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FOREWORD

The modeling of stochastic processes is a fundamental tool in the study of models in-
volving uncertainty, a major topic at SDS.

A number of classical convergence results (and extensions) for probability measures
are derived by relying on new tools that are particularly useful in stochastic optimization
and extremal statistics.

Alexander B. Kurzhanski

Chairman
System and Decision Sciences Program
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ABSTRACT

The hypo-convergence of upper semicontinuous functions provides a natural frame-
work for the study of the convergence of probability measures. This approach also yields
some further characterizations of weak convergence and tightness.
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1. ABOUT CONTINUITY AND MEASURABILITY

A probabilistic structure — a space of possible events, a sigma-field of (observable)
subcollections of events, and a probability measure defined on this sigma-field — does not
have a built-in topological structure. This is the source of many technical difficulties in
the development of Probability Theory, in particular in the theory of stochastic processes.
Much progress was made, in reconciling the measure-theoretic and topological viewpoints,
by the study of limits in terms of the weak*-convergence of probability measures, also
called weak convergence [5],[16]. In this paper, we approach these questions from a funda-
mentally different point of view, although eventually we show that weak*-convergence
and convergence in the sense introduced here, coincide for probability measures defined on
separable metric spaces. We proceed by a “direct” construction: it is shown that the
spaces of probability measures i1s in one-to-one correspondence with a certain space of
upper semicontinuous functions, called sc-measures, for which there is a natural topology,
and thus an associated notion of convergence. This means that instead of relying on the
pre-dual to generate the notion of convergence, we use the "topological” properties of the

space of probability sc-measures itself, and much insight is gained by doing so.

The major tool is the theory of epi- or hypo-convergence that has been developed in
Optimization Theory to study the limits of (infinite-valued) semicontinuous functions.
Functions are said to hypo-converge if their hypographs converge (as sets); the hypograph
of a (extended-)real valued function consists of all points on and below its graph. This
“global” view of functions provided by the hypographical approach is particularly appeal-
ing when dealing with limit theorems in Probability Theory. Hypo-convergence is not
blinded by what happens at single points, a cause of major chagrin when working with
standard pointwise convergence, but takes into account the behavior of the (converging)

functions in the neighborhood of each single point.
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We associate to every probability measure, its restriction to the hyperspace of a
given class of closed sets. It is easy, but crucial, to observe that the resulting function,
called an sc-measure, is upper semicontinuous with respect a certain topology on this
(hyper)space of closed sets. Now, limits can be defined in terms of the hypo-limits of these
sc-measures as is done in Section 4. The structural compactness of the space of upper sem-
icontinuous functions with the hypo-topology is the key to a number of limit results, in
particular in the study of the role played by tightness, cf. Sections 4 and 5. In Section 3,
we show that when the probability measures are defined on the Borel sigma-field of a
metric space, hypo-limits of probability sc-measures and weak*-limits of the associated se-
quences of probability measures coincide, providing us with an indirect proof of a Riesz-
type representation theorem for the space of sc-measures. We think that this new charac-
terization of weak*-convergence, that supplements those that have already been studied
extensively [13] and which at least conceptually is non-standard, is by its intrinsic nature
closely related to the usual notion of convergence of distribution function of random vec-
tors. In fact, one may feel that it would be much more natural to approach convergence in
distribution for random vectors in terms of the hypo-convergence of their distribution
functions rather than through the equivalent but less meaningful notion of pointwise con-
vergence on the continuity set. The reader can convince himself of this, all what is needed
is the definition of hypo-convergence [9, Section 1] and the accompanying geometric

cappretation.

We work in general with probability measures defined on a separable metric space,
but we reserve a special place to the case when in addition the underlying space is com-
pact. For this, there are some technical and didactic reasons — namely in the compact case
the notion of convergence of sets that we introduce corresponds to the usual notion of
set-convergence — but in addition the compact case played an important role in our
research on the convergence of stochastic infima (extremal processes) that originally
motivated this work. This was first elaborated in the presentation of these results in a
communication to the European Meeting of Statisticians at Palermo (September 1982),
and also at the Third Course in Optimization Theory and Related Fields at Erice (Sep-
tember 1984). The connections to problems in stochastic homogenization and related
questions in the Calculus of Variations was brought to our attention by a recent article of

De Giorgi [8], whose research is following a path that in some ways, is parallel to ours.

