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PREFACE

This paper presents a new software package which has been
developed in collaboration with IIASA. The new package, POSTAN, is
designed for postoptimal analysis of linear programming problems, and
is embedded in the well-known linear and nonlinear programming code
MINOS. POSTAN is composed of a number of FORTRAN subroutines which
may be called by adding some new keywords to the original list of MINOS
specifications. The main function of POSTAN is to determine the ranges
in which certain parameters may be changed without affecting the
optimal solution and/or the optimal basis.

In this paper the authors outline the general form of the linear pro-
gramming problems studied, describe the six new subroutines in some
detail, and illustrate this description with a printout obtained in the
solution of a sample problem. The mathematical theory behind the
software package is given in an Appendix.

ANDRZEJ WIERZBICKI
Chairman
System and Decision Sciences

- iii -






POSTAN — A PACKAGE FOR POSTOPTIMAL ANALYSIS
(AN EXTENSION OF MINOS)

G. Dobrowolski!, K. Hajduk?, A. Korytowski®, and T. Rys!

1. INTRODUCTION

POSTAN is a postoptimal analysis package for linear programming prob-
lems. It is composed of a number of FORTRAN routines which are incorporated
into MINQS, the well-known linear and nonlinear programming code developed
by Murtagh and Saunders [1]. The postoptimal analysis of a linear program-
ming problem is performed after MINOS has found an optimal solution, and is
initiated by adding particular specifications to the original list of MINOS

specifications.

As the output of the unmodified version of MINOS includes sensitivity
coefficients, the objectives of POSTAN are confined to ranging, i.e., determining
the ranges in which certain parameters (or groups of parameters) may be

changed without affecting the optimal solution and/or the optimal basis.

The formulation of the linear problem analyzed by POSTAN is the same as

for MINOS: Minimize (or maximize) a linear cost function

F(z)=ayr (1)
subject to m row constraints:

d;<euz<g,. i=1,..m ()
and n constraints on separate variables:

dyn-l-; Sz.,; ng+i , i = 1,....'"- . (3)
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Here z is an n-dimensional column vector of decision variables, ag is an n-
dimensional row vector of cost coefficients (also called the objective row), the
a;, i=1,..m, are n-dimensional row vectors, the lower bounds dy,
i =1,...m+n, are real numbers or —=~, and the upper bounds 9,1t =1..,m+n,
are real numbers or +=,. Of course, if thie bounds take the values +o or —= the
corresponding relation (2) or (3) must be replaced by a strict inequality. If
d; = g;, then the variable z; is said to be fized. If d; = —= and g, = + the vari-

able z; is said to be free. Analogous terms are used to describe the rows o, x.

It should be recalled that in MINOS the two-sided inequality constraints (2)
are not stated explicitly, but rather specified using ranges. More precisely, a
one-sided inequality is introduced in the form a;z <g; (type L) or oz > d;
(type G), together with a real number r; called the range. In the first case, the
difference between the right-hand side g, and this number yields the lower
bound (d; = g; —7;): in the second case the sum of the right-hand side d; and
the real number 7; gives the upper bound (g; = d, +7; )-

The linear programming problem is transformed by MINOS into the follow-

ing internal form: Minimize (or maximize) the variable

—Z,, +1+0b) (4)
subject to equality constraints:

A =0 (5)
and inequality constraints:

f<Z<d . (8)

Here 4 is an (m +1) x (n+m +2)-matrix:

=2
"
—

(7)

m+]l “m+l
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where J denotes the (m +1)x (m +1) identity matrix and

d; =a; V1i<obj, th)-=ao. g, =a,_; Vib>obj , (8)
b, =b; Wi<obj, by =0, b =b,_; Wid>obj ,

where

0 if d,i=—m andgi:+m
b, =d, if d; is flnite and g; = += .

g; if g, is finite

The first n components of the extended vector of decision variables ¥ € g +m+2
form a subvector identical to r; these components are described as structural.
Element %, ,, is called the right-hand-side component; it is fixed at —1. The
remaining components of £ are called slack or logical components. The objec-
tive variable £7L+1+obj is free. The vector of lower bounds I and the vector of

upper bounds ¢ are defined as follows:

i:- =dpy VEiEL1o.n, Tn+1 =-1, l~n+1+obj = (9)

~

a‘i S 9m+i Vi=1..n, U1 =™ -1 un+l+obj = +eo

Nowleti =n+1+4+j,j = 1,...m. Then

[L=h,, @,=k, for j<obj and [ =h,_,, @ =k,_, for j >obj , (10)

1

where
h; = k; = 0if the j-th row constraint is fixed (i.e., of type E) (11)
h, =0,k; = +oifd. = —~ and g; is finite (one-sided constraint of type L
T ] J gJ YP
hy = —o, k; =0 if dj is finite and g; = +m (one-sided constraint of type G)
hi =0, k; = g; —d; if d; and g; are finite
h; = —w, k; = +w if the j-th row constraint is free

It should be noted that for practical reasons all quantities greater than or equal
to 10!° are taken as equal to infinity in POSTAN, and all quantities whose abso-

lute value is less than 107® are regarded as equal to zero.



