (L)"Prob (HI L)

= 1/3"4 Prob (HI
(1/3" + 2/3"1) Prob L)

= 2/3"
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Now comes a difficult dilemma:

(i) either Player 2 wants to select his behavioral

strategy among the convex combinations of BSl and

BS2 and be consistent with game theory but he has

to admit that he is acting as if the mistake was

committed in some very specific way,

(ii) or Player 2 makes a behavioral assumption about how

the mistake was committed, derives a conditional

probability which may be different from 2/3 and

maximizes his expectation at this point but he has

to admit that if Player 1 were to know Player 2'5

strategy then his behavioral assumption would not

make sense (playing Rl migh not be a mistake any

longer) .

We may refer t'o (i) as a "tricky opponent" and to (ii) as a

"stupid opponent". Clearly in a practical setting one approach

might be more appropriate than the other. Nevertheless since

obviously there is not much to say along·the "stupid line" we

propose to pursue a little longer the "tricky line". We shall

examine three extensions of the game solution concept each of

which will ordinarily determine a unique behavioral strategy

for Player 2.

2.2.1. Extension 1

In this extension we shall simply assume that Player 2

wants to maximize the expected penalty given the a priori

probability on H or L of (1/3, 2/3) but constrains himself



to the convex combinations of BSI and BS2. This procedure

generates a uni~ue optimal behavioral strategy which clearly

is BS2 (see figure 1).

We shall demonstrate later on that this extension is

associated with the following assumption on Player lIs behavior:

Player 2 assumes that Player 1 has to make a mistake

(move Rl) when he gets a low card and when he gets a high card

the probability of the mistake being at least E.

2.2.2. Extension 2 (Dresher)

This extension consists in restricting Player lIs pure

strategy set to those which are not best replies to Player 2's

optimal strategy set and in restricting Player 2 to rema1n in

his own optimal strategy set [D}.

matrix game.

In this case we obtain the

..E.,;layer 2 .
Player .l - BSI BS2

DD 0 0

DRI 1/2 5/9 -

RID 0 0

RIRI 1/2 1/3

RIR2 5/9 1/3

R2D 0 0

R2Rl 1/2 5/9

and Player 2's uni~ue optimal strategy is (4/5 BSI + 1/5 BS2).

Player lIs "optimal mistakes" may be any convex combination of

(4/5 DRI + 1/5 RIR2) or (1/5 RIR2 + 4/5 R2Rl). Note however
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that for any of these combinations Prob (Rl I H) =

4 Prob (Rl I L) and so Prob (H I Rl) = 2/3.

We may now determine the penalty associated with Player 2's

strategy (see figure 1):

- if the card is H, Player 2 can guarantee to lose no

more than 5/3, but if Rl is played then he will obtain

1/5 - 5/3 + 4/5 - 3/2 = 23/15 thus he will be better

off by 5/3 - 23/15 = 2/15.

- if the card is L, Player 2 can guarantee to lose no

more than 0, but if Rl is played then he will obtain

- 1/5 1/3 + 4/5-0 = - 1/15 thus be will be better off

by 0 + 1/15 = 1/15. Since the priori probability of

H is 1/3 and of L is 2/3 he will be better off equally

well 1n a priori expectation basis whether the card is

H or L.

We shall demonstrate later on that this extension is associated

with the following assumption on Player lIs behavior:

Player 2 assumes that Player 1 has to make a mistake (move

Rl) with a small probability E, Player 1 may decide to make

the mistake with a low or a high card, but the overall probability

of the mistake has to be at least E. Then Player 2's optimal

strategy will generate the same expected penalty (on an a priori

basis) whether the card is L or H.

2.2.3. Extension 3

Taking a strictly Bayesian view, Player 2 should select

his strategy by taking into consideration only the payoffs

associated with move Rl, the a posteriori probability on
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Hand L and his conditional security levels. Following this

line, we shall propose the following behavioral assumption:

Player 2 will select his strategy so as to maximize the

expected penalty at the a posteriori probability distribution

and Player 1 will select,this a posteriori probability

distribution so as to minimize the penalty.

In the matrix form the game is

Player 1
!Player 2 d c

H 2/3 -1/3

L -1 1

1n which the entry (H, d) is computed as follows given that

Rl is played the payoff with a high card is 1, since Player 2

can guarantee himself 5/3, the penalty is 5/3 - 1 = 2/3.

The other entries are computed similarly.

Player 2's optimal behavioral strategy is (4/9d + 5/9c) if Rl

is played. Note that this coincides with(2/3BSI + 1/3BS2).

The best a posteriori probability for Player 1 is:

Prob (H I Rl) = 2/3. Finally note that the conditional

penalties incurred by Player 1 are identical and equal to 1/9.

Indeed, we shall demonstrate later on that this is one of the

significant properties of this extension. We shall also prove

that an equivalent behavioral assumption to the one underlined

above is:
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Player 2 assumes that Player 1 has to make a mistake

with a small probability E, Player 1 may decide to make the

mistake with a low or high card but the overall probability

of reaching the information set Rl has to be at least E.