To assume that the domain of definition of the probability measures is compact, or
even locally compact, is not a standard assumption in probability theory, it would ex-
clude a large number of functional spaces that are of capest in the study of stochastic

processes. However that is only true if we restrict ourselves to a “classical” functional
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view of stochastic processes. Instead, if we approach the theory of stochastic processes as
in [18 (Sections 3 or 6), 19] where paths are viewed as elements of a space of semicontinu-
ous functions which we equip with the epi-topology, or when paths are identified with
their graphs and the space of graphs is given the topology of set-convergence, then the
underlying space is actually compact. Specific examples of such constructions can be
found in [18, 20| and in the work of Dal Maso and Modica [7] on the stochastic homogeni-
zation problem (the space of integral functionals on Lf,_(R"™) is given the epi-topology).

Because set-convergence — or the variant that we introduce here to handle the
infinite dimensional case, is not yet a familiar tool in probabilistic circles — in the appen-
dices the proofs are given in painstaking detail. The alerted reader can of course skip
much or all of this, and devote her or his full attention to the actual substance of the

results.

2. CONVERGENCE OF SETS AND SEMICONTINUOUS FUNCTIONS

Let (E,d) be a separable metric space with r the topology generated by the metric d.
By 7, or 7(E), we denote the hyperspace of r~closed subsets of E. We endow 7 with the
topology T that corresponds to the following notion of convergence: for {F; F", n € N}

F=T lim F"

n—oo
ifforallze E,

d(z, F) = nlinoo d(z, F") ;

i.e. T is generated by the pointwise convergence of the distance functions {d(°, F"),

n € N} to d(°, F). For any nonempty set D C E,
d(z, D):=inf ¢ p d(z, y)

and
d(z,8):= o0 .

Francaviglia, Lechicki and Levi have extensively studied the properties of T and related

topologies and uniformities [10], [14]1 In particular, they point out that T-convergence can

tThey call T the Wijsman topology, but that does not seem to be totally appropriate, since already Choquet
in his 1947 paper “Convergences” (Annales de I'Univ. de Grenoble, 23) introduces this notion for set-
convergence.
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be characterized in the following terms. For any 5 > 0, and nonempty set D in E, the
open n- fattening of D is the set
wDi={z€E|d(z, D) <n} ,

with n D:= cl.n° D the n- fattening of D. By definition, for some fixed z in E, usually O if

F is a linear space, we set

n°g:=cl(ng:={z€ E|d(z,2) >n7 1) .
We also reserve the notations

B°,(z):n°{z}, and B,(z)=n{z}
for the open and closed balls of radius n and center z.

PROPOSITION 2.1 [9, Propositions 2.1 and 2.2]  Suppose {F; F*, n€ N} C 7. Then
F=T- lim F" if and only if

n—s oo

(i) forallz € E, to every pair 0 < € < 1, there corresponds n' such that for alln > n',
FNB'(z) #¢ = F"nNB,(z) #¢ ; (2.1)

(i) for allz € E, to every pair 0 < € < n, there corresponds n' such that for alln > n',
FNB,(z)=¢ = F"NB(z)=9¢" (2.2)

It follows immediately from this proposition that 7- lim F" = g if and only if to any

n—oo

bounded set Q, there corresponds n’ such that for all n < n’,
FPnQ=2¢; (2.3)

if d is a bounded metric, this means that the F™ are empty for n sufficiently large.

This notion of convergence for closed sets is related to, but is more restrictive than,

the more standard definition of set-convergence, by which one means that

F= lim F" (2.4)
n—0oo
if
lim sup F"C F C lim inf F" (2.5)
n—oco n—o0

where
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lim sup F:= [r — cluster points of all sequences{z"}32, | z" € F"] (2.6)
n—-oo
= nHE}( r—cl (Un cH Fn), (27)
and
lim inf F": = [r — limit points of all sequences{z"}2 | z" € F"] (2.8)
n—eo0
= nHe}{# T— Cl (Uﬂ e H Fn), (2.9)

here ¥ is the Fréchet filter on N = {1,2,...} and ¥# its grill, i.e.
¥#* ={He N | HnH' #£¢ for all H' € ¥}.

The grill ¥# consists of all infinite (countable) subsets of N. Since ¥ C ¥# we always
have that
lim inf F" C lim sup F", (2.10)
n—+00 n—00
and thus F = lim F" actually means that equality holds in (2.5). From these definitions,
we immediately have the following proposition; the details can be found in Appendix A.

PROPOSITION 2.2 [10, Proposition 2.3, Theorem 2.6] Consider {F", n=1,,,} a se-
quence in J(E). Then F = T— lim F" implies that F = lim F". The converse also holds

n—0oo n—oo
if (E,d) is boundedly compact (i.e., every closed ball is compact).
As a simple example of a case when the converse does not hold, take E = !, F™ = {
the unit vector on the n-th axis }. Then lim F" = ¢ whereas T—lim F" does not exist.

Some further properties of T and set-convergence are reviewed in Appendix A.