2. POSTAN SUBROUTINES

In its present form the package contains six subroutines, which can be
divided into two groups. CRAN, RHSRAN and BRAN perform ordinary ranging (by
elements) while DIRRAN, DRHSRN and DBRAN perform directional ranging. In
this section we describe the input required by each subroutine and the output
that it produces, and give an explanation of the results. The mathematical

theory is presented in the Appendix.

2.1. CRAN

CRAN performs ordinary ranging on the costs. For each cost component
uf,, i = 1,...,n, the subroutine determines the largest range in which aB may
vary without affecting the optimal solution. While the range for a'(:) is being
determined, all other components a{;. j #1, remain fixed at their original

values. CRAN also gives some information on the change of state of variables at

the boundaries.

This subroutine does not require any input data.

The output is entitled COST RANGING. The following information is then

given for each cost component, i = 1,...,n:

NUMBER Number of structural variable

COLUMN Name of structural variable

OBJ GRADIENT Cost component

LOWER LIMIT Lower boundary of the range in which the cost component
may vary without affecting the optimal solution

UPPER LIMIT Upper boundary of this range

CHANGE AT LOWER Name of the nonbasic variable which changes its state

LIMIT (OR OPT at the lower boundary; this is printed only if the

SOL VANISHES) lower boundary is finite. (Beware: CRAN does not know
if there is an optimal solution beyond the boundary
so that the name of a nonbasic variable may be printed
even if the optimal solution vanishes)

CHANGE AT UPPER Name of the nonbasic variable which changes its state

LIMIT (OR OPT at the upper boundary (other explanations as above)

SOL VANISHES)

M+J NUMBER +m +1



2.2. RHSRAN
RHSRAN performs ordinary ranging on the right-hand sides (rhs). For each

component 51» i = 1,...m+1, of the vector of right-hand sides (except for the
objective row, i # obj), this subroutine determines the maximum range in
which 5; may vary without affecting the optimal basis. While the range for b~i is
being determined, all other components l;'j, j #1i, are fixed at their original
values. It should be noted that the rhs vector § is not always the right-hand
side of a constraint system in the original formulation (1)—(3); the user should
refer to (5)—(11). In addition, RHSRAN gives some information on the change of

state of variables at the boundaries.
This subroutine does not require any input data.

The output is entitled RHS RANGING. The following information is then

given for each rhs component, i =1,..m+1, except for the objective row,

i # obj:

NUMBER n+i +1

ROW Name of row

RHS Right-hand-side component 8;

LOWER LIMIT Lower boundary of the range in which the rhs component
may vary without affecting the optimal basis

UPPER LIMIT Upper boundary of this range

CHANGE AT LOWER Name of the basic variable which becomes nonbasic

LIMIT (OR OPT at the lower boundary. LLis printed if this

SOL VANISHES) variable reaches its lower bound and UL if it
reaches its upper bound; the name is printed only
if the boundary is finite. (Beware: RHSRAN does not
know if there is an optimal solution beyond the boundary
and so a variable name may be printed even if the
optimal solution vanishes)

CHANGE AT UPPER Name of the basic variable which becomes nonbasic

LIMIT (OR OPT at the upper boundary (other explanations as above)

SOL VANISHES)

M+J Number of row

2.3. BRAN

BRAN performs ordinary ranging on the bounds. For each lower bound i:

and each upper bound #;, i =1,..n+m+2, the subroutine determines two
ranges: range A, which is the maximum range in which the bound may vary

without affecting the optimal solution, and range B, which is the maximum
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range in which the bound may vary without affecting the optimal basis. While
these ranges are being determined for 'f; {or i), all other bounds remain fixed
at their original values. BRAN also gives some information on the change of
state of variables at the boundaries. This analysis is not performed for fixed
variables, i.e., if ; = i;

This subroutine does not require any input data.

The output is entitted BOUND RANGING. It is divided into two parts, A and B,

which will now be discussed separately.
Part A

Part A is entitled A, NO SOLUTION CHANGE and is divided into two subsections,
SECTION 1 — ROWS and SECTION 2 — COLUMNS, which correspond to the sections
of the same name in the final output of MINOS.

SECTION 1 — ROWS contains the following information for each slack vari-
able £;, i =n+2,...,n+m +2 (or for each row constraint), except for the slack
variable Z;,,,0p; Which corresponds to the objective row. In the first two

columns we have:

NUMBER Number of slack variable i
ROW Name of row

If 17.',- =f; for the slack variable under consideration, the remaining columns

contain only the message FIXED VARIABLE.

