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Evaluating Time Streams »f Income®

David E. Bell™®*

Abstract

When a decislon maker considers possibie returns from
a business project or investment, he often Faces the prob-
lem that these returns are not all received at the same
t 'me, and thus he must make some adjustments to “ake ac:ount
of his time preference for money. After a review »f dis-
counting, a utility theory approach is made by develori=ng
r wwo-attribute utility function u(x,t) which represents
‘ne desirability of an income of x at a time t in the fu-
ture. Assumptions to simplify the assessment of this fune-
tion are considered. Then u(x,t) 1s used to form a criter.-
on for evaluating infinite time streams of income.

When a decision maker considers possible returns from a
business project or investment, he often faces the problem
that these returns are not all received at the same time, and
thus he must make some adjustments to take account ¢f his time
preference to money.

This paper uses utility theory to examine the problem
of evaluating time streams of income both in circumstances of
certainty and uncertainty with regard to the exact value and
timing of the incomes.

If a comparison of value between two sums of money is to
be made, where one sum is expressed in dollars, the other in
pounds, the first step would be to convert one sum into the

units of the other.
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A similar situation arises when making comparisons be-
tween two sums of money offered at different times. Compare
an offer of $100 to be received now with one of $120 to be
received in one year's time. If both offers were for the
same time period there would be no problem in making a choice,
but the time lag of one year in the more valuable offer makes
the preference of $120 less likely. Unlike the existence of
exchange rates for foreign currencies there is no easy table
for calculating equivalences of cash between different time
periods.

There is, however, the facility to lend and borrow money
at fixed interest rates at banks and similar institutions.

Suppose that we have a means of earning 100i% interest
per annum on an investment, then in our example $100 invested
now will be worth $100(1 + i) after one year. So it is worth-
while considering whether 100(1 + i) > 120. For if so, then
it is evidently wise to prefer the $100 now to the $120 in
one year.

Suppose also that we have a means of borrowing money for

any given length of time to be repaid with a compound charge

120

of 100r% per annum on the loan. So we could borrow $T_T_F

now and when we receive the $120, pay back the principal and

120

the interest. So, is T+ 1

> ¥00? 1If so, then we should
prefer the $120 offer.

This simple rule will never be contradictory as long as
r > 1 which is the case to be expected; otherwise we could

make a large profit by reinvesting loans.



If the simplifying assumption that i = r is made (termed
an infinite linear bank) then an amount $A to be received at
time T must be preferred to an amount $B at time S if and or. ly

if

A N B

(1+)T " (1+ )5

This procedure of comparison is known as discounting and
r is the discount rate. To implement this method requires
only the assessment of a value of r suitable to the decision
maker.

However, the situation i = r is idealistic and Figure 1
shows the situation when r > i. An amount $x to be received

at time t will be denoted (x,t), and if (xl,t ) is considered

1
indifferent by the decision maker in question to (ngtg) we

will write

(x7,6) ~ (ty,5,)

The shaded area in Figure 1 represents all the points of the
x-t plane which could be indifferent to $100. If the point
(120,1) lies in this shaded area the question of preference
between (100,0) and (120,1) is unresolved and is a matter of
personal time preference for the decision maker.

The decision maker may wish to maximize the money avail-
able to him now or he may wish to raise the most capital for
some venture in the future. It is this personal time prefer-

ence which is unaccounted for when present value discounting
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FIGURE 1. THE EXISTENCE OF TIME
PREFERENCE.



is used and it is the aim of this paper to provide a scheme
to incorporate this preference into the decision procedure.

We will not attempt to give here a grounding in utility
theory (see Raiffa [7] instead). But the essence of a utility
function, say for money, u*(x), is that for a situation having
uncertain outcomes, a probability expectation of the function
will produce a certainty equivalent which incorporates the
decision maker's attitude to risk.

For our problem let us introduce » two-dimensional, or
two-attribute, utility function u(x,t) which represents the
value to the decision maker of an extra income of $x to be
received at time t but promised now (¢t = Q). That is, the
money is in addition to all presently perceived income. To
demonstrate the usefulness of a utility function, consider
a firm which is offered a project which has a 50-50 chance
of success with a profit of one million dollars. Unfortunate-
ly failure will mean a loss of $90,000. The firm we are
considering faces bankruptcy (or worse) if its debts rise to
$100,000. The results of the project will not be known for
one year. Should the firm accept the project?

Discounting at, say, r = 0.1, yields a present value of

10
11

+ [1,000,000 - 90,000] = +$410,000, irdicating accep-
tance. A possible utility function for the firm might be

10,t

<TT log (x + 100,000)

u(x,t) =

The certainty equivalent of the project ¢ is given by
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u(c,0) = % u(1,000,000,1) + % u(-90,000,1) ,

which gives a value for c of +$36,000.

