
NOT FOR QUOTATION 
WITHOUT PERMISSION 
OF THE AUTHOR 

POmAN - A PACKAGE FOR POSTOFTIUL ANALYSIS 
(AN ~ S I O N  OF mas) 

G. Dobrowolski 
K. Hajduk 
k Korytowski 
T. RyS 

July 1984 
CP-84-32 

Cbllaborakbe Ftzpers report work which has not been performed 
solely at the International Institute for Applied Systems 
Analysis and which has received only limited review. Views or 
opinions expressed herein do not necessarily represent those of 
the  Institute. its National Member Organizations. or other 
organizations supporting the  work 

INTERNATIONAL INSI'ITUTE FOR APPLIED SYSTEMS ANALYSIS 
2381 Laxenburg. Austria 



This  paper was o r i g i n a l l y  prepared under t h e  t i t l e  "Modelling 
f o r  Management" f o r  p r e s e n t a t i o n  a t  a  Nate r  Research Cent re  
(U.K. ) Conference on "River  P o l l u t i o n  Con t ro l " ,  Oxford, 
9 - 1 1  A s r i l ,  1979. 



This paper presents a new software package which has been 
developed in collaboration with IIASA The new package, POSTAN, is 
designed for postoptimal analysis of linear programming problems, and 
is embedded in the well-known linear and nonlinear programming code 
MINOS. POSTAN is composed of a number of FORTRAN subroutines which 
may be called by adding some new keywords to the original list of MINOS 
specifications. The main function of POSTAN is to  determine the ranges 
in which certain parameters may be changed without affecting the 
optimal solution and/or the optimal basis. 

In this paper the authors outline the  general form of the linear pro- 
gramming problems studied, describe the  six new subroutines in some 
detail, and illustrate this description with a printout obtained in the 
solution of a sample problem. The mathematical theory behind the 
software package is given in an Appendix. 
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POSTAN - A PACKAGE FOR POSTOPTIMAL ANALYSIS 
(AN EXTENSION OF MINOS) 

G. l h b r o w o l s k i l ,  K ~ a j d u k ~ ,  A. ~ o r y t o w s k i ~ ,  and T. Rygl 

POSTAN is a postoptimal analysis package for linear programming prob- 

lems. It is composed of a number of FDRTRAN routines which are incorporated 

into MINOS, the well-known linear and nonlinear programming code developed 

by Murtagh and Saunders [I]. The postoptimal analysis of a linear prograrn- 

ming problem is performed after MINOS has found an optimal solution, and is 

initiated by adding particular specifications to the original list of MINOS 

specifications. 

As the output of the  unmodified version of MINOS includes sensitivity 

coefficients, the objectives of POSTAN are confined to rang ing ,  i.e., determining 

the ranges in which certain parameters (or groups of parameters) may be 

changed without affecting the optimal solution and/or the optimal basis. 

The formulation of the linear problem analyzed by POSTAN is the same as 

for MINOS: Minimize (or maximize) a linear cost function 

subject to rn row constraints: 

and n constraints on separate variables: 
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Here z is an n-dimensional column vector of decision variables, a. is an n- 

dimensional row vector of cost coefficients (also called the objective row), the 

ai, i = 1 m are n-dimensional row vectors, the lower bounds 4,  
i = 1 ,..., m t n ,  are real numbers or -m, and the upper bounds gi. i = 1 ,..., m t n ,  

are real numbers or t m .  Of course, if thb bounds take the values t m  or -m the 

corresponding relation (2) or (3) must be replaced by a strict inequality. If 

di = gi, then the variable zi is said to be fized. If di = -= and gi = +m the vari- 

able zi is said to be f ree.  Analogous terms are used to describe the rows a,z. 

I t  should be recalled that  in MINOS the two-sided inequality constraints (2) 

are not stated explicitly, but rather specified using ranges. More precisely, a 

one-sided inequality is introduced in the form qz < gi (type L) or  ajz B di 

(type G), together with a real number r, called the range. In the first case, the 

difference between the right-hand side gi and this number yields the  lower 

bound (4 = gi - ri); in the second case the sum of the right-hand side 4 and 

the real number ri gives the  upper bound (g, = di t ri). 

The linear programming problem is transformed by MINOS into the follow- 

ing internal form: Minimize (or maximize) the variable 

subject to  equality constraints: 

and inequality constraints: 

Here 3 is an (m +I) x (n +m +2)-matrix: 



where I denotes the  (m + l ) x  (m +I)  identity matrix and 

= a, Vi < obj , ZObj = a o ,  = Vi > obj , 

where 

0 if di = --. and gi = +m 
bi = d, if 4 is flnite and gi = +m . 

gi if gi is finite I 
The flrst n components of the extended vector of decision variables z" E R T L + ~ + ~  

form a subvector identical to z; these components are described as structural. 

Element Zn+l is  called the right-hand-side component; it is fixed a t  -1. The 

remaining components of z" are called slack or logical components. The objec- 

tive variable is free. The vector of lower bounds and the vector of 

upper bounds C are defined as follows: 

Now let i = n + 1 + j, j = 1 ,..., m. Then 

N 4 = h, , ci = ki for j < obj and 5 = h,-, , ui = ki - ,  for j > obj , (10) 

where 

h, = ki = 0 if the  j- th row constraint is fixed (i.e., of type E) (11) 

hi = 0, ki = +m if dj = -OD and g j  is finite (one-sided constraint of type L) 

4 = -m, ki = 0 if $ is finite and gj  = +m (one-sided constraint of type G) 

h, = 0, ki = gj  - d, if d j  and gj  are finite 

h, = -m, ki = + m  if the j-th row constraint is  free . 