In the case when the slack variable Ei is nonbasic at its lower bound the
message VARIABLE AT LOWER BOUND appears in the next two columns, which

otherwise contain:

o~

LL FOR L. BOUND Lower boundary of range A for
UL FOR L, BOUND Upper boundary of range A for

1
~
L

The next two columns give similar information about the upper bound. In other
words, if the slack variable Z; is nonbasic at its upper bound, the message VARI-

ABLE AT UPPER BOUND is printed; if not the columns contain:

LL FOR U BOUND Lower boundary of range A for
UL FOR U BOUND Upper boundary of range A for i



The last column contains:

I Row number

SECTION 2 — COLUMNS contains information analogous to that described

above for each structural variable Ei' i = 1,....n. All of the information may be

interpreted in the same way as in SECTION 1 — ROWS, with the following excep-

tions:

NUMBER Number of structural variable
COLUMN Name of structural variable
M+J m+1+i

Part B

Part B is entitled B. NO BASIS CHANGE. It is also divided into two subsections,
SECTION 1 — ROWS and SECTION 2 — COLUMNS.
SECTION 1 — ROWS contains the following information for each slack vari-

able ':Ei- i=n+2,.,n+m+2, except for the slack variable En+1+o’bj which

corresponds to the objective row. The first two columns contain:

NUMBER Number of slack variable
ROW Name of row

if 'il'l =F,- for the slack variable under consideration, the remaining columns

contain only the message FIXED VARIABLE.

In the case when the slack variable Ei is nonbasic at its lower bound the
message VARIABLE AT LOWER BOUND appears in the next two columns, which

otherwise contain:

LL FOR L, BOUND Lower boundary of range B for f;
UL FOR L BOUND Upper boundary of range B for i;

The next two columns give similar information about the upper bound. In other
words, if the slack variable Z; is nonbasic at its upper bound, the message VARI-

ABLE AT UPPER BOUND is printed; if not the columns contain:

LL FOR U BOUND Lower boundary of range B for i;
UL FOR U BOUND Upper boundary of range B for i
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The columns which follow all appear under the heading CHANGES AT BDRIES
(OR OPT SOL VANISHES). These are used only for nonbasic slack variables,

remaining blank for basic variables.

If the slack variable Z; is at its lower bound then the columns contain the
names of the basic variables which change their state at the boundaries of
range B for f;-. given that the solution does not vanish. The message LL indi-.
cates that the variable has reached its lower bound, while UL shows that the
upper bound has been reached. The first column., headed LOWER, gives the
name of the variable which changes its state at the lower boundary of range B
for %;; the second column, headed UPPER, gives the name of the variable which
changes its state at the upper boundary. The name of Z; may also appear under
the heading UPPER. This means tha£ i; is the upper boundary of range B for i:

and the set of feasible solutions is then empty beyond this boundary.

If the slack variable Z; is at its upper bound, these columns contain the
names of the basic variables which change their states at the boundaries of
range B for i, given that the solution does not vanish. The messages LL and UL
have the same meaning as above. The first column, headed LOWER, gives the
name of the variable which changes its state at the lower boundary of range B
for '1'}'."; the second column, headed UPPER, gives the name of the variable which
changes its state at the upper boundary. If the name of Z; appears under the
heading LOWER, then l': is the lower boundary of range B for 4; and the set of

feasible solutions is then empty beyond this boundary.

The last column contains:

I Row number

SECTION 2 — COLUMNS contains information analogous to that described

above for each structural variable Z;, i = 1,...,n. All of the information may be

interpreted in the same way as in SECTION 1 — ROWS, with the following excep-

tions:

NUMBER Number of structural variable
COLUMN Name of structural variable
M+4J m+1+4

Beware: in most cases BRAN does not know if there is an optimal solution

beyond the boundaries of range B and so a variable name may be printed under
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CHANGES AT BDRIES (OR OPT SOL VANISHES) even if the optimal solution van-
ishes. The question of whether the optimal solution exists may be answered (in
the negative) only if the name of the nonbasic variable Z; appears in the

approprivate column of the output.

2.4. DIRRAN

DIRRAN performs directional ranging on the costs. For a given increment
Aag€R, of the cost vector ag, this subroutine determines the largest real
t . ax = 0 such that for every cost vector of the form ag + tAay, t €[0.t . ]. the
optimal solution is the same as at the point a4 (i.e., at £ =0). The boundary
cost components af) +'tmuAaB, i = 1,...,n, and some information on the change
of state of variables at the boundary are also given. Beware: if a structural vari-

able, say %;, is fixed, then Aaf) is automatically set to zero, regardless of the

value given in the data.
Data: see Section 3.2.

The output is entitled DIRECTIONAL COST RANGING. It takes one of two

forms, depending on the valueof ¢ .. 1Ift < 103, we have the finite range

-
case, while if £ ,,, > 101° we have the infinite range case. Let us consider the

finite range case first.

In this case the sub-heading FINITE RANGE is printed below the main title,

with the corresponding value of £ in brackets. Next, the following informa-

max

tion is given for each structural variable Z;, i = 1,....n:

NUMBER Number of structural variable
COLUMN Name of structural variable
DIRECTION Increment component Aa}
OBJ GRADIENT Cost component a}

BOUNDARY VALUE Boundary value of cost component (a2} + ¢, Aa})

M+J m+1+i

At the boundary t = £, either the optimal solution vanishes or one of the non-
basic variables changes its state. The name and original state of this variable
are given in the last row of the output in the form: AT BOUNDARY VARIABLE
"name" CEASES TQ BE AT "bound” OR OPTIMAL SOLUTION VANISHES. The letters
LL are substituted for "bound" if the variable is no longer at its lower bound,

while UL appears if the variable is no longer at its upper bound.
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> 10!%) the message INFINITE RANGE

max —

(TMAX.GE.1.E15) is displayed. Beneath this the same information is given for

In the infinite range case (¢t

each structural variable as in the finite range case, except for the BOUNDARY

VALUE, which is no longer relevant.

