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Minimal Control Fields and

Pole-Shifting by Linear Feedback

J. Casti*

I. Introduction

From a practical point of view, the first consideration
in the design of a controller for a physical system is for
the resultant controlled system to be, in some sense, stable.
The precise sense in which the stability is to be understood
varies with the system requirements, but an often used cri-
terion is that initial perturbations away from some desired
equilibrium approach zero with increasing time, so-called
asymptotic stability. Such considerations are well known. in
the engineering literature [1-2] and are being applied in
many areas of contemporary interest such as ecology [3], ur-
ban systems [4], and economics [5].

The primary means for realizing the stability of a con-
trolled system is by feedback. Some part of the output of
'the system is measured and compared with a desired level of
system performance. The deviation of the actual behavior
from the ideal is then used to generate an appropriate con-
trolling input. This simple feedback idea has been used with
great success in engineering systems for several decades and,

as we have noted, is now explicitly finding its way into research o
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other classes of systems although, in an implicit way, it has
also been used in these areas for years since virtually all
decision making involves such feedback notions.

Operationally, one of the central questions in the design
of a stabilizing feedback control mechanism is: what measure-
ments are necessary? It's quite possible, particularly in
social and economic systems, that either all components of the
state of the system may not be directly measurable or we may, at
some expense measure all components of the state and wish to
know the minimal number necessary in order to generate a sta-
bilizing feedback law. The sitvation in which not all compo-
nents are measurable has been treated in the literature by the
introduction of a so-called "observer" [6]. It can be shown
that, asymptotically, the fictitious system with an observef
behaves in the same manner as the system with complete measure-
ment capability. Technically, this result disposes of the
question of incomplete observations. However, practically
speaking such an approach has its drawbacks since in any real
system the construction of an "observer" is not without cost in
money, weight, reliability, ete. Thus, it is of some practical
interest to ask what may be done in the way of stabilizing a
system without introducing an observer or, in other words,
what measurements are necessary to generate a stabilizing feed-
back control law.

In this note, we will examine the question of minimal con-
trol fields for constant linear systems. A complete solution

to the problem, even for systems with a single input, seems



extremely complicated and, at present, out of reach. The

main difficulty stems from the fact that the solution is not
coordinate-free and, consequently, the usual "canonical form"
tricks of linear algebra seem to be of little use in arriving
at a complete solution. However, results relating the mini-
mal field problem to the question of assignment of characteris-
tic values have been obtained and are reported here along with

some possible approaches to the zeneral problem and examples.

II. Problem Statement

To begin with, we consider the single-input constant

linear system
x = Fx + gu(t) , x(0) = ¢ , (%)

where F and g are n x n and n x 1 matrices over the real numbers R,
respectively, and u(t) is a piecewise continuous scalar control law
defined for all t > O. We shall later consider the multi-input case
when G is a rectangular matrix of size n x m, 1 <m < n.

"For our subsequent development, it is critical to assume that

z is completely controllable, i.e. the controllability matrix

C = [glFglFig] ««+ |F"71g]

has rank n (is non-singular).
To avoid degeneracy of the problem, let us assume that F
has at least one characteristic value with non-negative real

part and that ¢ $ 0. Thus, the feasible control u = 0 will




not stabilize Z . Furthermore, we shall now restrict the
admissible control actions u to be of linear feedback type,
i.e. u(t) = k'x(t), where k is an n x 1 constant vector over
R whose components are to be chosen so that the controlled

system
Y= (F 4 kg an

is asymptotically stable, i.e. the characteristic roots of

F + gk' lie in the left half-plane. Under complete controlla-
bility of J, the "pole-shifting" theorem of linear systems

theory insures that, given any symmetric set of n complex num-

bers, it is possible to find a unique k such that F + gk'

has the given set of numbers as its characteristic values. This es-
tablishes the existence of a stabilizing control law. We may

now state the

Basic Problem of Minimal Control Fields (BP):

Determine a vector k such that
(i) F + gk' is a stability matrix,

(ii1) k has the maximum number of zero components.

