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PREFACE

The Adaptation and Optimization Project of the System and
Decision Sciences Program is concerned with the development of
tools for use in optimization problems, particularly those in-
volving uncertainties.

In this paper, the author, from the University of Wisconsin-
Madison, considers how optimization problems behave when the
functions defining them are changed (e.g. by continuous de-
formation). He presents a very simple and general approach to
the continuity analysis of the marginal function and the set of
minimizers of such a problem.

This is the second of two papers written during the author's
visit to IIASA during the summer of 1983.

ANDRZEJ WIERZBICKI

Chairman
System and Decision Sciences
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ABESTRACT

A fundamental question in nonlinear optimization is that
of how optimization problems behave when the functions defining
them are changed (e.g., by continuous deformation). Many authors
have contriubted to our knowledge in this area. This paper
presents a very simple and general approach to the continuity
analysis of the marginal function and the set of minimizers of
such a problem. Two abstract properties are identified as being
crucial to good behavior of a problem, and these are then shown
to ensure persistence and stability of local optimizers of
general nonlinear optimization problems.
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1. Introduction.

In the last 20 years many authors have contributed to the
literature on stability in optimization. In brief, this area deals
with the question of what happens to an optimization problem when
the elements of the problem are in some way deformed. For example,
if the original problem had optimal solutions, one might ask wether
the perturbed problem has solutions and, if so, whether they are
in some sense close to those of the original problem if the defor-
mations are in some sense small. Of course, in general the answers
to these questions are "no" and "no," so people have tried to find
conditions to impose on the optimization problem so that the
answers become "yes" and, frequently, so that the solutions are
somehow well behaved as functions of the perturbation parameters.

One of the first to consider these questions was Berge
[2], who proved theorems about the continuity of solutions and
optimal values (marginal functions) of general optimization

problems. Others who contributed early work in this area
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included Dantzig, Folkman and Shapiro [3], Evans and Gould [5],
Fiacco [6], and Robinson and Day [9] to name only a few. Also,
more recently a great many papers have presented more specific
results about smoothness or Lipschitz continuity of solutions in
the case of problems with additional restrictions placed on the
data. A comprehensive overview of much work in parametric
optimization is given in the book by Bank et al. [1].

Although the results of Berge were among the earliest
investigations in this area, they have not been directly used by
many of the later workers. This is primarily because Berge's
theorems require hypotheses that experience has shown to be very
difficult to verify in situations occurring in practice. On the
other hand, many investigations have shown that variants of two basic
properties, which might loosely be called "constraint qualification"
and “"compact level sets," are basic to the analysis of stability.
These properties nave appeared in many different forms, usually
fairly specific.

The aim of this paper is to show how a slight adaptation
of Berge's approach can be made to yield abstract forms of just
these two properties, and thus to provide a general framework for
the analysis of stability. This framework is developed in Section
2, where it is applied to the global optimization problem origi-
nally considered by Berge. It yields a theorem similar to Berge's
"Maximum Theorem" except for a certain critical difference in one

assumption.



In Section 3 we apply these global optimization results
to produce information about the stability of a local minimizer,
such as one frequently encounters in practice. We prove there
the main result of the paper, which states, roughly speaking, that
if the two basic properties previously mentioned hold at a local
minimizer then the set of local minimizers is persistent and stable.

In the rest of this section, we establish notations and
conventions that we shall need in what follows. For simplicity,
we represent an abstract parametric optimization problem by a
function f:Rm X Rn -+ [- o, + »], with the understanding that for
each fixed p € R™ we wish to minimize over x: i.e., to compute
the value at p of the function ():Rm + [- =, + »] defined by

¢(p) : = inf f(p,x), (1.1)
and this ¢, as a function of the perturbations p, is the marginal
function associated with f. Of course, the infimum in (1.1)
might not be attained, but in any case we can define

X(p) = = {xeR"| f(p,x) = $(p)}, (1.2)
with the understanding that the multifunction X might take empty
values for some (or all) p. If X(p) is not empty, of course, it
is precisely the set of all optimal solutions of the minimization
problem with parameter p.

With this notation established, we can treat in considerable
generality a wide variety of optimization problems; constraints

cause no difficulty since for given p, the effective domain of f(p,-),
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dom f(p,+): = { x|f(p,x) <+ &},

can be regarded as the "feasible set." Indeed, it is only for
xe dom f(p,-) that the infimum operation in (1.1) becomes at all
interesting, and thus the use of an extended real-valued function
f permits easy representation of constraints. In order to ensure
that dom f(p,-) is nonempty we frequently require f(p,-) to be
proper: i.e., to take - = nowhere and not to take + = everywhere.

