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1. INTRODUCTION

The reference point approach has been developed by Wierzbicki
and described in series of papers and reports (e.g. Wierzbicki,
1980). This method, being the generalization of goal programming
developed by Geoffrion and displaced ideal method developed by
Zeleny (Ching-Lai-Hwang, 1979), joins together the best properties
of both approaches, eliminating simultaneously their disadvantages.
In the author's opinion, the reference point approach is one of
the most suitable tools for solving multiple criteria decision

problems. This approach has several desirable properties:

-- it applies to convex and nonconvex cases

-- it can easily check Pareto-optimality of a given decision

-~ it can be easily supplemented by an a posteriori computa-
tion of trade-off coefficients for the objectives

-- it is numerically well-conditioned and easy for
implementation

-- the concept of reference point optimization makes it
possible to take into account the desires of a decision
maker directly, without necessarily asking him questions

about his preferences.



Simoultaneously, with the development of the theory of reference
point optimization approach, some computational works have been
performed in order to determine the practical applicability of the
method. Selected results are presented in Wierzbicki's papers
(Wierzbicki, 1978) and Kindler et al. (1980). However, the most
extensive work has been performed by Professor Orchard-Hays during
his stay at IIASA. He developed a specialized linear-programming
package for reference point optimization. This package, named
MULTI, has been briefly described byKallio et al. (1980). Some
rather complex problems have been solved using this package; and

one of these have been described byKallio et al.
Unfortunately, this package has two basic disadvantages:

-— it has been written in DATAMAT, the input language for
SESAME, a very powerful and sophisticated LP system
available only on IBM 370 computers under VM/CMS opera-
ting system

-- this system has never been sufficiently documented.

For these reasons, the author decided to develop a portable
package for reference point optimization which could be used with
any computer equiped with a Fortran compiler and LP package working
with a standard MPSX input format. Experience with this system
has shown its portability and usability; it is available on a
series of computers and a number of practical problems have been
solved with its aid. Thus, it seems reasonable to describe this
program package as a user manual. Parts of an earlier working
paper by the author, written in collaboration with Kallio and

Orchard-Hays, have been adapted and extended for this purpose.

2. REFERENCE POINT OPTIMIZATION

mxn

Let A be in R , C in Rpxn, and b in R™ and consider the

multicriteria linear program (MCLP) :

(MCLP.1) Cx = g
(MCLP.2) Ax = b
(MCLP. 3) x>0

where the decision problem is to determine an n-vector x of

decision variables satisfying (MCLP.2-3) and taking into account



the p-vector g of objectives defined by (MCLP.1). We will assume

that each component of g is desired to be as large as possible.

An objective vector value q = q is attainable if there is a

feasible x for which Cx = g. Let q;, for i = 1,2,..., p, be the

largest attainable value for q;; i.e., g} = sup {g;

g attainable}.
The point g* = (q:, q;,..., q’;)T is the utopia point. 1If g is
attainable, it is a solution for the decision problem. However,
usually g* is not attainable. A point q is strictly Pareto
inferior if there is an attainable point g for which g > gq. 1If
there is an attainable g for which g > g and the inequality is
strict at least in one component, then g is Pareto inferior.

An attainable point q is weakly Pareto-optimal if it is not
strictly pareto inferior and it is Pareto-optimal if there is no
attainable point g such that g > q with a strict inequality for
at least one component. Thus, a pareto optimal point is also
weakly pareto optimal, and a weakly pareto opntimal point may be

pareto inferior. Forbrevity, we shall sometimes call a pareto optimal
point a Pareto point and the set of all such points the Pareto set.

What we call a reference point or reference objective is
a suggestion g by the decision maker (or the group of them)
reflecting in some sense a "desired level" for the objectives.

According to Wierzbicki (1978), we consider for a reference point

g a penalty scalarizing function s(g-q) defined over the set of
objective vectors g. Characterization of functions s, which
result in pareto optimal (or weakly pareto optimal) minimizers of

s over attainable points g is given by Wierzbicki (1979).