I t  should be noted that for practical reasons all quantities greater than or equal 

to lo1= are taken as equal to infinity in POSTAN, and all quantities whose abso- 

lute value is less than 10-Q are regarded as equal to zero. 



In its present form the  package contains six subroutines, which can be 

divided into two groups. CRAN, RHSRAN and BRAN perform ordinary ranging (by 

elements) while DIRRAN, DRHSRN and DBRAN perform directional ranging. In 

this section we describe the  input required by each subroutine and the output. 

that i t  produces, and give an explanation of the results. The mathematical 

theory is presented in the Appendix. 

2.1. CRAN 

CRAN performs ordinary ranging on the costs. For each cost component 

ah, i = 1, ..., n ,  the  subroutine determines the largest range in which at may 

vary without affecting the optimal solution. While the range for ad is being 

determined, all other components at;, j # i s  remain fixed a t  their original 

values. CRAN also gives some information on the change of s tate of variables a t  

the boundaries. 

This subroutine does not require any input data. 

The output is entitled COST RANGING. The following information is then 

given for each cost component, i = 1, ..., n:  

NUMBER 

COLUMN 

OBJ GRADIENT 

LOWER LIMIT 

UPPER LIMIT 

CHANGE AT LOWER 
LIMIT (OR OPT 
SOL VANISHES) 

CHANGE AT UPPER 
LIMIT (OR OPT 
SOL VANISHES) 

Number of structural variable 

Name of structural variable 

Cost component 

Lower boundary of the  range in which the cost component 
may vary without affecting the optimal solution 

Upper boundary of this range 

Name of the nonbasic variable which changes i ts  state 
a t  the  lower boundary; this is printed only if the 
lower boundary is finite. (Beware: CRAN does not know 
if there is an optimal solution beyond the  boundary 
so that  the name of a nonbasic variable may be printed 
even if the  optimal solution vanishes) 

Name of the nonbasic variable which changes its state 
a t  the upper boundary (other explanations as  above) 

NUMBER + m + 1 



2.2. RHSRAN 

RHSRk? performs ordinary ranging on the right-hand sides (rhs). For each 
w 

component b i ,  i = 1, ..., m + l ,  of the vector of right-hand sides (except for the 

objective row, i # obj), this subroutine determines the maximum range in 

which 4 may vary without affecting the optimal basis. While the range for c, is 

being determined, all other components 6,, j # i, are fixed a t  their original 

values. It should be noted that the rhs vector is not always the right-hand 

side of a constraint system in the  original formulation (1)-(3); the user should 

refer to (5)-(11). In addition, RHSRAN gives some information on the  change of 

state of variables a t  the boundaries. 

This subroutine does not require any input data. 

The output is entitled RHS RANGING. The following information is then 

given for each rhs component, i = 1, ..., m + l ,  except for the objective row, 

i # obj: 

NUMBER n +i +I 

ROW Name of row 

RHS Right-hand-side component & 
LOWER LIMIT Lower boundary of the range in which the  rhs component 

may vary without affecting the optimal basis 

UPPER LIMIT Upper boundary of this range 

CHANGE AT LOWER Name of the basic variable which becomes nonbasic 
LlMlT (OR OPT at  the lower boundary. LL is printed if this 
SOL VANISHES) variable reaches its lower bound and UL if i t  

reaches its upper bound; the name is printed only 
if the boundary is finite. (Beware: RHSRAN does not 
know if there is an optimal solution beyond the boundary 
and so a variable name may be printed even if the 
optimal solution vanishes) 

CHANGE AT UPPER Name of the basic variable which becomes nonbasic 
m I T  (OR OPT at the upper boundary (other explanations as above) 
SOL VANISHES) 

M+ J Number of row 

2.3. BRAN 

BRAN performs ordinary ranging on the bounds. For each lower bound & 
and each upper bound q, i = 1, ..., n+m+2, the subroutine determines two 

ranges: range which is the maximum range in which the bound may vary 

without affecting the optimal solution, and range B, which is the maximum 



range in which the bound may vary without affecting the optimal basis. While 

these ranges are being determined for < (or $), all other  bounds remain Axed 

a t  their original values. BRAN also gives some information on the  change of 

s ta te  of variables at t he  boundaries. This analysis is not performed for fixed 
H 

variables, i.e., if ci = li. 

This subroutine does not  require any input data. 

The output i s  entitled BOUND RANGING. I t  is divided into two parts,  A and B, 

which will now be discussed separately. 

Part A 

Par t  A is entit led h NO SOLUTION CHANGE and is divided into two subsections, 

SECTION 1 - ROWS and SECTION 2 - COLUMNS, which correspond t o  the  sections 

of t h e  same name in the  final output of MINOS. 

SECTION 1 - ROWS contains the  following information for each slack vari- 

able Zit i = n + 2 ,  ..., n t r n t 2  (or for each row constraint), except for t he  slack 
H variable z,+l+obj which corresponds t o  t h e  objective row. In the  first two 

columns we have: 

NUMBER Number of slack variable i 

ROW Name of row 

If ci = 6 for the slack variable under consideration, the  remaining columns 

contain only the  message FIXED VARIABLE. 