The use of such a function f has been common in convex
analysis, where it was introduced by Rockafellar [10]. More
recently, Rockafellar and Wets [11] have begun to investigate a
variety of questions about the general properties of such

functions (which they call variational systems). Most of the

generality in [11] wiil not be required here, as we shall need
only basic ideas of compactness and continuity.

Given this framework for optimization, the questions we
want to ask can be stated very simply: given a fixed posRm,
what properties need to be imposed on f in order to ensure that ¢
and X have good continuity properties at po? It will turn out
that in this case "good" should mean that ¢ is continuous at Po
and X is upper semicontinuous (in the sense appropriate to

multifunctions) there. The next section develops these results.

2. Stability in global optimization: a revised Maximum Theorem.

In this section we prove a general theorem about persistence
and stability of global minimizers. This theorem is closely related

to the Maximum Theorm of Berge, but it differs from Berge's result



in that it weakens certain of the hypotheses in a way suitable for
use in the local minimization analysis of Section 3.

The hypotheses needed for our global optimization theorem
can be conveniently stated in terms of another multifunction closely

related to f. The level-set multifunction AéRm+Rn is defined, for

any fixed o €R, by
a,(p) : = { xeR"|f(p,x) S al.
The requirements that we shall place on Aa involve two key concepts

for multifunctions: 1local boundedness and semicontinuity. A

multifunction F:Rk+RJ is said to be locally bounded at a point

xoeRk if there exists a neighborhood N of Xo such that the set

F(N) : = UxeNF(x)
is bounded. This idea is closely related to that of upper semi-
continuity (usc) at X,» Which is said to hold if for any open
set G containing F(xo), there is some neighborhood N of Xo such
that G2F(N). In fact, if F(xo) is compact then F is locally
bounded at X, if it is upper semicontinuous there, while if also
F is closed (i.e., its graph’ { (x,y)|yeF(x)} is closed in Rk X Rj),
then the converse holds too. Finally, if yoeF(xo) then F is said

to be lower semicontinuous EE-(xo’yo) if for any neighborhood M of Yo

there is a neighborhood H of X, such that if xeN then F(x) meets
M. This property of lower semicontinuity at a point has a dual

form involving the inverse multifunction al defined by

F’](y) : = {x]y e F(x) }. We can restate the definition of
lower semicontinuity by saying that F is 1sc at (xo,yo) if

and only if for each neighborhood M of Yo F'1(M) is a neighborhood

1

of x,, and when this holds we say F" is open at (y .x).



Incidentally, another form of lower semicontinuity, widely used
in the literature, defines F to be 1sc at X, if it is 1sc at
(xo,y) for each y in F(xo). This is, for example, the form used by
Berge [2]. However, it has been found by experience that tnis
stronger form of lower semicontinuity is difficult or impossible
to verify in actual practice, whereas the form given here, which
seems to have been introduced by Dolecki [4], can be verified in
many common situations.

The theorem we shall establish here rests on three
principal assumptions, aside from the fundamental one of lower
semicontinuity of f. The first says that we are looking at a
point Py at which the function f(po,-) is bounded below in the
second variable: that is, the marginal function does not take
the value - » at Po. The second assumption says that if vy
is a real number greater than ¢(p0) than for all p close to Po
there will exist some x with f{(p,x) s Y . This hypothesis,

although stated in terms of the level set A_ , is actually

Y
equivalent to the upper semicontinuity of ¢ at Po- As we shall

see later, in practice one typically obtains this property by

means of a constraint qualification. Finally, the third assumption
that we make is that for some o greater than ¢(po) the level sets
Aa(p) are uniformly bounded on some neighborhood of Po- This
assumption is quite strong, but a little later we shall see how

it can be finessed in the case of local minima, which is the case

one encounters most frequently in actual practice.



THEOREM 2.1: Let f be a lower semicontinuous, extended

real valued function gg_Rm x R" such that, for some poeRm,

(1) $(p,) > - =, and
(ii) For each v > §(p,), p,e int dom A , and

(iii) For some a > Q(po), A, is locally bounded at p.

Then there is a neighborhood N gi_po such that for each

peN, f(p,.) is proper, ¢(p) is finite and X(p) is a nonempty

compact set. Further, § is continuous at p_ and X is upper

semicontinuous there.