Both systems recommend acceptance but the utility func-
tion has already reduced the present value of the gamble to
reflect the risk averseness of the firm to gambles which in-
volve possible large debts.

The example is exaggerated for effect but demonstrates

the ideas involved.

The Calculation of the Utility Function

The theory of utility is extremely useful--in theory,
but its flaw lies in that implementing the theory can be
difficult in practice. The difficulty lies in assessing the
utilit = functions required; the more attributes a utility
function has, the more complicated the assessment. For a
simple problem with relatively small amounts of cash involved
it may well not be worth going through the trouble of actually
assessing the function. However, for more weighty decisions,
-or for regular financial decisions, it may well be worth in-
vesting the time in assessment.

The utility function in question may be assessed direct-
ly as a two-attribute function, but if a simplifying assump-
tion can be found the assessment will be easier. We will
assume that a utility function for money alone, u*(x), has
already been calculated and scaled so that u*(0) = 0. Note

that u*(x) = u(x,0).



Let us consider three possible assumptions and their
simplifying effects.

1. Weak Stationarity of Time Preferences

Consider an uncertain situation which will result in
either a payoff or $x or $y with equal probability, both
amounts to be received at time t. Suppose that it is felt
that an amount $z for sure, to be received at time t, is just

equivalent in value to the gamble. That is

ulx,t) + % uly,t) . (1)

|

u(z,t) =

The assumption is as follows. Suppose that the value of t
were altered, would this alter the value of z? If not then
we can say that (1) is true for all values of t.

If this assumption is true then we can say (see Keeney

[2]) that
u(x,t) = £(t) + g(t) ulx,T)

for some functions f, g and for any value T.
Clearly (0,t)~(0,0) so that u(0,t) = u(0,0) = u*(0) = 0;
by substituting T = 0, x = O into (1) we see that f{(t) = 0.

Hence
u(x,t) = g(t) u(x,0) = g(t) u*(x)

Thus, u(x,t) is known after the assessment of a one-dimen-
sional time function g(t), a much easier task.

2. Strong Stationarity of Time Preferences

This second assumption implies the first so cannot hold



if the first does not. The first assumption considered gam-
bles where all payoffs were at the same time. Suppose that
in a 50-50 gamble between (x,t) and (y,s) the decision maker
feels (z,r) for certain is just equivalent. Then if the
whole gamble is delayed an amount h in time, can we assert
that (z,r + h) is just equivalent to the delayed lottery?

If so, then since u(x,t) = g(t) u*(x) from the first

assumption, we have that

g(r + h) u*(z) = % g(t + h) u*(x) + % g(s + h) u*(y) (2)

for all h. Put y = O as a special case, then (2) becomes

glr + h) _ u*(x)
g(t + h) 2u*(z)

for all h. So

ELE_i_El = constant.
g(t + h)

Let h = - min (r,t) = -r say, so that

glr +h) _ 1
g(t + h) g(t - r)

(since g(0) = 1)

Letting t = r = m and r + h = n, we have

g(m + n) = g(m) g(n)

from which we deduce that

g(t) = e ct for some ¢



Hence,
u(x,t) = e %t ux(x) s
or
u(x,t) = __Biiflf
(1 +r)
where 1 + r = e°. This is called utility discounting and

specializes to the case of ordinary discounting if u*(x) is

assumed to be linear.

3. Temporal Invariance of Indifference

This last assumption considered here is the weakest of
the three. Its implications are not precise but it is pre-
sented here because the assumption may be often more readily
applicable than the previous two: If (x,t) ~ (y,s) then
(x,t + h) ~ (y,s + h) for all h > O. That is, if two quanti-
ties are considered equivalent and are then delayed by equal
amounts they remain indifferent to each other,

The effect on the form of the utility funetion can be
observed by examination of Figure 2. The curve x = fl(t)
represents all those points in the (x,t) plane which are
indifferent to (1,0). Similarly x = f,(t) represents all
those points indifferent to (2,0). Suppose that for some
particular values of x and t, (2,0) ~ (x,t). For some time

value s,

(1,0) ~ (2,s8) ,
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and by the assumption,
(2,8) ~ (x,t + 8)

So

or
fz(t) = fl(t + 8)

In general,
fX(t - C) = fy(t) £

where (x,c) ~ (y,0) . (3)
So, suppose that we calculate an indifference curve

x = f(t) or u(x,t) = constant. By consideration of Figure 3

and (3) we can see that u(x,t) is completely determined in

the shaded region.. In fact, u(x,t) = u*[f(f_l(x) -t)] for

-
v

f(t). A similar analysis yields appropriate results for
the case x < O.
For example, if u*(x) = 1-e °¥ and (1,0) ~ (et,t) for

all t, then u(x,t) = 1 - exp[ -¢ exp (log x - t)] = 1 - exp (-cxe‘t)