The minimal field condition (ii) indicates that if k is a
stabilizing law and k; = O, then component x; of the state vector

does not appear in the feedback law gk', i.e, it is not

necessary to measure x; to stabilize } by feedback. Results
relating to the BP were given by Casti and Letov in [7]. 1In

(7] the system } was considered without the assumption



of linear feedback and upper bounds were obtained on the
number of components of x appearing in a minimal field. How-
ever, the technique used does not readily extend to obtaining
the exact dimension of a minimal field.

Since the BP seems out of reach at the moment, we consider

the following modified version:

The Prescribed Poles and Minimal Field Problem (PP):

Given a symmetric set of n complex numbers which are to be the

'
characteristic values of the controlled system ] , determine
those components of x which may be omitted from the measure-

ments which generate the linear control law.

In the next section, we shall give a complete solution to

PP including a test for determining whether or not a given'com-

ponent of x may be omitted in a control law achieving the de-
sired distribution of characteristic values for Z'. From an
operational point of view, PP may be even more important than

BP since it enables us to prescribe in advance the rapidity with
which x will approach the origin at the expense, perhaps, of

an increased size of the minimal field.

III. The Solution of PP

To give a reasonably coneise solution to PP, it is conveni-
ent to reduce ] to control canonical form, i.e. introduce a

basis 1n the state space so that F and g assume the forms
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where the a's are the coefficients in the characteristic poly-

nomial x(z) of F,

é(z) =z + o0z + o,z + e bag

The transformation T which effeets this change is given ex-

pliecitly by
T =[g|Fe|FPr| -- [P ig) [glFgl oo |FVI7Y

This form clearly points out the necessity and sufficiency
of complete controllability for ] in our results. 1In the

canonical coordinate system, we must consider the system

3 = (F + éﬁ') Z (ann)

~ - 1
where K' = k'T"!, fThe systems ) and ] will have the same

can
characteristic values since T is a similarity transformation.



Our main result is

Theorem 1. Let A = {xl,xz,...,xn} be a given symmetric set of
n

zn.’l + se 81

complex numbers and let X§+éﬁ(g) - .nl (z - Ai) =z 1_31
1s
be the desired characteristic polynomial of the controlled

system. Then the component X3 will not appear in the

1
feedback law k generating the system | if, and only if,
th

(k,T(l)) = 0, where (1) is the i column of the matrix T,

i=1,2,...,n, i.e. k must be orthogonal to the i column of T.

Proof., The particular forms of # ana g show that

" o 1 0 o |
0 0] 1 LR 0
0 0 0 e 1°
-a_.r - " -a T v -a. +k
L n+k1 n-1+k2 n—2+k3 1 q_

Thus, if the chagacteristic polynomial of F o+ éﬁ' is to be
Xﬁ+éﬁv(z)= z" +i§1 Bizn-l, we must choose ki =a s, Bois1 ®
i =1,2,...,n. This uniquely determines k. Transforming back
to the original coordinate system, we have k' = Kk'T. Thus
ki = 0 if, and only if, E'T(i) = 0, i.e. k is orthogonal to the
ith column of T. Hence component X; will appear in the feed-
back law generating Z' unless k'3 - o,

The following re-statement of the theorem gives a simple
test for deciding whether or not certain components of x may

be omitted in a law generating a system having A as its charac-

teristic values:




Corollary., Let W be the subspace of r" generated by the

) (1)) (i) .

vectors T , T y-..,T ™ and let k be the control law
1

generating a § having A as its set of characteristic roots.

Then components x. ,X. ,..
i i
1 2 m

law k if, and only if, kewf the orthogonal complement of W.

ca Xy will not appear in the control

IV, Some Examples

In this section we present a few simple examples illustra-
ting the use of the results given above.
Example 1. Assume that F and g are given in the control

canonical form

o O O O
o O
= O - O
e B
H O O O

Thus, the characteristic polynomial of F is

1
N
1
N
[

xp(2)

(z - 1)(z + 2)(z)(z - 2) .

This system has the three unstable roots 1,2,0. Assume we wish
the controlled system to have the characteristic values -2,

-1, -1, -1, Hence

xF-gk'(Z) (z + 1)3(2 + 2)

] zu + Sz3 + 9z2 + Tz + 2 .