In the  case when t h e  s lack variable Si is nonbasic a t  i ts lower bound the  

message VARIABLE AT LOWER BOUND appears in  the  next two columns, which 

otherwise contain: 

LL FOR L BOUND Lower boundary of range A for 5 
UL FOR L BOUND Upper boundary of range A for 5 

The next two columns give similar information about the  upper bound. In other  

words, if t he  slack variable gi is nonbasic a t  i ts  upper bound. t he  message VAN- 

ABLE AT UPPER BOUND is printed; if not t h e  columns contain: 

LL FOR U BOUND Lower boundary of range A for q 
UL FOR U BOUND Upper boundary of range A for ci 



The last column contains: 

I Row number 

SECTION 2 - COLUMNS contains information analogous to that described 

above for each structural variable Zi, i = 1, ..., n. All of the information may be 

interpreted in the same way as in SECTlON 1 - ROWS, with the  following excep- 

tions: 

NUMBER Number of structural variable 

COLUMN Name of structural variable 

M+ J r n + l + i  

Part B 

Part B is entitled B. NO BASIS CHANGE. I t  is also divided into two subsections, 

SECTION 1 - ROWS and SECTION 2 - COLUMNS. 

SECTION 1 - ROWS contains the following information for each slack vari- 

able sin i = n +2,  ..., n+m +2, except for the slack variable z",+l+,bj which 

corresponds to t he  objective row. The first two columns contain: 

NUMBER Number of slack variable 

ROW Name of row 

lf = & for the slack variable under consideration, the remaining columns 

contain only the  message FMED VARIABLE. 

I n  the case when the  slack variable 2, is nonbasic a t  its lower bound the 

message VARIABLE AT LOWER BOUND appears in  the next two columns, which 

otherwise contain: 

LL FOR L BOUND Lower boundary of range B for 

UL FOR L BOUND Upper boundary of range B for & 

The next two columns give similar information about the upper bound. In  other 

words, if the  slack variable E, is nonbasic a t  its upper bound, the message VARI- 

ABLE: AT UPPER BOUND is printed; if not the columns contain: 

LL FOR U BOUND Lower boundary of range El for Ci 

UL M)R U BOUND Upper boundary of range B for % 



The columns which follow all appear under the heading CHANCES AT BDRIES 

(OR OPT SOL VANISHES). These are used only for nonbasic slack variables, 

remaining blank for basic variables. 

If  the slack variable Zi is a t  its lower bound then the columns contain the 

names of the basic variables which change their state a t  the boundaries of 

range B for &, given that the solution does not vanish. The message LL indi- 

cates that  the variable has reached its lower bound, while UL shows that  the 

upper bound has been reached. The first column, headed LOWER, gives the 

name of the variable which changes its state a t  the lower boundary of range B 

for 4; the second column, headed UPPER, gives the name of the variable which 

changes its state a t  the upper boundary. The name of Zi may also appear under 

the heading UPPER This means that  4 is the upper boundary of range B for 5 
and the  set of feasible solutions is then empty beyond this boundary. 

If the slack variable Zi is a t  its upper bound, these columns contain the 

names of the basic variables which change their states a t  the  boundaries of 

range B for Ci,  given that the solution does not vanish. The messages LL and UL 

have the same meaning as above. The first column, headed LOWER, gives the  

name of the variable which changes its state a t  the lower boundary of range B 

for <; the second column, headed UPPER, gives the name of the  variable which 

changes its state a t  the upper boundary. If the name of Zi appears under the 

heading LOWER, then < is the lower boundary of range B for Ci and the set of 

feasible solutions is then empty beyond this boundary. 

The last column contains: 

I Row number 

SECTION 2 - COLUMNS contains information analogous to that  described 

above for each structural variable !Zi, i = 1, ..., n. All of the information may be 

interpreted in the same way as in SECTION 1 - ROWS, with the following excep- 

tions: 

NUMBER 

COLUMN 

M+ J 

Number of structural variable 

Name of structural variable 

m t l t i  

Beware: in most cases BRAN does not know if there is an optimal solution 

beyond the boundaries of range B and so a variable name may be printed under 



CHANGES AT BDRIES (OR OPT SOL VANISHES) even if the optimal solution van- 

ishes. The question of whether the optimal solution exists may be answered (in 

the negative) only if the name of the nonbasic variable Zi appears in the 

appropriate column of the output. 

DIRRAN performs directional ranging on the costs. For a given increment 

AaocR,, of the cost vector ao, this subroutine determines the largest real 

t , ,  > 0 such that  for every cost vector of the form a .  + tAao, t ~ [ 0 , t , , ] ,  the 

optimal solution is the same as a t  the point a .  (i.e., a t  t = 0). The boundary 

cost components a; +,t,,Aa;, i = 1, ..., n, and some information on the change 

of state of variables at the boundary are also given. Beware: if a structural vari- 

able, say Si, is fixed, then ha$ is automatically set  to zero, regardless of the 

value given in the data. 

Data: see Section 3.2. 