2.5. DRHSRN

DRHSRN performs directional ranging on the right-hand sides. For a given
vector of increments Ab € R™*! of the rhs vector 5, DRHSRN determines the

largest real ¢t _ .. =0 such that for every rhs of the form & + tAb, t €[0,t

max — max] ’

the optimal basis is the same as at the point & (i.e., at £ = 0). Ab ;. is automati-

obj
cally set to zero.

Data: see Section 3.2.

The output is entitled DIRECTIONAL RHS RANGING. It takes one of two

forms, depending on the value of £ Ift o< 1015, we have the finite range

ax’
case, while if £ . .= 10 we have the infinite range case. Let us consider the
finite range case first.

In this case the sub-heading FINITE RANGE is printed below the main title,
with the corresponding value of £,,,, in brackets. Next, the following informa-

tion is given for each row {(or each slack variable Z,i=n+2,..n+m +2), except

for the objective row (or slack variable Z, ,;,q):

NUMBER Number of slack variable

ROW Name of row

DIRECTION Cormponent AG; of the increment vector
RHS Right-hand-side component 8;

BOUNDARY VALUE Boundary value of rhs component (5; + £ ,,Ab;)

1 Row number

At the boundary ¢ =t . either the optimal solution vanishes or one of the
basic variables changes its state. The name and type of change are given in the
last row of the output in the form: AT THE BOUNDARY VARIABLE "name” PASSES
FROM THE BASIS TO "bound"” OR OPTIMAL SOLUTION VANISHES. The letters LL are
substituted for "bound" if the variable reaches its lower bound and UL if it

reaches its upper bound.

In the infinite range case {t ,,>10!%) the message INFINITE RANGE
(TMAX.GE.1.E15) is displayed. Beneath this the same information is given for
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each non-objective row as in the finite range case, except for the BOUNDARY

VALUE, which is no longer relevant.

2.6. DBRAN

DBRAN performs directicnal ranging on the bounds. For a given vector of
increments col (Al A) € RR("+m+2) 5f the vector of bounds col (I,i), this sub-
routine determines two real numbers:

. t
form col ({\@) + t col (AT,AQL), t €[0,t .5,]. the optimal solution is the

maxa = 0, the largest real number such that for every bound vector of the

same as for the bound vector col ({,&), i.e., at t = 0.

. t naxp = 0, the largest real number such that for every bound vector of the
form col (I, &) + t col (Al,A®), ¢ €[0.t 1oz ). the optimal basis is the same as

for the bound vector col ({,4), i.e., at t = 0.

The bound increments A{;-.Aﬂ'i which correspond to fixed variables are automati-

cally set to zero regardless of the values given in the data.
Data: see Section 3.2.

The output is entitled DIRECTIONAL BOUND RANGING. Information on ¢ ...
is given under the heading A. NO CHANGE IN THE OPTIMAL SOLUTION. If
tnaxa < 1015 the message FINITE RANGE is displayed, with the corresponding
value of £, . in brackets. If ¢ ,..> 1015, INFINITE RANGE (TMAXA.GE.1.E15) is
printed. Similar information on {, .. is given under the heading B. NO
CHANGE IN THE OPTIMAL BASIS. The rest of the output is divided into two sec-
tions: SECTION 1 — ROWS and SECTION 2 — COLUMNS.

SECTION 1 — ROWS contains the following information for each slack vari-

able Z;, i =n+2,...,n+m+2 (or for each row), except for the slack variable

En+]+obj which corresponds to the objective row:

NUMBER Number of slack variable
ROW Name of row
LL DIRECTION Component Af; of the lower bound increment vector Al’
LL BOUNDARY A Boundary value of the lower bound 'l: + tmamA'l:-; this
is printed only if t ., < 10%®
LL BOUNDARY B Boundary value of the lower bound I + t . All; this

is printed only if ¢,y < 10'°
UL DIRECTION Component Ai; of the upper bound increment vector Ai
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UL BOUNDARY A Boundary value of the upper bound 4; + ¢ .. Af;; this
is printed only if £ ., < 101°

UL BOUNDARY B Boundary value of the upper bound u; + ¢,,,,A%;; this
is printed only if £, 4 < 10%°

I Row number

SECTION 2 — COLUMNS contains information analogous to that described

above for each structural variable Ei. i = 1,...,n, with the following differences:

NUMBER Number of structural variable
COLUMN Name of structural variable
M+d m+1+1

The last two rows of the dutput contain information on the change of state of

variables at the boundaries. If Loaxa < 1015, the message AT THE BOUNDARY A
THE VARIABLE "name" HITS “bound" is displayed. The letters LL are substituted
for "bound" if the variable hits its lower bound and letters UL if it hits the upper
bound. If £ .. < 10'%, the message AT THE BOUNDARY B THE BASIC VARIABLE
“"name” BECOMES NONBASIC AT "bound” OR OPTIMAL SOLUTION VANISHES is
displayed in the next row. Once again, LL is used to denote the lower bound and

UL the upper bound.