PROOF: Assumptions (i) and (iii) together imply that
¢(po) is finite. Condition (ii) implies that, for the y given,
there is a neighborhood of P, On which ¢(p) does not exceed v.
But since this is to hold for each y > Q(po). it follows that

b(po) 2 1im sup ¢(p), which means that ¢ is upper semi-

P+ P,
continuous at po.
Using (iii) together with (ii) (for y = a), we can find a
compact set KeR" and a neighborhood U] of Po in R™ such that if
p e U then b4 A (P)e€K. Choose any real number y < “po) and
note that f(po,x) > y for all x and, in particular, for all x e K.
Since f is lower semicontinuous and K is compact, there is a
neighborhood N of Py with NCZU], such that f(p,x) > y whenever
peNand x e K. But for any pe N, if x'¢ K then f(p,x) >a > v,
so in fact f(p,*) remains everywhere strictly greater than y.
But then f(p,-) is proper and f(p) is finite. Further, if we
select any B8 < 4(po) and any 8' strictly between B and }(po), then

an argument like the one just made will show that for p near



Pys f(p,+) remains everywhere greater than g', and therefore that
+(p) must be greater than B. It follows that f is lower semi-
continuous at Po? hence continuous there (since we have already
shown it to be upper semicontinuous at po).
Ifpe U] then we know Aa(p) is nonempty; however, this
set is also closed by lower semicontinuity of f(p,-), and it is
contained in the compact set K and hence is itself compact. Hence
X(p) is nonempty; it is compact because it is a level set of f(p,-).
At this point we have only to show that X is upper semi-
continuous at Po To do so, let G be any open set containing X(po).
For p e N and x € R" define g(p,x) to be f(p,x) - f(p). This
definition makes sense because ¢ is finite on N. The function g is
lower semicontinuous on { p0 } x Rn since we have already shown that
é is continuous at Po Further, on the compact set K\B we have
9(P0,') strictly positive. Therefore, we can find a neighborhood
U

of Py with U2CIV, such that if p € U, and x € K\G then g(p,x)

2 2
> 0. But then x cannot be in X(p), and since we already know
X(p)C K we must have X(p)C€ G. Thus X is upper semicontinuous at
Po’ and this completes the proof.

The conclusions of Theorem 2.1 apply to global minimization.
Although they lead to strong conclusions about the behavior of the
set of global minimizers, they depend on strong assumptions about
the problem, some of which are unlikely to be easily verifiable in

practice. Further, in practice one is often more concerned with

local minimization, and with the persistence and good behavior of
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local minimizers. Therefore, in Section 3 we shall adapt the
global conclusions of Theorem 2.1 to the case of local minimization,
and in the process we shall see that the hypotheses become a good

deal more palatable.

3. Stability in local minimization: main result.

This section develops the main result of the paper: a set
of criteria for persistence and stability of local minimizers. These
criteria are based on the hypotheses of Theorem 2.1, suitably
extended to cover the case of local minimization. To formulate the
idea of local minimization in the generality that we need here, we
introduce the following definition of a strict local minimizing set:

DEFINITION 3.1: Let g be an extended real valued function

on Rn. A nonempty subset M of R" §s a strict local minimizing set

for g with respect to an open set GOM, if the set of minimizers

of gon c1 G is M.

Note that in this definition the function g must take the
same value at each point of M, and that value must be strictly less
than the value assumed by g at any point of the boundary of G. IfM

happens to be a singleton, it is usually called a strict local

minimizer of g. Of course, the set of global minimizers of g is
always a strict local minimizing set (take G = R").

We shall see how to adapt Theorem 2.1 to describe the
behavior of strict local minimizing sets, rather than that of global
minimizing sets. Roughly speaking, we shall do this by redefining

the function being minimized so that it is + « outside c1 G. However,
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in order to apply Theorem 2.1 in this case we need to alter

its hypotheses somewhat, in particular making them more local in
nature. As a first step we show how to do this with hypothesis (ii).
The following lemma uses a multifunction D, defined for the function
f appearing in the previous formulation by D(p) = { x|f(p,x)< + = }.
In the usual nonlinear programming model, the set D(p) is the set of
points feasible for the minimization problem with parameter p. Note
that in the hypothesis of the lemma, we make the assumption that f
is upper semicontinuous relative to graph D; this is done because,
in general, no function like f could be expected to be upper semi-
continuous relative to the entire space, since it is permitted to
take values of + » . However, in the usual nonlinear programming
situation, f is a relatively tractable function on graph D and is

+ » elsewhere, so that our assumption of upper semicontinuity
relative to graph D captures this idea of tractability.

LEMMA 3.2: Let f be an extended real valued function on

R™ x R", and for p € R" let D(p) = { x|f(p,x)<+ = }. Letp eR"

and suppose that for some o > t(po) there exists x_with f(p ,x )

<a o and such that

(i) D is lower semicontinuous QE-(po’xo)’ and

(ii) f is upper semicontinuous at (po,xo) relative to graph D.

