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Introduction

The numerical methods we present are based on trans-
forming a given constrained minimization problem into an
unconstrained maximin problem. This transformation is
accomplished by utilizing generalized Lagrange multipler
technique. Such an approach permits us to use Newtén‘s and
gradient methods for nonlinear programming. Convergence
proofs are provided and some numerical results are given.

§1. Statement of problem and description of numerical
methods. Ve consider the following general non-linear

programming problem:
minimize F(x) (1)

subject to constraint xeX = {x|g(x) = 0, h(x) < 0, xeEp},
where F, g, h are real-valued twice continucusly differentizble
functions defined on E_, Euclidean n-space; x = (xl,xz,...,xn)
in a point in E s vector-functions g(x), h(x) define the
mappings g(x): En—eEe, h(x): En—+Ec.

We define the modified Lagrangian function H(x, p, w)

assoclated wilth problem (1) as

(wh)2nt (x)
1

iMoo

e . .
H(x, p, w) = F(x) + I plgh(x) +
i=1 i

where

o i 2
p = (P, D ,...,D )EEe’ wo= (W, w ,...,wc)eEC



Consider an unconstrained maximin problem

max max min H(x, p, w) (2)
peEe .weEc ern
We shall solve this problem instead of (1). Under
certain conditions, which we shall formulate later in §2,
the solution x to problem (2) coincides with solution to
primal nonlinear programming problem (1). As a rule, the

Lagrangian is defined as

e . e C o s
C(x, p, w) = F(x) + I plgl(x) ¥ T owihi(x)
i=1 i=1
and the following problem is solved
max max min  C(x, p, W) (3)

p€Ee weT XEEn

where T = {w|w > 0}. Problem (3) is a constrained maximin
problem and this circumstance complicates its solution.
When we use the modified Lagrangian H(x, p, w) we do not
have such difficulties because (2) is an unconstrained
maximin problem and for solving (2) we can use all well-
known numerical methods for solving unconstrained maximin
and saddle point problems. For example, using the simplest

gradient method yields the following method

X = =H_, p = H, w=H, x(0) = x5, p(0) = py, w(0) = wg.
(4)



where H , H , H aren x 1, e x 1, ¢ x 1 vectors, whose ith
X W

P
elements are

§H(x, p, w)/6x, 8H(x, p, w)/ép>, SH(x, p, w)/sw'

respectively.
In (4) and everywhere later a super dot denotes differ-
entiation with respect to time variable t, i.e. (+) = d/dt.
In §2 we shall prove that the solution x(t), p(t), w(t)
of systcm (4) locally converges to solution of (2) as t—w
The author presented in [1, 2] a number of iterative methods
for finding local solutions of a maximin unconstrained

problem. Using three of them yields

T S, N S S Tl
x = ~-H , p=g-gH H,ws= 2D(w) [h thxngj (5)
L] . —1 L] L] L]

x = -H, —Hxx(gxg + uhXD(w) D(w) h), p = g, w = 2D(w)h (6)
S | U . T-1

x = -H H , p =g -gH H,ws= 2D(w) [h hXHXXHx] (1)

Wwhere g, s hx’ H aren x e, n X ¢, n X n Jacobian matrices

XX

respectively, whose ijth elements are
6gd (x)/8x, snd (x)/6x%, 6°H(x, p, w)/6x 6x)

respectively; D(w) is the diagonal matrix whose ith diagonal

. i . .
element 1s w™; superscript -1 denotes the inverse of a



matrix; superscript T denotes the transpose of a matrix.

For simplicity we shall denote

z = (x, p, weE_ ..

= w, )€eE
Zx (Xy5 Pys Wy) n+e+c ?