Comparing Xp and XF—gk” we see that

k' = (-2 -3 -13 -6)

Since the basic transformation matrix for this example is T = I,
k'( = k') is not orthogonal to any column of T. Hence, all
components of the state will appear in the feedback law which
produces Xpogyt

Now assume that we desire the characteristic roots to be

-1,-1,-1,-1. Then

(z) = (z + 1)"

= zu + u23 + 6z2 + bz + 1

XF_gk‘

Hence, k' =(-1, 0, -10, =-5)and we see that k'J.T(Q), i.e. -com~

ponent X, does not appear in the control law.

Example 2. Let F and ¢ be given by

It's easily verified that | is completely controllable (C = I)

and the control canonical form is

o 1 0
F= 1|0 , g =|o
o 0 1

The matrix of the basis transformation is
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The original system has the characteristic values 1,0,0. We
assert that it is not possible to stabilize this system by any
linear feedback law which does not measure all state components.
For example, to eliminate x3, by the orthogonality condition

we must have

kl + k2 + k3 =0

t = . But
where %k (k1 k kB)

2
., 2
XF+§Q'(Z) = z7 - (k3 + 1)z° - k,z = kg

and the necessary condition for a stability polynomial is that

all coefficients be positive., Hence

which is inconsistent with the orthogonality requirement. A
similar argument holds for the elimination of Xy OT X,. Thus,
the only way this system can be stabilized is if all components

of the state are fed back.

V. Multi-input Systems

Now we briefly consider the situation when ] has more than

one input, i.e.
X = Fx + Gu , (N

where G is an n x m constant matrix with'l < m < n.
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The linear feedback law is now
u = Kx ,
. . '
where K is an m x n matrix and the system | becomes
'
x' = (F + GK)x . (I

The control canonical form of } is somewhat more
complex than in the single-input case since now changes of
bases in both the state and control spaces are required.

The detaills of these transformations are discussed in [10].
The final result is, that for (F,G) completely controllable,
it is possible through basis changes to bring F and G to

the forms

nl n2 LAY
—01 cee ‘ l h
OO o= l
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0 Q #o» 1’ I 1
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Here the numbers Nyse-eaMy Z Ni.pn» are the Kronecker indices of the
i=1

pencil of matrices generated by F and G. The number m' refers to the
number of columns of G which are used in constructing the
new basis by the prescription given in [;O]. The quantities

denoted by "x" in F are also determined by the precise

form of the basis change described in [10].

Let K be the feedback law which corresponds to the
1]
desired placement of the characteristic values of ] and let
T be the matrix of the basis transformation in the state

space. Then we have

Theorem 2. Component x. of } may be omitted from the
(1)

i
T
feedback law generating }J if, and only if, T is ortho-

gonal to each row of K, 1 = 1,2,...,n0.
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Proof. PFollows immediately from the fact that

For definiteness, the matrix T is given by
T = [G|FG[+--|F*TG) [G|FG| o |FV RG] -
{lalpaf-++ ¥ Fa] [olra] -+« 7e] 1,
where r = rank G. For a proof of this representation, see [8].

VI. Discussion
The foregoing results raise several interesting questions
which merit further investigation, in addition to the BP.

Among these are:

i) Since the minimal control field is coordinate dependent,
what is the "optimal" coordinate system? Here "optimal" is
understood in the sense of smallest number of state components
appearing in the feedback law; )

ii) how can the above results be extended to non-linear
and discrete-time systems? For example, the Poincare-Lyapunov

Theorem [9] insures that Theorems 1 and 2 are still valid for

systems of the form
%2 = Fx + Gu + f(x) |, x(0) = ¢ ,

when ||{f(x)|| - 0 as ||x]| + 0 and ||c|| is sufficiently small;

I1x]1
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iii) if the input matrix G is at our disposal, in
what manner should it be selected to make the size of the
minimal control field as small as possible? In [7], it
was shown that for a certain non-linear feedback law, the

minimal field had dimension one if G was arbitrary.
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