The output is entitled DIRECTIONAL COST RANGING. I t  takes one of two 

forms, depending on the value of t,,. If t , ,  < 1015, we have the finite range 

case, while if t,,,% 1015 we have the infinite range case. Let us consider the 

finite range case first. 

In this case the sub-heading FINITE RANGE is printed below the main title, 

with the corresponding value of t,,, in brackets. Next, the following informa- 

tion is given for each structural variable S=, i = l, .... n: 

NUMBER Number of structural variable 

COLUMN Name of structural variable 

DIRECTION Increment component Aa; 

OBJ GRADIENT Cost component a6 

BOUNDARY VALUE Boundary value of cost component (ad + t , , ,Aa~) 

MtJ m + l + i  

At the boundary t = t,, either the optimal solution vanishes or one of the non- 

basic variables changes its state. The name and original state of this variable 

are given in the last row of the  output in the form: AT BOUNDARY VARIABLE 

"name" CEASES TO BE AT "bound" OR OPTIMAL SOLUTION VANISHES. The letters 

LL are substituted for "bound" if the variable is no longer a t  its Lower bound, 

while UL appears if the variabIe is no longer a t  its upper bound. 



In the infinite range case (t,,,k 10'~) the  message INFINITE RANGE 

(TMAX.GE.l.El5) is displayed. Beneath this the same information is given for 

each structural variable as in the finite range case, except for the BOUNDARY 

VALUE, which is no longer relevant. 

2.5. DRHSRN 

DRHSRN performs directional ranging on the right-hand sides. For a given 

vector of increments A ~ E R ~ ' ~  of the rhs vector g, DRHSRN determines the 
N N 

largest real t,,, r 0 such that for every rhs of the form b + t Ab, t E[o,~, , , ] .  

the optimal basis is the same as at  the point b (i.e., a t  t = 0). AbObj is automati- 

cally set to zero. 

Data: see Section 3.2. 

The output is entitled DIRECTIONAL RHS RANGING. I t  takes one of two 

forms, depending on the value of t,,,. If t,, < 1015, we have the finite range 

case, while if t,, r 1015 we have the infinite range case. Let us consider the 

finite range case first. 

In this case the sub-heading F ' INIE  RANGE is printed below the main title, 

with the corresponding value of t,, in brackets. Next, the following informa- 

tion is given for each row (or each slack variable Zi, i = n +Z, . . . ,n  +m+2), except 

for the objective row (or slack variable gn+l+obj): 

NUMBER Number of slack variable 

ROW Name of row 

DIRECTION Component ~ g ,  of the increment vector 

RHS Right-hand-side component 6, 
BOUNDARY VALUE Boundary value of rhs component (gi + t&gi) 

I Row number 

At the boundary t = t,, either the optimal solution vanishes or one of the  

basic variables changes its state. The name and type of change are given in the  

last row of the output in the form: AT THE BOUNDARY VARIABLE "name" PASSES 

FROM THE BASIS TO "bound OR OPTIMAL SOLUTION VANISHES. The letters LL are 

substituted for "bound" i f  the variable reaches its lower bound and UL if i t  

reaches its upper bound. 

In the  infinite range case (t,,,> 1015) the message INFINITE RANGE 

(TMAX.GE.l.El5) is displayed. Beneath this the same information is  given for 



each non-objective row as in the finite range case, except for the BOUNDARY 

VALUE, which is no longer relevant. 

2.6. DBRAN 

DBRAN performs directional ranging on the bounds. For a given vector of 

increments col ( A ~ , A G )  E R ~ ( ~ + ~ + ~ )  of the vector of bounds col ( r ,G) ,  this sub- 

routine determines two real numbers: 

t,,, r 0, the largest real  number such that for every bound vector of the 

form col ( r , ~ )  t t col (A~ ,AG) ,  t E [O,t,,,], the optimal solution is the 

same as for the  bound vector col (r ,z) ,  i.e., a t  t = 0. 

tmmb 1 0 ,  the largest real number such that  for every bound vector of the 

form col (I",c) t t col (A~ ,AZ) ,  t E[o,~,,~], the optimal basis is the same as 

for the bound vector col ( r , ~ ) ,  i.e., at  t = 0. 

The bound increments A & , A ~ ;  which correspond to fixed variables are automati- 

cally set  to zero regardless of the  values given in the data. 

Data: see Section 3.2. 

The output is entitled DIRECTIONAL BOUND RANGING. Information on t,,, 

is given under the heading k NO CHANGE IN THE OPTIMAL SOLUTION. If 

t,,, < 1015 the message F'INITE RANGE is displayed, with the corresponding 

value of t ,,, in brackets. If t ,,, r 1015, INFINITE RANGE (TMAXILGE.l.El5) is 

printed. Similar information on f m b  is given under the heading B. NO 

CHANGE IN THE OPTIMAL BASIS. The rest of the output is divided into two sec- 

tions: SECTION 1 - ROWS and SECTION 2 - COLUMNS. 