H(z) = H(x, p, W), H(z,) = H(Xy, Dxs Wy)

Definition: The point z, is a local maximin of function H(z)

in probliem (2) if there exist neighborhoods A, Q, G about the
points X,, Py, W, respectively such that for all xeA, x#x,,
PEQ, P#Pyxs, WeG, w#w, the following inequalities hold

H(x(p, W), P, W) < H(Xy, Pys Wy) < H(X, DPys Wy) (8)

where

min H(x, p, w)
xeh

H(X(ps W), P W)

The necessary conditions that z, be a local maximin of problem

(2) are (see [1])
H (z,) = O, B (24) = 0, H (z4) =0 ' (9)

All the points satisfying these conditions we will call



stationary points. Now we apply Newton's methods for
computation of stationary points. We obtain the following

continucus version of method

Hxx X + pr p + HXw = -Hx
Hp} X = -Hp, Hoo ¥ + H W= -H, (10)
where on’ wa’ wa are the matrices whose 1jth elements

are SEH(X, P, w)/dlepJ, 82H(x, P, w)/6x16wJ, 62H(x, p,w)/

icJ . ) _ T _ T 1o
SwSw respectively; pr = pr, wa = wa. Utilizing

abbreviated notations ylelds the following continuous and

discre%e version of (10).

H,(z) z = -H(2) , z(0) = z, (11)
2. .. =z -H.1(z_) H_(z_) (12)
s+l S ZZ 8 zZ "8
where z, - is given, s = 1,2,...,

In the case when constraints are absent, these methods
coincide with Newton's methods. These methods are also well
known and are studied when problem (1) has no inequality
constraints (see [3]).

On the basis of continuous methods (4) - (7), we can
construct a number of discrete methods for finding saddle

points. But we shall use only the simplest finite aifference



approximation to (4) - (7). For example method (4) yields

= - ' = = +
X X aHX(zS), Poyp °Pg aHp(zs), W w un(zS)

S +1 s
(13)

s+1

where O < u 1s the step length. The discrete version of
other methods can be written in a completely similar way,
except in (12), where it is possible to use a = 1.

§2. Convergence proofs.

In this section we shall give rigorous convergence proofs
of all the methods suggested above. Now we shall state some
preliminary results.

Define the following set of integers

B(x) = {i|h(x) = 0, 1

In
[

IA
o
—

Definition: The constraint qualification holds at a point x

if all gradients {gi(x)}, 1 < i < c and all gradients
hi(x) , J € B(x) are linearly independent.

Definition: The strict complementarity holds at a point =z,

i

if from h'(x,) = O follows that wy # O, 1 <1i < c.

Lemma 1: If z = (X, p, w) is a saddle point of function
H(z) in problem (2), then X solves problem (1), and

F(x) = H(x, p, w).

Lemma 2: Let A be a neighborhood of X and let the following
inequalities hold

H(x, p, w) < H(x, 5, W) < H(x, p, w) (14)



for any p e E,, we E , xeA, x#x, then X is a local,
isolated solution to problem (1).

Lemma %: 1f X € X then

F(X) = sup sup H(X, p, W)
-
paEe weac
We shall not give a proof of these lemmas, because it is
guite similar to the proof of analogous results for problem
(3) (see for example [4]).

Consider the following auxilliary problem

max min P(x, u) . (15)
uaEk ern
where P(x, u) is a continuous function of x and u.
Use will be made of the following lemma, which is stated
here without proof (for proof see [1]).
Lemma 4: Suppose that function P(x, u) is twice continuously
differentiable on En X Ek’ and a solution to problem (15)
exists. Sufficient conditions that y, = (x,, u,) be an
isolated (unique locally) maximin point of problem (15) are
that
1) y, is a stationary point, i.e.
P (yx) =0, P (y4) =0,
2) P (yx) and M(y,) =
Pux(y*) P;i(y*) qu(y*) - Puu(y*) are positive

definite matrices.



If matrices PXX(X, u) and M (x, u) are positive

definite for arbitary x € En, u € E, then the stationary

k
point y, is a global maximin point of P(x, u). Though y,
may not be a saddle point of P(x, u) (see also [1]).