If we regard the function s(g-g) as the "distance" between
the points g and g, then, intuitively, the problem of finding
such a minimum point means finding among the Pareto set the
nearest point § to the reference point gq. (However, as it will
be clear later, our function s is not necessarily related to the
usual notion of distance). Having this interpretation in mind,
the use of reference point optimization may be viewed as a way
of guiding a sequence {gK} of pareto point generated from the
sequence {ék} of reference objectives. These sequences will be

generated in an interactive process and such interference should




result in an interesting set of attainable points @k. If the
sequence {ak} converges, the limit point may be seen as a solution

to the decision problem.

Initial information to the decision maker may be provided
by maximizing all objectives separately. Let qi = (q%) be the
vector of objectives obtained when the ith objective Jis maximized
for all i. Then the matrix (q%), i,j, = 1,..., P, yields informa-
tion on the range of numerical values of objective functions, and
the vector q* = (qi) is the utopia point. It should be stressed,
however, that such initial information is not a necessary part of
the pf0cedure and in no sense limits the freedom of the decision

maker.

We denote w = q ~ g, for brevity. Then, a practical form of
the penalty scalarizing function s(w), where minimization results

in a linear programming formulation, is given as follows:

s(w) = -min{p min Wi ) wi} - €W . (1)

Here p is an arbitrary penalty coefficient which is greater than
or equal to p and € = (81,62,...,€p) is a non-negative vector of
parameters. In the special case of p = p, (1) reduces to

s(w) = -p min W, - EW . (2)
i

So far in our experience, form (1) of the penalty scalarizing
function has proven to be most suitable. Other practical forms
have been given in Wierzbicki (1979a). |

For any scalar § the set Sg(a) = {g|s(w) > S, w=gqg - g}
is called a level set. Such sets have been illustrated for
function (1) in Figure 1 for p = p, for p > p and for a very
large value for p. In each case, if w i 0, then s(w) is given
by (2); i.e., the functional value is proportional to the worst
component of w. If p = p, the same is true for w > 0 as well.
If w > 0, then for large enough P (see the case pP>>p) s(w) is

given by Z W, In the general case, when p > p, the situation
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is shown in the middle of Figure 1. When w > 0 and its components
are close enough to each other (that is, (p-1)w1 > v, and
(p-1)w2 > Wqy for o = 2), then s{w) is given by z W Otherwise,

formula (2) applies again.

For e = 0, scalarizing function (1) guérantees only weak
pareto optimality for its minimizer. However, as will be shown
in Lemma 1 below, if € > 0, then pareto optimality will be

guaranteed.

The problem of minimizing s(g-g) defined by (1) over the
attainable points g, can be formulated as a linear programming
problem. In particular, if we again denote w = ¢ -~ g = Cx - a
and introduce an auxiliary decision variable y, this minimization

problem can be stated as the following problem (P):

Denote by W = {W|-W+Cx=q, Ax=b, x>0} the feasible set for
vector w. Then the reference point optimization problem, when

the scalarizing function (1) is applied, is as follows:

min{-min{p| min w,, Z wi} - ew}
weEW 1 1
= min{max{max (-pw,), =) wW,} - ew}
\ 1 : 1
wEW i i
= min{max{max(-pwi—sw), -y w, - ew}}
wEW i i
= min{z]zi—pwi-ew, for all i, z > Y w, - ew}
wEW i 1
z€R
= min{y-ew|-y-pw, < 0, for all i, -y-Z w, < 0} ,
i = A T
WwEW i
YER

where we have substituted yv = z + ew.
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Figure 1. Level sets for penalty scalarizing functions (1) and
(2) for e = 0.

The optimal solution for (P) will be characterized by the

following result:

LEMMA 1. Let (y,w,x) = (Q,ﬁ,&) be an optimal solution and
S
(p.2), (P.3), and (P.4), respectively. Denote by 3 = Cx the

> M, and T the corresponding dual vectors related to constraints

corresponding objective vector, and by § = Q - ew the optimal
value for the penalty function, and by @ the attainable set of
objective vectors q. Then q € ¢ N S3(q) and the hyperplane

H = {qlu(g—q) = 0} separates Q and Sg(&). Furthermore, u > €
and q = § maximizes yq over q € Q; Z1.e., § is pareto optimal

if € > 0, and § is weakly pareto optimal if € > 0.