3. IMPLEMENTATION OF POSTAN FOR MINOS

In order to insert the POSTAN procedures into MINOS, and to allow them to
be used in the same way as other MINOS facilities, we have made the changes

outlined below.

3.1. New key-words in the SPECS file

BY-ELEMS COST This activates the postoptimal analysis of cost ranges.
RANGING Subroutine CRAN is called (see Section 2.1). Insensitivity
(default: off) ranges for each cost coefficient are calculated under

the assumption that the values of the others are kept
constant. There is no request for data

BY-ELEMS RHS A similar procedure is carried out for each component
RANGING of the rhs vector. Subroutine RHSRAN is called (see
(default: off) Section 2.2). There is no request for data

BY-ELEMS BOUND This command initiates the computation of insensitivity
RANGING ranges for the upper and lower bounds of each structural
(default: off) and logical variable. Subroutine BRAN is called (see

Section 2.3). Insensitivity ranges are produced for two
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cases: NO SOLUTION CHANGE and NO BASIS CHANGE. There
is no request for data

DIRECTIONAL COST This is the first of three commands which enable the user

RANGING to perform postoptimal directional analysis. The cost

(default: off) vector is shifted along the direction indicated by the data
while the optimal basis is retained. Subroutine DIRRAN is
called (see Section 2.4). The length of the insensitivity
interval thus obtained is printed out

DIRECTIONAL RHS This command activates postoptimal analysis of the

RANGING rhs vector. Subroutine DRHSRN is called (see Section 2.5).
(default: off) The direction of change has to be specified

DIRECTIONAL BOUND Postoptimal analysis of the upper and lower bounds
RANGING of all variables is activated. Subroutine DBRAN is called
(default: off) (see Section 2.8). The user has to provide data to

define the direction of alteration of both upper
and lower bounds

DATA RANGING This key-word specifies the logical number of the data file
FILEn for directional ranging procedures. File n is read
(default: n =5) after the processing of other MINOS input files has been

completed. It is obligatory to declare a data ranging file if
at least one of the ranging procedures is used. If none of
these procedures is called, this key-word will be ignored

if it is present

3.2. Data ranging file — input format

The data for the postoptimization procedures are prepared in an MPS-like
format and placed in the file specified by the MINOS key-word DATA RANGING
FILE. The data sets for different directional ranging procedures may be given in
any order. The beginning of the data set for each procedure is identified by the
line NAME and its end by the line ENDATA. If it occurs, the line 'SET’ must be
given immediately after the line NAME in each data set; this line defines the
default values of all the variables which are not explicitly defined. Every data
set is identified by the name given in the line NAME.

The records in the DATA RANGING FILE should have the following (basic)

form, which is analogous to MPS format:

Columns: 1-4, 5—12, 15-22, 25-36, 4047, 50-61
Fields: f1, 12, f3. f4, 5, 6

Below we give a detailed description of the data set for each directional ranging

procedure,
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fi f2 3 f4 fo f6
1. | NAME DBOU
2. | 'SET’ Comments Value
3. LOWER | Row/col. name | Value | Row/col. name | Value
4, UPPER | Row/col. name | Value | Row/col. name | Value
5. ‘ ENDATA
Remarks:

. If field f2 in a given record is empty, this means that it is the same as in

the previous record. Field f2 must not be empty in the first data record.
. The records with identifiers UPPER and LOWER may appear in any order.

- LOWER is used for increments of the lower bounds and UPPER for incre-

ments of the upper bounds.

Directional Cost Ranging

f1 2 3 f4 ) 3] f6
1. { NAME DCOS
2. | 'SET’ Comments Value
3. Col. name | Value | Col. name | Value
4 ENDATA
Directional RHS Ranging
f1 2 3 f4 15 6
1. | NAME DRHS
2. | 'SET’ Comments Value
3. Row name | Value | Row name | Value
4. | ENDATA

The following general rules apply to all data sets:

. One of the fields f3,f4 may be empty.

. If 'SET" appears, it must follow immediately after NAME. If *SET’ does not

occur, the default for all variables whose values are not specified is zero.

This has the same effect as
‘SET"

. Comments may be entered in arbitrary positions in the data set. They are

0.

identified by an asterisk * in the first column.
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. The DATA RANGING FILE is read once to find the necessary data set (one

cycle is performed).

3.3. Alterations to MINOS

Several of the original MINOS procedures have been altered in order to

accommodate the POSTAN package.

Workspace for the ranging procedures is located within array Z of MINOS.

4. AN EXAMPLE

We shall now illustrate the performance of POSTAN using a simple example.

The linear programming problem is as follows: Maximize

Flz)=z, -z, +0.5zr3+ 2z, + 3z,
subject to
1.1z, + 1.2z, + 1.323< 7
0.1z3 + 0.2z, —z52> -7
-106<2.1z5 + 2.2z, < 10.7
z,t+r3+zx3=0.01
zlsl.S. T -14, 0=z4<10, Ig5=2

An additicnal constraint is introduced as the fourth row:

~0 <5z, + 525+ 525+ 51, <+

in order to demonstrate the effect of a free constraint on the POSTAN output.