Lemma 5: Suppose that constraint qualification and strict
complementarity hold at a stationary point z,, the Hessian
HXX(Z*) is positive definite, and h(x,) < O. .Then the

Hessian HZZ(Z*) is nonsingular, the symmetric block matrix
: i, : H o« H
No= [ E ] Erm. e ] - |-PRPaEY
Xp XW XX Xp XW q

is positive definite, z, 1is a local, isolated saddle point

of H(z), and x, is a local, isolated solution of problem (1).
For shorthand in the formula for N, we omit the argument

which 1is z,. We shall use the same abbreviations later,

Proof: Stationary conditions (9) and inequality h(x,) < O

imply that x, € X, i.e. x, 1s a feasible point for problem (1).
To prove nonsingularity sz(z*) we need only show that

there is no non-zero solution of the following system of

linear equation

H, (2,)% + g (x,)D + 2h (x,) D(w,)w = 0 (16)
g2 (x,)% = 0, D(w,)hi(x,)% + D(h(x,))¥ = O (17)

From the last system and strict complementarity, it



follows that for all i such that i e B(x,)

hl(x,)% = 0, h'(x,) =0, wy #0 ,
also
h'(x,) < 0, wy = 0, wt =0

for all i such that i € B(x,). In both cases h'(x,)w = 0
and D(w,)h) (x,)% = 0. Let X # O, then premultiplying (16)

r

on the left by X-P and taking into account (17) yields

- -
X HXX(Z*)X =0

It is possible only if X = O. Consider this case. From (16)

and (17) we find
g, (x)D + 2h_(x,) D(w,)w = 0, D(h(x,))w = 0
The first system can be rewritten in form

g, (x)p + 2 I h (x,)wiw’ = 0 (18)
ieB(x,)
A1l wi > 0 for i e B(x,), Dby assumed constraint qualification
all the gradients in (18) are linearly independent, (18)

holds if p = O and W™ = O for all i € B(x,). But we obtained



-10-

above that w™ = O for i € B(x,). Thus x =0, p = O, w = O

for all solutions. This contradiction proves that the
matrix HVZ(X*) is nonsingular. We can assume without loss
of generality that h™(x,) = 0 for 1 < i < s and h™(x,) < O

for i < ¢. Introduce the vectors

1 +
Eﬂ) P ,...,pe, wl, w2,...,ws]eEk,k = e + 5 and

N
¢

ro IA

v

v

h = [bs+i, hS+£,...,hd]€Er, r = ¢c-s. Making use of strict

_ . . i o ) .
complementarity, we obtain wj O for all 1 + s <1 < c.

Therefore, omitting arguments we can rewrite matrix N as

0 ]T'H'l E{
nr XX XV

where Oi‘ is 1 x j matrix whose elements are all equal to

J

follows

0
ec

D(h)

9]

ece
o | -2 ----
nr 0

ce

i
:t‘.l
<
<

zero; D(h) is the diagonal matrix whose ith diagonal element

is h*. The matrix N can be written in the four blocks form
. -1 '
Hyy Hox Hxv \ Okr
2 [rmmmmmm e e e e e m e i
t Y]
Ork « -2D(h)
where

- 1 5 2, ! ' e R N | ' ' _
HXv = [}X(x*) gx(x*);...:gx(x*) :2w*hx(x*):...:2wihi(x*)J .

is n x k matrix. Under assumption of strict complementarity,

wi # 0 for all 1 < i < s. Since constraint qualification
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holds, all gradients gi(x*), 1 <1< e and wihi(x*),

1 < i < 5 are linearly independent columns; that is,HXV
has maximum rank k. Since H;i(z*) is a nonsingular matrix,
there exists a symmetric, nonsingular mactrix W such that
H;i(z*) = WeW. It is well known [5] that if a matrix is
multiplied on the left or on the right by a nonsingular
matrix, the rank of the original matrix remains unchanged.

I

Thus matrices ng W and W H , have maximum rank k. Their
product sz W W Hxv = ng H;i Hxv is a nonsingular symmetric
matrix. Because of assumption B < 0 matrix -D(B) is positive
definite and consequently N is also positive definite.
According to sufficient conditions, formulated in lemma
4, the stationary point z, is the local, isolated maximin
voint of problem (2), hence taking into account that x, is

a feagible pouint for problem (1), we get from lemma 3 that

F(x,) = H(z,)

max max min H(x, p, W)
peQ weG Xel

= sup sup H(X,, Dy W) (19)
peEe WEEC

where 4, G, A are neighborhoods about points p,, W, X,

respectively. From (8) and (19) the inequalities (14)

follow. Therefore z, is a local, isolated solution of (1).
We shall show now that z, is an isolated saddle point

of H(z) in problem (2). If it is not true, then for any

meighborhocd of point z, there would exist a saddle point Zq
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of H(z). This point would be stationary. Applying the