SECTION 1 - ROWS contains the following information for each slack vari- 

able gin i = n+2, ..., n + m + Z  (or for each row), except for the slack variable 
N z,+,+,~~ which corresponds to the objective row: 

NUMBER Number of slack variable 

ROW Name of row 

LL DIRECTION Component of the lower bound increment vector I$ 

N 

LL BOUNDARY A 
N 

Boundary value of the lower bound 1, + t ,,,Ali; this 
is printed only if t,,, < l0l5 

LL BOUNDARY B Boundary value of the lower bound 4 + trnmbA&; this 
is printed only if tmab < l0l5 

UL DIRECTION Component A% of the upper bound increment vector AQ 



UL BOUNDARY A H Boundary value of the upper bound < + t,,,,Aui; this 
is printed only if t,,, < l0l5 

UL BOUNDARY B 
H 

Boundary value of the upper bound $ + tmaxbA%; this  
is printed only if t m,b < l0l5 

I Row number 

SECTION 2 - COLUMNS contains information analogous to tha t  described 

above for each structural variable Zii, i = 1, ..., n ,  with the following differences: 

NUMBER Number of structural variable 

COLUMN Name of structural variable 

M+J a + l + i  

The last two rows of the output contain information on the change of s tate of 

variables a t  the boundaries. If t,,, < the message AT THE BOUNDARY A 

THE VARIABLE "name" HITS "bound" is displayed. The letters LL are  substituted 

for "bound  if the  variable hi ts  its lower bound and letters UL if it  hits the  upper 

bound. If tmnb < 1015, the  message AT THE BOUNDARY B THE BASIC VARIABLE 

"name" BECOMES NONBASIC AT "bound OR OPTIMAL SOLUTION VANISHES is 

displayed in the  next row. Once again, LL is used to denote t h e  lower bound and 

UL t h e  upper bound. 

3. IMPLEMENTATION OF WSTAN FDR MINOS 

In order to insert the  POSTAN procedures into MINOS, and to  allow them t o  

be used in the  same way as other MINOS facilities, we have made the changes 

outlined below. 

3.1. New key-words in the SPECS 6le 

BY-ELEMS COST 
RANGING 
(default: off) 

BY-ELEMS RHS 
RANGING 
(default: off) 

BY-ELEMS BOUND 
RANGING 
(default: off) 

This activates the  postoptimal analysis of cost ranges. 
Subroutine CRAN is called (see Section 2.1). Insensitivity 
ranges for each cost coefficient are calculated under 
the  assumption that  the  values of the others are kept 
constant. There is no request for data 

A similar procedure is carried out for each component 
of the rhs vector. Subroutine RHSRAN is called (see 
Section 2.2). There is no request for data 

This command initiates the  computation of insensitivity 
ranges for the upper and lower bounds of each structural 
and logical variable. Subroutine BRAN is called (see 
Section 2.3). insensitivity ranges are produced for two 



DIRECTIONAL COST 
RANGING 
(default: off) 

DIRECTIONAL RHS 
RANGING 
(default: off) 

DIRECTIONAL BOUND 
RANGING 
(default: off) 

DATA RANGING 
FILE n 
(default: n = 5) 

cases: N O  SOLUTION CHANGE and NO BASIS CHANGE. There 
is no request for data 

This is the first of three commands which enable the user 
to perform postoptimal directional analysis. The cost 
vector is shifted along the direction indicated by the  data 
while the  optimal basis is retained. Subroutine DIRRAN is 
called (see Section 2.4). The length of the insensitivity 
interval thus obtained is printed out 

This command activates postoptimal analysis of the 
rhs vector. Subroutine DRHSRN is called (see Section 2.5). 
The direction of change has to be specified 

Postoptimal analysis of the upper and lower bounds 
of all variables is activated. Subroutine DBRAN is called 
(see Section 2.6). The user has to provide data to  
define the direction of alteration of both upper 
and lower bounds 

This key-word specifies the logical number of the data file 
for directional ranging procedures. File n is read 
after the processing of other MINOS input files has been 
completed. It is obligatory to declare a data ranging file if 
at  least one of the ranging procedures is used. If none of 
these procedures is called, this key-word will be ignored 
if it is present 

3.2. Data ranging me - input format 

The data for the  postoptimization procedures are prepared in an MPS-like 

format and placed in the  file specified by the MINOS key-word DATA RANGING 

FILE. The data sets for different directional ranging procedures may be given in 

any order. The beginning of the  data set for each procedure is identified by the  

line NAME and its end by t he  line ENDATA. If it occurs, the line 'SET' must be 

given immediately after the  line NAME in each data set; this line defines the 

default values of all the variables which are not explicitly defined. Every data 

se t  is identified by the  name given in the line NAME. 

The records in the DATA RANGING FILE should have the following (basic) 

form, which is analogous to  MPS format: 

Columns: 1-4, 5-12, 15-22, 25-36, 40-47, 50-6 1 

Fields: fl, f2, f3, f4, f5, f6 

Below we give a detailed description of the data se t  for each directional ranging 

procedure. 



Remarks: 

Directional Bound Ranging 

If field f2 in a given record is empty, this means that it  is the same as in 

the previous record. Field f 2  must not be empty in the first data record. 

f6 

Value 
Value 

The records with identifiers UPPER and LOWER may appear in any order. 

LOWER is used for increments of the lower bounds and UPPER for incre- 

f 4 

Value 
Value 
Value 

1. 
2. 
3. 

ments of the upper bounds. 

f5 

Row/col. name 
Row/col. name 

f 2 fl 

NAME 
'SET' 

Dire c tional Cost Ranging 

f3 

DBOU 

f3 f4 f5 

NAME DCOS 
1 2. 'SET' Comments Value 

Col. name Value Col. name 
4. ENDATA 

Value 7 

Comments 

- 

Brec  tional RHS Ranging 

LOWER 
UPPER 

The following general rules apply to all data sets: 

One of the fields f3,f4 may be empty. 