Below we give the MINOS and POSTAN specifications used to solve this prob-
lem. Notice that all the ranging routines of POSTAN are called. The MPS file
and the data ranging file for POSTAN are then presented. It should be noted
that in the DBRAN data the increment components for those bounds of the slack
variables to which MINOS assigns a default value of zero are also set equal to

zero. This is normal in most applications.

We then give the standard MINOS printout, followed by the output of the
subroutines DIRRAN, DBRAN, DRHSRN, CRAN, BRAN, and RHSRAN.



begin

endata

- 16 -

(T E S T)
max
rows 1O

by~-elems cost ranging
by~-elems rhs ranging
by-elems bound ranging

.
directional cost ranging
directional rhs ranging

. directional bound ranging
date ranging file 7
mps file 3

.
log frequency 1

end

name test

rows
n ob
1 rl
g r2
1 r3
n r4
e rS
columns
xl ob
xl rl
xl r4
xl rS
x2 ob
x2 rl
x2 rd
x2 rS
x3 ob
x3 rl
x3 r2
x3 r3
x3 rd
x3 rS
x4 ob
x4 r2
x4 r3
x4 rd
x5 ob
x5 r2
rhs
rh rl
rh r2
rh r3
rh r5
ranges
ra r3
bounds
mi bo xl1
up bo x1
1o bo x2
up bo x3
fr bo x4
fx bo x5
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name decos
;set‘ comm 1.
: empty set of data for directional cost ranging
® —m———
[
: this is a comment
endata
name dbou
‘set’ 1.
lower x4 0.
lower rl 9.
lower r2 0.
r3 0.
lower r4 0.
lower rS Q.
upper x4 Q. rl
r2 Q.
rS 9. r4
endata
fiame drhs
‘set’ HHURHHERRH 1.
r4 0.
endata
1
minos —_—— version 4.0 mar 1981

START at 14:08:45
CED 1984 Wed Jun 20

CON0OOOROOO00R0OREOCOOROOOO0OROOO0RCCOOOOGOIOIOITSS

spees file

begin (T E S T)
max
rows 10

by-elems cost ranging
by-elems rhs ranging
by-elems bound ranging

directional cost ranging
directional rhs ranging
directional bound ranging

data ranging file 7
mps file 3

1iog frequency 1
end
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APPENDIX: MATHEMATICAL THEORY

This Appendix presents the elements of ranging theory necessary to solve
the linear programming problem (4)—(8). For the sake of simplicity we shall
assume that obj =m +1, i.e., the objective row is the last row in matrix A. As
the value of variable Z, ,, is fixed at —1 we may remove it from the problem for-
mulation, defining a new column vector of decision variables y € R*+™, where
¥v; =% Vi=1l..,n and y; =Z%;,, Vi =n+l,..,n+m. We also define an

m x(n + m )-matrix

column vectors b € R™ (see (8)), l,u € R**™, where |, = i: u, =4; Vi=1..n
and L, =hyq uy =k; 41 Vi=n+l,...n+m; and a row vector ¢ ER,H,m, where
ct = a'(") Vi=1,..,n and ct=0 Vi=n+l..n+m.

The linear programming problem now takes the form: Minimize (or maxim-

ize) the linear cost function

Fly)=cy (A1)
subject to

Ay =b (A.2)

lsy<u . (A.3)

We denote the optimal solution of this problem by z and decompose it into

the following subvectors:

zp - basic vector

z; — vector of nonfixed, nonbasic variables which are at their lower
bounds

z,, — vector of nonfixed, nonbasic variables which are at their upper

bounds

zg — vector of fixed variables (i.e., variables for which u; = L,).
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Let J, be the set of indices of all nonbasic variables at their upper bounds and
let /; be the set of indices of all nonbasic variables at their lower bounds. Fixed
variables are not included in [, or J;. We shall let I denote the set of indices of
all basic variables. This decomposition is also applied to the other vectors,
yielding, for example, cg, ¢;, ¢,: lg. 4. L

w' Up Y, U, . It is clear that z; =1,

z, =u,, 2, = u;. Thus the constraint matrix A may be decomposed into the

basic matrix B and matrices [, U/, S such that

Bzp + Lz; + Uz, + 82, = b
Hence we have
zg = B~ — B (Lz; + Uz, + Sz,) (A.4)
for the basic vector and
F(z) =cgB™'b + (c; —cgB'L)z; + (c, —cgB~1U)z, + (cg —cgB1S)z, (A.5)

for the optimal cost.

Here and elsewhere we shall denote the i-th row of a matrix H by H; and

the j-th column by H”. Define

D=g81 | (A.8)

Al. Ranging of costs

Let Ac be a given nonzero row vector in R,,,. where Ac’ =0 for
i =n+l,..n+m and for fixed variables. We consider the family of linear pro-

gramming problems (A.1)—(A.3) with the cost vector c replaced by ¢ (t), where
c(t)=c + tAc (A7)

and t is a real number, t € k. We wish to determine the largest range
[t minf maz] in which the coefficient ¢ may vary without affecting the optimal
solution, i.e., the range of t values for which the optimal solution is equal to z.