3. E-Bayesian Solutions for Zero Sum Sequential Games

with Incomplete Information.

We shall now formalize the extensions presented in section

2 for the class of zero sum sequential games with incomplete

information I}-ZJ.
3.1 Definition of the Game and its L-P Formulation

The game consists of four steps:

Step 0: chance chooses a move k E K according to a

probability distribution po = (p~) k E K.

Player 1 1S informed of the move chosen by chance,

Player 2 1S not.

Step 1: Player 1 chooses a move 1 £ I. Player 2 is

informed of the move chosen by Player 1.

Step 2: Player 2 chooses a move j £ J.

Step 3: Player 1 receives an amount a~j (a real number)

from Player 2.

(We assume that K, I, J are all finite sets).

be a behavioral strategy for Player 1
k

Let x = (x')k K . I1 E ,1£
ksuch that x. = Prob (i
1

k) and y = (y1) be a
j iEI,j£J

ibehavioral strategy for Player 2 such that y. = Prob (j Ii).
J

Then Player 1 and Player 2 optimal behavioral strategies are

the solutions the linear programs LPI and LP2 respectively. [P2]

(See also [H-R] for a general formulation of Bayesian equilib­

rium in non-zero sum games with incomplete information).
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Max [ Min [
0u. Pkvk

iEI 1 kEK

j EJ, iEI [
1 0 k

0 kEK, iEI [
1 1 > 0u. - akjPkXi < v k - ak·y·

1 J J -
kEK jEJ

kEK [
k 1 iEI [

1 1x. = y. =
iEI

1 jEJ J

kEK, iEI k
0 iEI, jEJ 1 > 0X. > y.

1 - J -

(LP1) (LP2)

The optimal values of the variables (v k )kE K may be interpreted

as Player 2's conditional security levels for each respective

kEK.

3.2 E-Bayesian Solutions

Suppose that one knows the optimal (;k)kEK then LP2 1S

decomposable and for each 1
1 E I the optimal y = (Y~)jEJ 1S

a solution of the problem (denoted by LP2i):

kEK v ­
k

Ii EJ

[

jEJ

1y.
J

1y.
J

= 1

> 0

Now, the two linear programs LPl and LP2 are dual of each

other and the dual variables associated with the inequality

v ­
k
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-~
Thus if for some i e I and all k E K, x k = 0 (that ~s: move ~

is non optimal for Player 1) then the constraints in the

associated LP2i problem are not binding at the optimum and

ordinarily this will result in non uniqueness for the optimal

-~y. The whole issue of resolving this non-uniqueness amounts

to defining a proper objective function for LP2i. We shall

now exhibit the objective functions associated with the three

extensions presented in section 2.

3.2.1. Extension 1

The idea in extension 1 is that every pure strategy

should be played with a small probability E. In this context

this amounts to impose the additional constraints in LPl:

kx. > E
~

k
Let {Yi)k K,

constraints.

. I be the dual variables associated with these
~E

Consequently LP2i becomes {assuming E small

enough so that the optimal (vp)kEK will remain unchanged)

kEK

E ~
1jEJ y. =

J

jEJ ~ > 0y.
J -

kEK k
> 0y.

~ -
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kHence y. may be interpreted as the conditional penalty of
~

playing move i in state k and Player 2's optimal behavioral

strategy will maximize the expected penalty given the a priori

probability distribution on k(pO = (P~)kEK) under the constraints

that each conditional penalty remains positive.

3.3.2. Extension 2

The idea in extension 2 is that the overall probability

of playing each move be a small probability E. In this

context this amounts to impose the additional constraints ~n

LPI

E
kEK

kx. > E
~

Letting (y.). I be the dual variables associated with these
~ ~E

constraints we obtain for LP2i:

Min - E y.
~

~y. = 1
J

~jEJ y. > 0
J -

Hence Player 2's optimal behavioral strategy may be seen as

the solution of the matrix game I Ibkjl IkEK , jEJ with

o - ~

b kj = Pk (vk - a kj )· It is easily seen that this corresponds

to Dresher's approach in which Player 1 may only randomize

among the pure strategies which includ~ to play move i in some
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state k whereas Player 2 is constrained to his optimal strategy

set. Note that for all states k in which a mistake is made,

3.2.3. Extension 3

The idea in extension 3 is that each personal information

set in the game tree should be reached with at least a small

probability E.

iEI

Thus the additional constraints in LPl are

Letting (v) be the dual variables associated with these'i iEI

constraints, we obtain for LP2i:

Min - E y.
~

kEK r ~ ~ > 0v k - ak·y· - y.
J J ~ -jEJ

jEJ

r
jEJ

iy.
J

~y.
J

= 1

> 0

Then Player 2's optimal behavioral solution is the solution

of the matrix game

3.3. Discussion

in which c kj = vk -

Given the preceding formalization it is quite easy to

determine what might be called E-Bayesian!! solutions in

simple examples. Indeed, as long as the number of states

"J:.! The term "Bayesian" is used to emphazise that these
extensions rely on mutually consistent optimal strategies for
the two players.
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remains equal to two,'a graphical analysis is ordinarily quite

sufficient. Here is such a graphical analysis which should

convey some intuitive feelings about the differences between

the three extensions.