If 'SET' appears, i t  mus t  follow immediately after NAME. If 'SET' does not 

occur, the default for all variables whose values are not  specified is zero. 

This has the same effect as 

'SET' 0. 

Row/col. name 
Row/col. name 

Comments may be entered in arbitrary positions in the data set. They are 

identified by an asterisk in the first column. 



The DATA RANGING FILE is read once to And the necessary data se t  (one 

cycle is performed). 

3.3. Alterations to MINOS 

Several of the original MINOS procedures have been altered in order to 

accommodate the  POSTAN package. 

Workspace for the  ranging procedures is located within array Z of MINOS. 

4. AN EXAMPLE 

We shall now illustrate the performance of POSTAN using a simple example. 

The linear programming problem is as  follows: Maximize 

subject to 

An additional constraint is introduced as t he  fourth row: 

in order to demonstrate the effect of a free constraint on the  POSTAN output. 

Below we give the  MINOS and POSTAN specifications used to solve this prob- 

lem. Notice tha t  all the ranging routines of POSTAN are called. The MPS file 

and the data ranging file for POSTAN are then presented. It should be noted 

that in the DBRAN data the increment components for those bounds of the  slack 

variables to which MINOS assigns a default value of zero are also set  equal to 

zero. This is normal in most applications. 

We then give the  standard MINOS printout, followed by the output of the  

subroutines D I M ,  DBRAN, DRHSRN, CRAN, BRAN, and RHSRAN. 



begin (T E S T) 
max 
rows 10 

b 

by-elems oost ranging 
by-e 1 ems rhs rang i ng 
by-elems bound ranging 

b 

direotional oost ranging 
directional rhs ranging 
directional bound ranging 

b 

data ranging file 7 
b 

mP s file 3 

log frequency 1 
end 

name 
rows 
n ob 

n r 4  
e r 5  

columns 
x 1 
x 1 
x  1 
x 1 
x 2 
x  2 
x 2  
x 2 
x 3 
x 3  
x 3 
x 3 
x 3  
x 3  
x 4  
x 4  
x 4 
x 4  
x 5 
x 5  

rhs 
r h  
rh 
r h  
rh 

ranges 
ra 

bounds 
mi bo 
up bo 
lo bo 
up bo 
fr bo 
fx bo 

test 



name dcos 
'set' corn 1. 

empty set of data for directional cost ranging 

this is a comment 

endata 
name dbon 
'set' 

1 ower x4 
lower r 1 
1 ower r 2 

r3 
lower r4 
1 ower r 5 
upper x 4 

r2  
rS 

endata 
ti ame drhs 
'set' W W W # W # # # #  

r4 
enda ta 
1 

m i n o s  --- version 4.0 mar 1981 - - - - -  - - - - -  

............................................. 
S T A R T at 14:08:45 
CED 1984 Wed Jun 20 ............................................. 

specs file ---------- 
begin 

end 

(T E S T) 
max 
rows 10 

by-elems cost ranging 
by-elems rhs ranglng 
by-elems bound ranging 

directional cost ranging 
directional rhs ranging 
directional bound ranging 

data ranging file 7 
mp s file 3 

log frequency 1 
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AFTENDM: MATH-TICAL THEORY 

This Appendix presents the elements of ranging theory necessary to solve 

the linear programming problem (4)-(8). For the  sake of simplicity we shall 

assume that  obj = m + 1. i.e., the objective row is the  last row in matrix A .  As 

the value of variable En+l is fixed a t  -1 we may remove it from the problem for- 

mulation, defining a new column vector of decision variables y E R ~ + ~ ,  where 
N N - 1  . and yi = zi+l yi = zi t/i - t/i = n + l ,  ..., n+m.  We also define an 

rn x ( n  + m)-matrix 

N 

column vectors b E Rm (see (a)), 1 ,u E R " + ~ ,  where li = 1, , ui = Vi = 1, .... n 

and li = ui = ki+l Vi = n+1, ..., n +m; and a row vector c E%+,, where 

c i  = at Vi = 1  ,..., n and c i  = 0 Vi = n + l .  ..., n+m.  

The linear programming problem now takes the  form: Minimize (or maxim- 

ize) the linear cost function 

subject to 

We denote the optimal solution of this problem by z and decompose i t  into 

the following subvectors: 

zg - basic vector 

zl - vector of nonfixed, nonbasic variables which are a t  their lower 

bounds 

z, - vector of nonfixed, nonbasic variables which are a t  their upper 

bounds 

z, -vector of fixed variables (i.e., variables for which q = l i ) .  



Let I, be the  set  of indices of all nonbasic variables a t  their upper bounds and 

let Il be the se t  of indices of all nonbasic variables a t  their lower bounds. Fixed 

variables are not included in I, or I l .  We shall let IB denote the set of indices of 

all basic variables. This decomposition is also applied to the other vectors, 

yielding, for example, c g ,  c l ,  c,;  l g ,  1 1 ,  1,; U B ,  ul ,  u,. I t  is clear that zl = l l .  
- - 

2, - uU, 2, - u s .  Thus the constraint matrix A may be decomposed into the 

basic matrix B and matrices L, V. S such that 

Hence we have 

for the basic vector and 

for the optimal cost. 