It is clear from (A.5) that the optimal solution remains unchanged and

equal to z for all values of t such that

e(&,(t)—cg(t)DL) <0 (A.8)
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and

e(c, (t) —E5(t)DUY =0 (A.9)
where

+1 in the case of maximization
€= |-1 in the case of minimization

Hence
te(Ac; —AcgDL) < e(cgDL —c;) (A.10)

te(Ac, —AcgDU) = e(cgDU —cy,)
We shall use the following notation:

T; = —cd +cpDA, AT; = ~Ac? + AcgDA? | jel, V] (A.11)
In the case of maximization we then have

tmax = Min {~T;/AT;] (A.12)

where the minimum is taken over all values of j from J; such that AT; <0 and

all values of j from [, such that A7; >0, and
tmin = max {-T;/AT;) (A.13)

where the maximum is taken over all values of j from J; such that A7; > 0 and

all values of j from [, such that AT; <O0.

In the case of minimization ¢, is determined from (A.12) but with the
minimum taken over all values of j from J; such that A7; > 0 and all values of j
from [, such that AT; <O; £, is determined from (A.13) with the maximum

taken over all values of j from J; such that A7; <0 and all values of j from ],
such that AT; > 0.

In all cases, if the set of indices over which the maximum (or minimum) is

taken is empty, then ¢ ;= — (or £ = +o).

From these general results it is not difficult to derive formulae for the cost
ranging routines of POSTAN. Imposing the condition £ =0 and dropping the

relations for t ;. we obtain results that may be used for the directional cost



-27-

ranging routine (DIRRAN). Setting Ac = e;, where e; is the i-th unit vector
(which has all components equal to zero except for the i-th component, which
is equal to one), we obtain formulae for the ordinary cost ranging routine
(CRAN). In this case we formulate the results directly in terms of the cost com-

ponent ¢t =c? + t. For nonbasic components we have
e¢* < ecgDAt if i€ (A.14)
£t > ecgDA® if i€, . (A.15)
If i € I, we have, by virtue of (A.11):

AT; = DA (A.18)

et kb ST et bt (A.17)

where ¢ - and t ; are determined from (A.12) and (A.13).

At each boundary of the interval [¢ tmax] a nonbasic variable changes

min’
its state. The number of this variable and the kind of change are determined by
the component on the left-hand side of {(A.8) or (A.9) that changes its sign at the

boundary. If
e(ci(t)—cp(t)DAY) >0 Wt >t .. (A.18)

for some i €], then at the upper boundary f =t ,, the i-th variable passes

from J to either Iz or I,

or the optimal solution vanishes. If (A.18) holds but

forallt <t then an equivalent statement may be made for the lower boun-

min’
dary £ in-
If
s(8*(t)-cp(t)DA) <O Wt >t .. (A.19)

for some i €/,, then at the upper boundary ¢t =t , the i-th variable passes
from J, to either /p or ], or the optimal solution vanishes. If (A.19) holds but

forall f <t then an equivalent statement may be made for the lower boun-

min’

dary t,sn-
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A2. Ranging of right-hand sides

Let Ab be a given nonzero column vector in R™. We consider the family of
linear programming problems (A.1)—(A.3) with the rhs vector b replaced by
l;(t) where

b(t) =b + tAb (A.20)

and t € Rl. We wish to determine the largest range [t ] in which the

min'f mex
coefficient ¢t may vary without affecting the optimal basis, i.e., the range of ¢

values for which the optimal basis is equal to B.

Letting Zz(t) denote the vector of basic variables in the optimal solution

corresponding to the rhs vector b(¢), we have

zZp(t) =2z +tB~1Ab (A.21)

It is clear that the nonbasic variables do not change for values of

t €[t ;i tmagl- The range [t ; .t 1 is determined by the feasibility con-

straint on the basic variables:

lp=<zp(t)<ug (A.22)
or
lp —2p<tDANo <sup —zp . (A.23)
Define
t, =J_=r§:1.rl1'm [uBJTJ—A:i D;hb > 0] (A.24)
lBj —-2p;
ty =j=nll,é.).(m [——LDJ-Ab : Db > O]
[t
tg = j=r§.lfl.m ‘TJ-Ab—: D;hAb < 0]
t, =j=m.ja..1.(m :% D; Ab <0]

We then have

= max {tyt,) . (A.25)
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If D;Ab <0 for all i, i = 1,....,m, then we set £, = +~ and ty = —=. Similarly, if
D;Ab >0 foralli,i =1,..m, then we set t3 = —oandt, = +w.

To obtain results that may be used for the directional ranging routine
(DRHSRN) it suffices to assume that £ > 0 and to drop the relations for t_; . To
obtain formulae for the ordinary ranging routine {RHSRAN) we take Ab = e;,

where e; is the i-th unit vector. We then have
D;Ab = D} (A.26)

in (A.24).