Taylor formula for first-order expansions, we obtain

Hz(zl) Hz(z*) + sz(z* + t(zl - Z*))(Zl - z,) =0

(20)
where C < t < 1. The Hessian sz(z*) is not singular. By
continuity of the Hessian we may select z SO close to z,
that the Hessian HZZ(Z* + t(zl ~ z,)) 1is also nonsingular
for arbitary O < t < 1. Hence the system (20) has only
trivial solution Zy T Zx- The contradiction is evident.
Local uniqueness of the saddle point is proved.

The proof of the lemma 5 is now complete.

Theorem 1: Suppose that the assumptions of lemma 5 are

satisfied. Then the solutions of systems (4) - (7), (10)
locally, exponentially converge to z, as t—=(i.e. exist
such positive numbers e, u that ||z(t) - z,|| < ¢ (ere Mt

if [lzg - 24| 2 €). There exists a number a such that for

any G < o < a the solutions of finite difference approximations

to (4) - (7), similar to (13), converge locally and linearly
to z, (i.e. 0 < g, 0 < g < 1 exist such that ||zS -zl <
¢ (e)qs it [lzy = 24| < €).

Proof: All the methods suggested a:ove have two common

properties. They are autonomous and any stationary point z,
is an equilibrium position for all these systems. This permits
us to use for proof the linearization principle which was first

proved by Liapunov [6] and often called "the first method of
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Liapunov". We shall prove on the basis of this technique
asymtotic stability of solution z(t) = z, of systems ) - (1,
(10). This result implies local convergence of their solutions
z(t) to a stationary point z,.

Denote 6x = x(t) - X4, 8p = p(L) - Py, 6w = w(t) - w,,
§z = (8x, 6p, 8w). By the Taylor formula for first order

expansions using stationary condition Hz(z*) = O, we obtain

12)

A, (z, + 62) = H (z,) + H  (z,)8z + 0(]|6z
-1 \ '
W (z, + 8z) H (2, + 62) = 68z + 0(||¢z]]®)

where O(||y||) is a vector such that

1im O(::y::) < o when ||y]|[—0

The ecuation of the first approximation ¢f system (4) about

the equilibrium point z, is

~H : -8, : -2h D(w)

R L
| '

§z(t) = M 8z(t) where M = gi ; Oee : Oec

t '

______ R
T ,

2D(w)h 0 { 2D(h)

N X ; ce ) ]

1
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ALl cicrenis U watrix M are computed at the polnt z = z,.
The convergence ot method (4) will be proved if we sl.ow that
all eilgonvalues A of matrix M have regatlve real parts. Let

& - (8x, S8p, &w) be a characteristic vector of M, i.e.

'I

IS )
loaw = & 8z. TSRV

[

{8x, 8p, ®w) bLe complex conjugate to
vector vz, Re b denotes real part of compleX number b.
Wrom (21) we obtain

N ) ] - -7
ke SuTMoz = Re A[]6z||7 = Re[T6X H_(2,)6x+28W D(nh(x,))8W] < O

Here we take into account that HXX(Z*) is positive definite

and x, lg a feasible point. Consider the case when Re A = 0.
_m - .

Then Re [}6XLHXX5X + 28wD(h(x,))éw] = O if and only if 8x = O,

i

Sw~ # C for all i such that 1 e B(x,). From the characteristic

equation: we have

gx(x*)6p + 2 I hi(x*)widwi = 0
ieB(xy)

From constraint qualification it follows that Swi = 0 for
any i e B(x,). Hence ||8z|| = 0, the case Re A = O is
impossit-le and strict inequality Re A < O holds.