Then Py € int dom Aa .
()

PROOF: Since f is usc at an,xo) relative to graph D, and

since f(po,xo) < o there exist neighborhoods U, of po in Rm and V

1
of Xs in Rn, such that if p € U], x € V, and (p,x) € graph D then
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f(p,x) < a Further, since D is 1sc at (po,xo) there exists a

0

neighborhood U, of p,, with U, C U;s such that if peU, then

2
D(p)NYV + ¢. For any peU2 there is then an xeD(p) N\ V, and for

this x we have f(p,x) < ay and therefore xeA, (p). But then
0

pe int dom Aa as claimed, and this completes the proof.
()

The next theorem formulates the main result about stability
for local minimization. In the theorem we use the notation wA for
the indicator function of a set A: wA(x) is zero if xeA and is +
if x¢A.

THEOREM 3.3: Let f be a lower semicontinuous, extended

real valued function on Rm X R".

Let posRm, assume f(po,.) is proper,

and let M be a bounded, strict local minimizing set for f(po,.) with

respect to the bounded open set G C R". Suppose that for some xosM,

f is upper semicontinuous at (po,xo) relative to graph D, and D is

lower semicontinuous at (po,xo). Define g(p,x):=f(p,x) + wc] G(x),

and for each peR" let n(p) = infxg(p,x) and Y(p) = {x|g(p,x) = n(p)}.

Then Y(po) = M, and there exists a neighborhood U of Po such

that if peU then

a. g(p,.) is proper, n(p) is finite, and Y(p) is nonempty

and compact.

b. Y(p) is a strict local minimizing set for f(p,.) with

respect to G.

Further, n is continuous at Po and Y is upper semicontinuous there.
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PROOF: Y(po) = M by the definition of strict local minimizing
set, which also ensures that n(py) = g(py.xy) = f(pg.x,). Since f(pgs-)
is proper, n(po) > -w (since the infimum is attained), while if n(PO)
were + @ then f would be constant (+ «) on c1 G, contradicting the
hypothesis that M is a strict local minimizing set. Thus n(po) is
actually finite. We know that g is 1sc on R™ x Rn, since f was l1sc
there and c1 G is a closed set. Next, for each peRm define E(p):=
dom gq(p,.); for each p, E(p) = D(p)/P\(c] G), so that graph E C graph D,
and thus g is usc at (po,xo) relative to graph E since we assumed it was
usc there relative to graph D. Also, since xoeG = int ¢l G, lower semi-
continuity of D at (po,xo) implies lower semicontinuity of E there. If
Yy > n(po) then g(po,xo) > y; applying Lemma 3.2 to g we conclude that
PoE int dom KY’ where KY is the level-setmultifunction associated with g:

K P)z=lx[g(p,x) < ¥} = A (P)N\ (c] 6).
Finally, since KY(p)(: cl G for any p, the multifunction KY is locally
bounded at pg.

Applying Theorem 2.1 to g, we conclude that for some neighborhood
U of Po and for each peU, g(p,.) is proper, n(p) is finite, and Y(p) is a
nonempty compact set. Further, n is continuous at Po and Y is upper semi-
continuous there. But Y(po) is contained in the open set G, so if we
choose U to be small enough then Y(p) C G for each peU, and thus for such
p Y(p) is actually a strict local minimizing set for f(p,.) with respect

to G. This completes the proof of Theorem 3.3.



-13-

There are two essential assumptions in Theorem 3.3: that the
local minimizing set M is bounded, and that D is lower semicontinuous
at (po,xo). In nonlinear programming problems encountered in practice,
the first condition is typically satisfied by assuming that the second-
order sufficient optimality condition holds at the point in question,
although this assumption is actually stronger than is needed for
Theorem 3.3.

The second condition (lower semicontinuity of D at (po,xo))
is generally met by assuming that one of the standard constraint
qualifications holds at X0 for the problem with p = Po- For example,
the Mangasarian-Fromovitz constraint qualification [7], suitably
generalized, is appropriate for this purpose. For details on the use
of the second-order sufficient condition and the generalized
Mangasarian-Fromovitz condition in nonlinear programming, see [8].

The result of Theorem 3.3 gives a complete and general
criterion for stability in the sense of upper semicontinuity of the
minimizing set. Sometimes one wants more than this: in some appli-
cations it may be necessary to establish bounds on the rate at which
the set of local optimizers can vary. Such results for nonlinear

programming problems are treated in [8].
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