Here and elsewhere we shall denote the i - th  row of a matrix H by H, and 

the j-th column by ~ j .  Define 

Al. Ranging of costs 

Let Ac be a given nonzero row vector in %+,, where b c i  = 0 for 

i = n+l,  ..., n+m and for fixed variables. We consider the family of linear pro- 

gramming problems (A.l)-(A.3) with the cost vector c  replaced by E(t) ,  where 

and t is a real number, t ER'. We wish to  determine the largest range 

[ t ~ , , t , , , ]  in which the coefficient t  may vary without affecting the optimal 

solution. i.e., the range of t  values for which the optimal solution is equal t o  z .  

I t  is  clear from (A5)  that the optimal solution remains unchanged and 

equal t o  z for all values of t  such that 



and 

where 

I t 1  in the case of maximization 
= -1 in the  case of minimization 

Hence 

We shall use the following notation: 

(A. 10) 

In the case of maximization we then have 

t , ,  = min t - T j / A G j  , (A. 12) 

where the  minimum is taken over all values of j from Il such that  A5 < 0 and 

all values of j from I,  such that A? > 0, and 

tmi, = max t - T j / A T j j  , (A. 13) 

where the maximum is taken over all values of j from Il such that A5 > 0 and 

all values of j from I, such that A5 < 0. 

In the case of minimization t , ,  is determined from (A12) but with the 

minimum taken over all values of j from Il such that ATj > 0 and all values of j 

from I, such that A5 < O ;  t- is determined from (1113) with the maximum 

taken over all values of j from 4 such that A5 < 0 and all values of j from I, 

such that  A5 > 0. 

In all cases, if the set of indices over which the  maximum (or minimum) is 

taken is empty. then t d ,  = -m (or t,,, = tm). 

From these general results i t  is not difficult to  derive formulae for the cost 

ranging routines of POSTAN. Imposing the  condition t 1 0  and dropping the  

relations for td,, we obtain results that  may be used for the directional cost 



ranging routine (DIRRAN). Setting Ac = e i .  where ei is the  i - th  unit vector 

(which has all components equal to zero except for the i - th  component, which 

is equal to one), we obtain formulae for the ordinary cost ranging routine 

(CRAN). In this case we formulate the results directly in terms of the cost com- 

ponent ci = c i  + t .  For nonbasic components we have 

E C ~  s E C ~ D A '  if i E I~ (A. 14)  

E C ~  2 E C ~ D A ~  if i E I, . (A. 15)  

If i E IB, we have. by virtue of (A 11): 

A? = D . A ~  (A. 1 6 )  

and 

(A. 17)  

where t , ,  and tmin are determined from (A.12) and (A.13).  

At each boundary of the interval [tmi,,t,,] a nonbasic variable changes 

its state. The number of this variable and the kind of change are determined by 

the component on the left-hand side of ( A 8 )  or (A.9) tha t  changes its sign a t  the  

boundary. If 

for some i € 4 .  then a t  the upper boundary t = t , ,  the i- th variable passes 

from 4 to  either IB or I,, or the  optimal solution vanishes. If ( k l 8 )  holds but 

for all t < t ~ , ,  then an equivalent statement may be made for the  lower boun- 

dary t ~ , .  

If 

E ( C ~ ( ~ ) - G ( ~ ) D A ~ )  < O  vt > t m x  (A. 1 s )  

for some i €Iu, then a t  the upper boundary t = t,,, the  i - th  variable passes 

from I, to either Ig or I t ,  or the optimal solution vanishes. If ( A 1 9 )  holds but 

for all t < t f i , ,  then an equivalent statement may be made for the  lower boun- 

dary tmh. 



A2. Ranging of right-hand sides 

Let Ab be a given nonzero column vector in Rm. We consider the family of 

linear programming problems (A1)-(A.3)  with the rhs vector b replaced by 

b ( t  ), where 

b ( t )  = b + tAb  (A. 20)  

and t  E R I .  We wish to determine the largest range [ tmin,tmax] in which the  

coefficient t  may vary without affecting the  optimal basis, i.e., the range of t  

values for which the optimal basis is equal to B .  

Letting G ( t )  denote the vector of basic variables in the optimalsolution 

corresponding to the rhs vector b ( t ) ,  we have 

z g ( t  ) = ZB + ~ B - I A ~  , (A .  2 I) 

I t  is clear that  the nonbasic variables do not change for values of 

t  ~ [ t ~ ~ ~ , t ~ ~ ~ ] .  T h e  range [tmi,,t , ,]  is determined by the feasibility con- 

straint on the basic variables: 

lB s G ( t )  5uB (A. 2 2 )  

Define 

t 3 =  j = l ,  min ..., m [lgi;? : D ~ A ~  c o  

(A. 24)  

We then have 

t , ,  = rnin [ t l , t 3 j  , tmin = max t t 2 B t 4 j  (A. 25 )  



If DiAb s 0 for all i, i = 1 ,.... m ,  then we set t l  = +m and t z  = -m. Similarly, if 

DiAb r 0 for all i, i = 1 ,..., m ,  then we set t 3  = -m and t 4  = +m. 