The convergence of methods (4) - (7) can be proved by
the similar analysis of their characteristic equations. Their
eigenvalues proved to be real and this circumstance simplifies
investigation. For example, the linearized system of equation

(5) about the stationary point z, is
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8x = —Hxxdx - gXGp - 2hX D{(w)dw

§p = -g H L [g. 6p + 2h. D(w)&u]

P = "By fyx X X

Sw = sw -2D(w)h H 2 [g.6p + 2h_D(w)é&w]
W= wa X XX X X

The condition for asymptotic stability can be expresses by

means of the characteristic roots of the following secular

equation
Hex? My ‘ 8y : 2h D(w)
t
[ (U NN U
t
| T.-1 R -
Ocn } ngxxgx+ kIe : “ngxxhxD( ) -
' |
e ettt
. T.~1_ T.-1 )
Ocn ¢ ZD(w)thxng ' uD(w)thxxhxD(w) wa+kIC
(22)

where I. is J x J unit matrix.
It is easy to see that determinant (22) is equal to the
product of determinants of the diagonal cells:
|HXX + AL [ - [N+ M.l =0 (23)
According to lemma 5 the matrices HXX and N are symmetrical
and positive definite; hence, characteristic roots of equation

(23) are real and strictly negative.

After some transformation it can be shown that secular
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equations for systems (6) and (7) also have real, strictly
negative roots. From the integration of (10) along a

solution, we have
- -t -
HZ(Z(t)) = HZ(Z(O))e s z(0) Z

This shows that if for any initial state Zq there exists the
solution z(t) of system (10) for all t > O, then this
solution converges to a stationary point, which may not be
feasible for problem (1), nor be a saddle point in problem

(2). But if z. is chosen sufficiently close to a saddle

0]

point z, at which all assumptions of lemma 5 hold, then the
solution z(t) of (10) exists for all t > 0, and z(t) converges
to the saddle point z, as t—w,

The principle of determining the stability from the
equation of the first approximation about an equilibrium state

is also valid for discrete systems. Denote Ax, = X5 = X,
[

APy = Pg

s = Pa> Aw_ = Wo o Wy, AzS = (AXS, Aps, Aws). The

S

linearized system of (13) about equilibrium point z, is

A Z341” ¢ b zg (24)
where ¢ = In+e+c + aM, M is defined by (21).
The solution 24 = 24 of the autonomous discrete system

(24) is asympototically stable if all eigenvalues of the

matrix ¢ have magnitudes smaller than 1.
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A ) be eigenvalue of matrices

Let u and » = (A

1’ 2""’An+e+c

¢ and M respectively, i.e.

6 - UIn+e+c| =0 M - AIn+e+c| =0

Consequently, we have relationship u = 1 + aA.

Denote
2 2 2 2
|Aj| =max [IA [ 0,17 s Ix Lope] ]
Re A, = max [Re A;s Re Ay,...,Re xn+e+é]
- 2
a = |

-2 Re AS/|xj

We proved that all A have negative real parts, hence a > 0.
Magnitudes of all u smaller than I (in modulus) if a is
sufficiently small O < o < a. It follows from inequalities:

2

R e CR 2 IR R G I

Al
For computation it is desirable to take step length a
as large as possible. But in the case of large o values we
may lose convergence. The maximum admissible o value depends
on function F, g, h, point 2z, and the computational method.
In all other discrete versions of systems (5) - (7), the proof
of convergence follows from proof of convergence of respective

continuous system, as it was shown above.
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Theorem 2: Suppose that the assumptions of lemma 5 are
satisfied and the function sz(z) satisfies Lipschicz
condition in a vicinity of the point z,. Then the solution
ZS of (11) locally quadratically converges to the saddle

point z, (i.e. q, € exist such that

] N
g = Zxl| s ele)a” if |lzg - 2| <€)

The proof is completely similar to the proof of Newton's
method of convergence theorem [T],and is therefore omitted.
To hasten convergence to solution of problem (1) we can use

in methods (4) - (7), (10), (11) instead of H the function

eyt mlx)?
1

e .
r =H+a 32 [:gl(x)]2 + Db
i=1 i

1=

n ™Mo

where a, b - some positive coefficients. From (4), for

example, we obtain

X=-T, p=T, w=T (25)

All other methods can be modified in a similar way. It is
easy to prove that if assumptions of thecrem 1 hold, then
the solution of (25) locally converges to z, for any O < a,
0 < b.