Remark. As illustrated in Figure 2, the hyperplane H
approximates the Pareto set in the neighborhood of §. Thus the
dual vector U may be viewed as a vector of trade-off coefficients
which tells roughly how much we have to give up in one objective
in order to gain (a given small amount) in another objective.
Proof of this Lemma can be found in Kallio et al (1980).
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Figure 2. An illustration of Lemma 1.

3. COMPUTER IMPLEMENTATION

The basic computer implementation consists of three

programs. These programs are:

- the interactive "editor" for manipulating the reference point

and the objectives (lomod)

- the preprocessor which converts the input model file prepared
in standard MPEX format, containing the model description

into its single criterion equivalent (P) (lpmulti)

- the postprocessor, which extracts the information from the
LP system output file, computes the values of the objectives

and displays the necessary information (lpsol).

This concept of pre-~ and postprocessing of the LP problems
decides, in the author's opinion, about the flexibility and porta-
bility of the system. The only machine-dependent point deals



with the format of output file which differs between the different
LP packages. The only adaptation needed is the modification of
three FORMAT statements.

All the programs work in the interactive mode; however, the
efficiency of interaction depends on the size of the LP model.
The current experience shows that on the VAX with the MINOS LP
system (see: MINOS System Manual), for a model of the size
150 x 100 one session*, takes about five to ten minutes, CPU time.
It makes the interactive solution of rather non-trivial decision

problems possible.

4,1. PROGRAM LPMOD

This program allows the user the interactive modification
of the reference point components. The information flow is

presented in Figure 3.

SOLUTION

“\} 1; FILE
A

LpmoD | ¢— |

Figure 3. The information flow of lpmod program.

*By "session", we understand here the execution of lpmod,
lpmulti, MINOS and lpsol programs.
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In order to start work with this program on VAX under UNIX

operating system, the user must prepare two files:

objective file containing the names of objective rows. The

file format is ( A4, A8, F15.0). The first four characters

of each line are blanks, the next eight characters contain

the name of the objective row. Each line must contain max-

min indicator, +1 for maximization, -1 for minimization.

The last line must contain six periods beginning in column 5.
reference point file, containing the reference point components,
values of p and €. Before the first session, this file must

contain n+2 empty lines (where n - number of objectives).

In order to invoke the program, it is necessary to use the

shell command

lpmod objectfilename, refptfilename.

For more details about shell commands see also: An

Introduction to the C shell under UNIX, by W. Foy . Immediately

after starting, the program goes to the waiting status. 1In this

status, it is possible to use the following commands:

1

to

~- list the names of the objectives and reference point
components

-- neutral solution - zeroise the reference point

-- plus infinite reference point (103)

-- minus infinite reference point (-103)

-- copy solution from last session as reference point

Immediately after execution this commands program comes back

the waiting status.

The following commands are also available:

rfp-- go to the reference point definition status

eps-- go to the € definition status

rho--~ go to the p definition status

In order to define the new value of p (or €), it is enough to

type rho (or eps); the program goes to the modification status;

it

is now possible to type the new value of the parameter and the

program comes back to the waiting status.
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Redefinition of the reference point components is possible
in the rfp status. In order to do it, it is necessary to type
two lines -- one containing the name of the objective row, the
other containing the new value of the reference point component.
The only way to exit from rfp status is through 1 command or the

command which terminates the program.

The possible flow of control in the described program has

been presented in Figure 4.

Error messages reported by the program are self-explanatory.

STOP

Figure 4. Control flow in lpmod program.

4,2. PROGRAM LPMULTI

This program converts the standard MPSX format input file
into another file containing the single-criterion equivalent of
the multiple LP problem (P). The input file should be specially
prepared - the user must define the objective rows of type E

(equality); they must appear as first rows in the row definition
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section, and in the same order as in the objective definition
file Section 4.1). The input file must contain the BOUNDS section,

even if this section is empty.

The usage of this program is straightforward - it is enough

to type the shell command:
lpmulti modelfilename objectfilename refptfilename

The program will ask about the name of the RHS and BOUNDS sections.
As a result, it will generate a new file, named fil-9 which is

the standard MINOS input file name.

The structure of information flow has been presented in

s
OBJ FILE \ ‘ /

LPMULTI l
REFPT. /
FILE

Figure 5. Information flow in lpmulti program.

Figure 5.