To obtain results that may be used for the directional ranging routine 

( D W S R N )  i t  suffices to assume that  t r 0 and to drop the relations for t f i n .  To 

obtain formulae for the ordinary ranging routine (RHSRAN) we take Ab = e i .  

where ei is the  i - th  unit vector. We then have 

in (A.24) .  

At each boundary of the interval [ t f i , , t  ,,,I a basic variable changes its 

s tate or the optimal solution vanishes. The number j of the basic variable 

which becomes nonbasic at  the upper boundary is determined by 

- 'IlBj -=Bj 
'max - Dj Ab if t , ,  = t ,  

1 ,  - - ZBj - tmax - - if t,,, = t 3  
D,Ab 

(A.  2 7 )  

In the first case the j - th  basic variable reaches its upper bound, while in the 

second i t  passes to its lower bound. The number j of the basic variable which 

changes its s tate a t  the lower boundary t = tmin is determined by 

(A. 29) 

In the first case the basic variable passes to its lower bound and in the second i t  

reaches its upper bound. 

A3. Ranging of bounds 

Let col (A1,Au) be a given column vector in ~ ~ ( ~ ' ~ 1 ,  and be such that  

Al, = AIL, = 0 if y, is a fixed variable. We consider the family of linear program- 

ming problems (A.1)-(A.3) with the vectors of lower and upper bounds l and u 

replaced by i ( t )  and . I l ( t ) ,  respectively, where 



and t E R ] .  We wish t o  determine two ranges. [ t ~ n a , t m 8 x a ]  a n d  [tminb.tmaxb]. 

The first of these intervals is t h e  largest range in which t h e  coefficient t may 

vary without affecting the optimal solution (i.e., the range of t values for  which 

the optimal solution remains equal to  2);  the second i s  t he  largest range in 

which t may vary without affecting t h e  optimal basis (i.e., t he  range of t values 

for which the  optimal basis remains equal t o  3). 

The boundaries tfin,.t,,, a r e  easily determined from t h e  following condi- 

tions: for every t E [t ~ n 8 , t  

tAli = 0 if i € 4  (A. 32) 

The first two conditions imply tha t  tmin, = t,,, = 0 if dli # 0 for some i € 4  
and/or bui # 0 for some i E I,. 

Let Z( t )  = z + t Az denote t h e  optimal solution corresponding to  the  vector 

of bounds col (r(t ),ii(t )). Then 

Azi = ALL . Az, = buU (A.33) 

The values of t-b and tmUb may be calculated using the  feasibility conditions 

(A. 35) 



Define 

(A. 3 6) 

t 3  = rnin 
2 ~ j  -IBj 

: denominator > 0 
dlBj + Dj(LAL1 + Ubu,) 

263. - LSg; 
t 4  = max [ : denominator < 0 

j = ~ .  dlBj + Dj(LAL1 + UAU,) 

2 ~ j  - u ~ j  t ,  = min : denominator < 0 
AuBj + Dj(LAll + UAuU) 

263. - U B ~  
t g =  max : denominator > 0 AuBj + Dj(LAll + UAU,) 

Finally, 

tmmb = min t t l . t3. t5j  . tminb = max lt2,t4,t6j (A. 3 7) 

If the set of indices j over which a minimum or maximum is taken is 

empty, we substitute += .for t t3 ,  or tD ,  and -- for t2 ,  t4 ,  or t g  in (A.36). For 

instance, if ALj - A j  < 0 for all j BI IB, we take t = +-, and so on. 

Results that may be used for the directional ranging routine (DBRAN) may 

be obtained by assuming that  t r 0 and dropping the relations for t ~ , , ,  teb. 

To obtain the formulae for the ordinary ranging routine (BRAN) we take 

col (AL.Au) = e i ,  where ei is the i-th unit vector in R ~ ( ~ + ~ ) .  Expressions which 

allow us to determine the range [tminb,tmaxb] for all types of variables are given 

below. 

For i € 4  we define 

t ,  = min : D,A' > O  



t 5  = min I ' ~ j  - u ~ j  : D , A ~  < o  
j=l ,  ..., m D~ A' I 

Hence 

- 
1,  + t f inb  I li I 1,  + tmmb 

tminb = max It4,tej 

tmmb = min Itl,t3,t5j 

and 

iii Z li 

For i €1, we define 

t ,  = li -ui 

and t s ,  t4, t5 ,  t6 are defined by (A.38). Then 

- 
ui + ttminb s u, s % + tmmb 

tminb = max ttl,tq.t6j 

tmmb = rnin jt3,t5j 

and 

If i E IB then 

(A. 39) 

At each boundary of the interval [tminb,tmaxb] either a basic variable 

changes its s tate or the optimal solution vanishes. If either of the first two ine- 

qualities in (k34) becomes an equality a t  one of the boundaries, then the 



feasible se t  becomes empty a t  this boundary and the optimal solution vanishes. 

Now assume tha t  one of the  last two inequalities in (A.34) becomes an equality. 

In this  case ei ther  the  optimal solution vanishes or a basic variable becomes 

nonbasic. Let i E IB. If li + tminbAli = zi + tminbAzi and Ali # Azi, then a t  the 

lower boundary either the optimal solution vanishes or the  i - t h  variable 

becomes nonbasic at  i t s  lower bound. Other cases may be analyzed in a similar 

way. 
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