At each boundary of the interval [t ] a basic variable changes its

min'tmax
state or the optimal solution vanishes. The number j of the basic variable

which becomes nonbasic at the upper boundary is determined by

_ Upj 2B

J
lo: —2n-
B By .
t max = —W if t o .y=ts (A.28)
J

In the first case the j-th basic variable reaches its upper bound, while in the
second it passes to its lower bound. The number j of the basic variable which

changes its state at the lower boundary t =t . isdetermined by

lo: —2Zn:
- B °B . -
o= if £ =ty (A-29)
min D; Ab m
t = 1B %h if ¢ =t A.30
min= Tpap O fmin =t (A-30)

In the first case the basic variable passes to its lower bound and in the second it

reaches its upper bound.

A3. Ranging of bounds

Let col (Al,Au) be a given column vector in Rz(’”""), and be such that
Al; = Au; = 0 if y; is a fixed variable. We consider the family of linear program-
ming problems (A.1)~(A.3) with the vectors of lower and upper bounds ! and u
replaced by I (t) and %(t), respectively, where

W(t)=1+tAl, w(t)=u +thu (A.31) .
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and t €R}. We wish to determine two ranges. [t inat mazal 204 [£ 0t masn)-

The first of these intervals is the largest range in which the coefficient ¢ may
vary without affecting the optimal solution (i.e., the range of £ values for which
the optimal solution remains equal to z); the second is the largest range in
which ¢ may vary without affecting the optimal basis (i.e., the range of { values

for which the optimal basis remains equal to B).

The boundaries £ ;.. azs are easily determined from the following condi-

tions: for every t €[t t

ming’ maxa]

tAl, =0 if i€} (A.32)
tAu, =0 if i€,

L4+ tAL <wy if i€,

w, +thu; =1 if i<

The first two conditions imply that £ ;.. =t .5, =0 if Al; # O for some i€}]

and/or AMu; # O for some i €1, .

Let z(t) = z + t Az denote the optimal solution corresponding to the vector
of bounds col (I{t),z(t)). Then

Az; = N, Az, =My, (A.33)
Azg = =D(LAY + Ubu,)

The values of £ ;.\ and t, .., may be calculated using the feasibility conditions
L +tA <up +thyy , 1, +EAL, <uy, +tAu, (A.34)
lp+tAlgp<zp +tAzg<ug +thAup

or
t(A —Ayy) <=y - (A.35)
t(A, —Au,)<u, -1,
t(AMlp + DLAlL, + DUMu, )< 2zg — 1

t(bug + DLAL + DUAu, ) = 2zp ~ug
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t) =min | = —: Al —Au; >0 (A.386)

t, =max | ———: AIJ- —Auj <0

tqa = min Zpj _tg
37 jetom | Mg +D;(LAL + Ubu,)

: denominator > 0]

t, = 2 5y denominator < 0
47 00 | By + D5 (LAY, + Ubuy) - CEOmHRAMOT
. Zp; ~Up; .
= :d t 0
5= [ Bug; +D; (LY, + Ubuy) | denominater < ]
Zp; —Up,
By By .
tg = . d t 0
o=, | s aa gy demominetor > 0]
Finally,
t naxp = Min ftotatsd, oy = max {tat,.te) (A.37)

If the set of indices j over which a minimum or maximum is taken is
empty, we substitute +e for t,, tg, or t5, and —= for t,, t,, or tgin (A.36). For

instance, if Alj - Auj < 0 for all j g Iy, we take t1 = 4=, and so on.

Results that may be used for the directional ranging routine (DBRAN) may
be obtained by assuming that ¢ > 0 and dropping the relations for £, ., f ...
To obtain the formulae for the ordinary ranging routine (BRAN) we take
col (Al,Au) = e;, where e; is the i-th unit vector in R2n+m)  Expressions which

allow us to determine the range [t tmub] for all types of variables are given

minb’
below.

For i€l we define

ty=u -l (A.38)




Hence
L+t <b<l +t .0 (A.39)
t minb = max {,,tg}
t nexh = Min {t4.tg,t5)
and
u; 21 (A.40)

For i €L, we define
ty =l -y
andtg, t,, t,, tg are defined by (A38). Then

u; + tminb = 17"1'. sy + tmaxb (A‘41)

t inp = max ft,.t,.t )

t maxp = Min {tg,t5)

and

L <y (A.42)

Ifi € I then

i<z, ¥, >z (A.43)

1 T ?

At each boundary of the interval [t ;,.f ...] either a basic variable
changes its state or the optimal solution vanishes. If either of the first two ine-

qualities in (A.34) becomes an equality at one of the boundaries, then the
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feasible set becomes empty at this boundary and the optimal solution vanishes.
Now assume that one of the last two inequalities in (A.34) becomes an equality.
In this case either the optimal solution vanishes or a basic variable becomes
nonbasic. Let i&€lp. If I + & ; Al = z; + 1,12z, and Al; # Az;, then at the
lower boundary either the optimal solution vanishes or the i-th variable
becomes nonbasic at its lower bound. Other cases may be analyzed in a similar

way.
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