The Evaluation of Time Streams

We have shown how a money utility function u*(x) may be
extended to a utility function u(x,t) dealing with money and
time. A more difficult and perhaps insurmountable problem is

that of extending it further to deal with time streams of in-
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TIME

FIGURE 2. THE IMPLICATIONS OF ASSUMPTION 3.
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come. A time stream may be represented discretely as an in-
finite vector (Xo’xl’XZ’XB"") where X represents the in-
come to be received in period i, or continuously as a func-
tion x(t) which represents the total net income from the
stream at time t.

To make clear the problem involved in finding a utility
function over time streams consider the case of a joint in-
come of (x,t) and (y,s).

A first guess would probably be to assign a utility of
u {(x,t) + (y,s)} = u(x,t) + u(y,s)
to this double income. But this would imply that
u {(x,t) + (x,£)} = ul(x,t) + u(x,t)
or
u(2x,t) = 2u(x,t) .

This will only be the case if u(x,t) = xf(t) for some func-
tion f. Note that discounting has a utility function of this
form, namely

X

u(x,t) = ————
(1 + )"

so that the utility of a time stream is just the sum of the
utilities of its components,

u (Xo’xl’XE"") = I u(xk,k)
k=0



_]3_

3, x = f(t)

TIME

FIGURE 3. REGION IN WHICH THE UTILITY FUNCTION
IS FULLY DETERMINED.



-14=

Koopmans [B,M] and Meyer [5], in particular, have discussed
assumptions to simplify the problem of time stream utility
evaluation. The solution proposed here, however, is based
upon achieving an approximate solution, rather than an exact
one based on simplifying assumptions.

We will consider the discrete case first, then deduce
the analogous result in the continuous case. Consider again
the stream (Xo’xl’x2"") and three special examples of this
stream, namely (2,0,0,...), (0,2,0,0,...), and (2,2,0,0,0,...).
5 and u3 respectively. We can

assert the following relations between these quantities:

Let their utilities be ug,5u

i) uq > Uy because of assumed impatience; it is prefer-
able to receive money sooner rather than later.
ii) Ug < Uy + u,, because in the two-income stream, the

value of the second income is offset by the first.

So how may we judge the value of u Consider the correspon-

?
3
ding situation for the utility function for money alone, u*.
The utility of an income of x followed by one of y is u*(x + y)

which may be written as
u*(x) + fu*(x + y) - w(x)]

that is, the utility of the first income together with the
increase in utility due to the second income. We will adopt

this strategy in the case of our time streams and write

u(2,2,0,0,...) = u(2,0,0,...)

+ U(0,4,0,0,...) - §(0,2,0,0,...)
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or
u(2,2,0,0,...) = u(2,0) + u(l,1) - u(2,1)

In general, letting

we have

E(XO’Xl’X2"") = u(xo,o) +

nmM 8

[U(Xj,j) = u(Xj—l"j)]

j=1

()

as a measure of the utility of the time stream.

Note that if we return to the special case of discounting

and substitute u(x,t) = X T into (4) we obtain the re-
(1 + r)
quired expression
_ bl x5
u(xo,xl,...) = I _—

i=0 (1 + r)?

Transferring to the continuous form we have for a function x,

u(x)

J ulx(t),t] - ulx(t), t + ot]
0

_ J’°° dulx(t),t] 4
0 3t

Rewriting equation (U4) as

HWm™M8g

[u(x;53) = u(X5,5 + 1))

j=0
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an equivalent continuous formula is

G = | utnn) ax g

0 X dt

Summary

The proposed system of dealing with the problem of de-
layed incomes (or payments), or time streams of such income,
is complicated compared to the simplicity of fixed rate dis-
counting. The aim of this paper however has been to present
an alternate method which takes more account of the time
preferences of the decision maker and yet 1s not intractable,
for it is of 1little use presenting a perfect model which
cannot be implemented.

If any of the three assumptions mentioned are felt to
be applicable, so much the better, but the assessment of a
two-dimensional utility function, whilst difficult, is not
insuperable.

The increased accuracies gained from this system are
twofold. Apart from the fact that the decision maker's time
preferences have been represented by a two-dimensional func-
tion instead of a single constant r, there is also the advan-
tage inherent in the use of utility functions. That is, in
circumstances of risk and uncertainty in the quantity and
timing of the incomes, often the case in business ventures,
the utility function takes account of the decision maker's

attitude towards risk taking.
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