§%. Numerical examples.

We shall give an example that was solved using three
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presented methods to illustrate their convergence properties.

The function to be minimized is

F(x) = [xl + 3x2 + x3]2 + U (xl - x2)2

The constraints are
g(x) = 1 - xt - x2 - x> =0 s hl = - Xl, n- = - x2,
h’ = - X-j s hu = 3 - by - 6x2 + [X%]B

wuzl s W =W =W~ =0.1
The step length was a = 0.02.
Approximate solution of this problem is F, = 1.8311. The
iterations were terminated if the difference between current
value of F(xs) and the following one remained less than 10—5.
If number of iterations was more than 100, then the process
was also manually terminated.

Denote maximum number of steps by N. Let § be a
difference between F(XN) and F, and T be the time of
computations.

For the discrete version of (4) N = 100, & = 0.0064,
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T = 11 sek were obtained. For the discrete version of (5)

N = 16C, 6§ = 0.0056, T = 16 sek, for method (11), N = 4,

(o)}
$

0.0001, T = 3 sek.

The modified Newton's method converges after 4 iterations.
While this method has the best rate of convergence, it also
requires more time per iteration than the other methods. The
size of the region of convergence of this method was also less
than for the other methods. The simplest method (4) has the
largest region of convergence.

It is not possible to state without ambiguity that one
numerical method is superior to some other methcd. It is
also doubtful whether a universally best method exists. For
computation the combination of different methods seems to be
most expedient.

For finding a rough solution, the simplest methods like

(4), may be used; a more accurate solution would be found by
a more complicated method like (11).

The difference §(s) = F(XS) - F, as a function of step
number s is shown in fig. 1 for method (13). Various values
a = 0.0, a = 0,04, o = 0.02 were used . For a = 0.2 the
method (13) does not converge. The increasing of step
length o hastens the rate of convergence, but the solution
becomes less stable,

The influence of coefficient a on the rate of convergence
of method (25) is shown in Fig. 2. For computation, a discrete

approximation similar to (13) was used with a = 0.02, b = O.



FIGURE 1

FIGIIRF 2
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Utilization of a small value of a (a = 1, a = 2) hastens
convergence, but for a larger value (a = 5) the convergence
rate decreases.

§4, Some Generalizations

Consider the following minimax problem. Find

min max K(x, y) (26)
xeX yeY¥Y
where X = {x ¢ En|g(x) = 0, h(x) <0}, Y = {y ¢ En|g(x) = 0,
H(x) = O}, x ¢ E>vyeE,geE, he E,» Ge B, H e Eg-
Functions K, g, h, G, H are continuously differentiable.

Introduce Lagrangian as follows

e .« .
o(x, y, P, W, P, W) = K(x, y) + I prg(x)
i=1
S ive i i,i iy2,1
+ I (w)h (x) - PTG (y) - (W5)"H (y)
i=1 i=1 i=1
Where P ¢ Ek’ W e Es’ p € Ee’ W e Ec'
Consider an unconstrained maximin problem
max max max min min @ min ®(X,y,p,sW,P,W)

yeEm PEE weEC XEEn PeEk WeES
(27)
Lemma 5: If z = (X, ¥y, p, W, P, W) is a saddle point of
function L{z) in protlem (27), then (%, y) - is a saddle
point of function K(x, y) in problem (26).

For solving problem (27) any of the above methods can
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be used. Utilizing, for example, the simplest method (4),

yields

(28)

e
"
o
He
n
|
o
=
[}
1
"

y? P’ W

Those points z,, where the right-hand sides of the equations
of this system are equal to zero, we shall call stationary points.
Theorem 3: Suppose constraint qualifications (for constraints
g, h, and G, H) and strict complementarity hold at & point
zy which is a feasible for problem (26), and matrices ¢__({z,)
and - ¢yy(z*) are positive definite. Then the solution of
system (28) locally, exponentially converges to 2z, d4s t —> o,
The proof is similar to the proof of theorem 1 and there-
fore is omitted. Analogous to (28), all other methods can be

generalized.
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