4.3, RUNNING THE MINOS

After creating the single criterion LP problem, it is possible
to start the LP program. Every LP package can be used, in IIASA
this is currently the MINOS developed at Stanford University
(Murtagh, 1980).
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In order to run MINOS, it is necessary to prepare the
problem specification file. . This can be done in a standard way
according to the MINOS User Manual. It is necessary, however,

to remember the following:
- LPMULTI adds n + 1 new columns and n + 2 new rows

- LPMULTI creates new objective row called MOCOBJ; this name
must be used in the specification file (see MINOS User Manual)

and the objective must be minimized.

-- LPMULTI modifies (or creates) the BOUNDS section, the
appropriate name must be used in the specification file.

The same deals with the RHS section.

After running the MINOS, the standard output file FIL-6 is

generated (Figure 6).

(5
S (>
(5

MINOS >

g

\

{
-
|

|

/

BASIS FILES

N 7/ ~ 7

Figure 6. Information flow in MINOS program.

4,4, PROGRAM LPSOL

This program is a postprocessor which extracts all the
necessary information from FIL-6 file (the standard MINOS output

file) and computes the values of the objectives. The program

can be activated by using the shell command:

lpsol objfilename refptfilename
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The program displays the objective row names, the corresponding
reference point component, the difference between the objective
value and reference point component, the value of the objec-
tive and the dual variables (pu vector component according to the
terminology used in Section 2). The output information is placed
on the end of the file named lpoutm; this file contains the his-
tory of the session. The current solution is stored in lpsol.tmp
file; this file is utilized by the lpmod program (in a case of
execution of "¢" command). The information flow for lpsol has

been presenfed in Figure 7.

O e
P
(>

LPSOL

Figure 7. Information flow in lpsol program.

5. CURRENT COMPUTATIONAL EXPERIENCE

A number of problems have been solved using the package
described in this paper e.g. optimization of development of the
Polish chemical industry, modeling of food and agriculture
section. From these experiments follows that both the approach

and its implementation are sufficiently flexible and powerful
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to solve relatively complex, practical problems of multicriteria
decision-making. From current experience, it follows that the
system is very portable and can be implemented on every computer

equipped with a Fortran compiler.
6. OTHER APPROACHES AND PROGRAMS

There are also some other programs being developed, or
developed but not sufficiently tested, based on the modified
reference point approach. One of these approaches allows the
decision-maker to force or "amplify" his preferences using the
penalty function technique. Namely, if the decision-maker would
like to prevent the essential changes of the value of the objec-
tive in a wrong direction (too large in a case of minimization
or too small in a case of maximization), he can add a penalty

function to the scalarizing function.

Let J be a set of objectives for which the penalty term
has been added. The modified (or nonsymmetric) has the following

form (taking as a basis (r) for simplicity)

s(w) = -p min w, -ew + max (0,-p; W) (3)
i i€g

This problem can be transformed to the equivalent LP

min {w) = min {max (-pwj) -ew + max (0, -0, v.)} =
wEW i i€g

min {y - ew +ply = —pwi, D = -p, Wis P >0, jE€I} .
WEW J
Y ,PER

A similar collection of programs has been prepared for the
solution of such problems. These programs are lgmod, lgmulti
and lgsol. The only difference between the lp... and lg...
package consists of a new command in the lgmod program. This is
a command "pfk" which puts the program into the penalty coeffi-
cient modification status. 1In this status, the user can modify

the p; coefficient in (3), expressing the same "power" of his
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wishes to keep the constraints

%_>0

unviolated. In other cases, it is necessary to introduce the
both-sided constraints for the selected objectives. Such a
problem arises frequently in a case of trajectory optimization
when we want to ensure the tracing of the desired (reference)
trajectory. The scalarizing function has, in this case, the

following form:

s{w) = —Onin Wi - ew + max (0,—piwi) + max (0,-ini) + max (O,Diwi)'
i h=N) ieM i1EM

where M is the set of objectives for which the both-sided con-
straints have been introduced. Transformation of this function

into the equivalent LP problem is straightforward. This kind of
problem can be solved using the lptodor program together with

lgmod and lgsol (in the existing implementation set J must be empty).
Some experience with these programs exist but further works on

their development and testing must be performed.
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