-

o 1

FIGURE 2

In figure 2, we see that extension 1 is consistent with any

a posteriori probability within the line segment ~2' PI]

whereas extension 2 is only consistent with P2 and extension

3 with P3' (If we measure the"trickiness" of Player 1 by the

difference between the a priori and the a posterori probability

distribution this would suggest different levels of trickiness

in Player l's behavior associated with the different extension).
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Note also that as Po var~es inside the open line segment

(O, 1) {assume for simplicity of the argument that the

(;k)k£K remain constant) then the behavioral strategy assoc-

iated with extension 1 varies in a discrete fashion, whereas

it varies smoothly ~n extension 2 and remains constant in

extension 3. Were Po to be an extreme point such as 0 then

vkl,becomes irrelevant and all three extensions coincide with

BSO, the intuitive solution of example 1 in section 2.

Finally note that only extension 3 will guarantee that

whatever the mistake it be penalized. That is, suppose p o

is within (o, P4) then extensions 1 and 2 will not penalize

the mistake in state k l whereas extension 3 will. Formally

speaking, it is known that there exists an optimal strategy

for Player 2 such that for every pure strategy of Player 1

which is not part of his optimal strategy, the associated

expected payoff is strictly less than the value of the game

Q.-B-B] . Then extension 3 selects one such strategy.

So far we have been directly concerned with the case ~n

which only one mistake is available to Player 1. If several

each mistake.

mistakes were available then as long as the {;k)k£K are

unique the problem is decomposable so that mistakes do not

interact with each other and the preceeding analysis apply to

If the (;k)kEK are non unique (and they are

non unique on a subset Q of the simplex
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1n which the dimension of Q 1S the dimension of P minus one)

then LP2 13 not decomposable and some problems may occur but

we shall refrain from going into this mathematical singularity.

4. More Examples

We shall conclude this paper by one example designed to

show the relevance of the ideas in more general extensive

games.

A two stage zero sum sequential game with incomplete

information.

There are two cards, say one white and one black, ~hich

will be presented in sequence to Player 1. The sequence is

chosen at random. Player 1 will announce the color of the

card and he may say the truth or lie. After each card ~s

an noun c f~d 1'layer ~, wi.11 GUY c orre c t or not c orr e ct.

stage payoff is given by the table

l':ach

.l'layer 2
Player 1 correct not correct

truth 0 1

lie 1 -1

Player 1 (Player 2) wants to maximize (minimize) the

expected payoff over the two stages.

intermediary payoffs are not revealed.

It is assumed that

If the first stage only were to be played then the value

would be 1/3 and the Players' optimal behavioral strategies

would be:
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Player 1 would say the truth with probability 2/3 and

lie with probability 1/3,

Player 2 would say correct with probability 2/3 and

incorrect with probability 1/3.

Now in the two stage game the value is 2/3 [p-z]. Player lIs

optimal behavioral strategy at the first stage IS unchanged

whereas at the second stage he should announce the color he

did not announce at the first stage (in other words, Player 1

should remaIn consistent with himself: lie twice or say the

2nd stage:

truth twice). Player 2's optimal behavioral strategy on the

other hand iR non unIque. He may merely repeat twice his

one stage optimal behavioral strategy but this will not

penalize mistakes by Player 1 such as announced sequences

" whit L', wh i Lc" 0 t" "l> l:l. c k, ld a c k" whie h ub V" i u 11~, 1 yeLl. 11 I j \) t IJ L'

true.

ApplicationR of the extensions proposed in sectioll

3 will lead to the following £-Bayesian solutions:

1st stage: say correct with probability 1/3 and

incorrect with probability 2/3.

if Player 1 reverses his announcements (after

announcing "white" he says "black" or vice

versa) then always say correct.

If Player 1 does not reverse his announcement and thus commits

a mistake then according to extension 1 he should always say

incorrect and according to extensions 2 or 3 he should say

correct with probability 1/3 and incorrect with probability2/3.
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(
r

The interesting feature of this example ~s that to be

~n a position to exploit a possible mistake, Player 2 has

to anticipate it. Were he to simply play his one stage

minimax strategy at the first stage (1/3 correct + 2/3

incorrect) then the penalization of the mistake would be

impossible.

A similar example but more complicated so that it cannot

be reproduced here is Kuhn's Simplified Poker [K]. This

example may serve as a good conclusion: starting with a

game in extensive form Kuhn's derives 12 extremal optimal

mixed strategies for Player 1, this reduces to a one para-

meter family in terms of optimal behavioral strategies. Again

this non uniqueness is associated with the possi~ility of non

optimal play by Player 2 and may be resolved along the lines

developed in this paper (the interested reader will verify

that the E-Bayesian solutions require the use of underbidding,

namely passing with a high card. It is not hard to give an

intuitive justification of such a behavior: it may attract

the mistaken player into betting with a medium hand whereas

his optimal strategy calls for passing).
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