Francaviglia, Lechicki and Levy prove that (7, T) is metrizable and separable |10,
Theorem 4.6] which of course also implies that it is regular and has a countable base,
since singletons are closed. It is these latter properties that play a key role in what fol-
lows. (One can also rely on the separability of (E, 7), and the characterization of conver-
gence provided by Proposition 2.1 to obtain a countable base.) For easy reference we
record these facts in the next theorem. The remaining assertion is well documented in the

literature [11; 15; 9, Proposition 3.2].
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THEOREM 2.3 Suppose (E, d) is a separable metric space. The topological space
(¥(E), T) has a countable base and is regular (which also means that it is separable and

metrizable, since it 1s T ). Moreover it is compact, if in addition (E, d) is locally compact.

We note that there is no loss of generality in introducing T-convergence in terms of

sequences instead of nets (or filters).

Now let us consider SC¥(¥; 0, 1]), the space of T-upper semicontinuous functions (u.
sc.) on ¥ with values in [0, 1]. Recall that a function v(F) — [0, 1] is T u. sc. at F when-

ever

v(F) > lim supv(F")
n— oo

for all sequences { F"}$% ; with T-lim,,__, , F" = F.

Next, we endow SC¥(7; [0, 1]) with a convergence structure based on the sequential

convergence of the hypographs. Recall that the hypograph of v: ¥ — [0, 1] is the set
hypo v:= {(F, ¢) € (¥ X R)|v(F) > o} , (2.11)

i.e. all points that lie on or below the graph of v.

DEFINITION 2.4 A sequence of functions {v,,, n €N} in SC%(F; |0, 1]) hypo-converges
tove SC®at Fe 7if

(i) whenever F=T- lim F", then

n—oo

lim supv,(F") < v(F) , (2.12)
n—oo

and

(i) for some sequence {F™"}2 | with F = T- lim F",

n— 00

lim supv,(F,) > v(F) . (2.13)
n— 0o

Note that the first condition could equivalently be formulated as follows: for any subse-
quence H € ¥#, and collection {F", n € H} with F = T-lim, c g F", (2.12) holds when n
goes to oo on H. This observation is also useful in showing [9, Proposition 1.9 that hypo-
convergence (at all F in ¥) corresponds to the (sequential) set-convergence of the hypo-

graphs, i.e.,

v = hypo-lim v, if and only if hypo v = lim hypov, . (2.14)
n—oo
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I E is a compact metric space, hypo-convergence of upper semicontinuous real valued
functions can be characterized in terms of convergence of the Hausdorff distances between

the graphs [4].

Of crucial importance to the ensuing development is the following compactness
result. A very elegant proof appears in (2, Theorem 2.22| that relies directly on the
definition of hypo-convergence. It can also be derived from a general theorem about set-

convergence, for the convenience of the reader, a proof can be found in Appendix B.

THEOREM 2.5  Suppose (E, d) is a separable metric space, and 7 is the hyperspace of
closed subsets of E, that we equip with the topology T of pointwise convergence of the dis-
tance functions. Then (SCY(7; |0, 1], hypo) is sequentially compact, i.e., any sequence
{v, € SC¥(7; [0, 1]), n € N} contains a subsequence that hypo-converges to a function v
in SC¥(7; [0, 1]). If, in addition (E, d) is locally compact, then (SC*(¥; [0, 1]), hypo) is a

regular compact topological space.

3. SC-MEASURES AND SC-PREMEASURES ON 7(E)
An sc-premeasure ) is a (set-) function on 7(E) with the following properties:
i.  nonnegativity: A(F) > O for all FE7,

ii. increasing (nondecreasing): if for any F,, Fyin 7,

A(F;) < X\(F;) whenever F;C Fy;

ili. X is T-u.sc. (upper semicontinuous) on 7.
It is finitely sub-additive if for an F,, F,, in ¥,
A(Fy) + M(Fy) < A(F{UFy) + A(FiNFy) . (3.1)
If, it actually is finitely additive, i.e. for any F;, Fyin 7,
AMFy) + MFg) = A(FUF,y) + AM(FyNFy) (3.2)
then X is an sc-measure. 1t is a probability sc-measure if in addition

Ag)=0, XME)=1 . (3.3)

Sc-measures (semicontinuous measures) defined on 7(E) are of course intimately re-
lated to measures defined on B(E), the Borel field generated by 7, the r-closed subsets of

E. Conceptually, however, there is a basic difference between measures and sc-measures.
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The measure-calculus relies on the underlying sigma-field structure (countable additivity,
etc.), the calculus of sc-measures is topological in nature, and consequently provides a
richer structure for studying convergence, and other limit questions. It is, however, possi-

ble to identify probability measures and sc-measures as we show next.

THEOREM 3.1  There is a one-to-one correspondence between probability measures on
B(E) and probability sc-measures on F(E). More precisely, given a probability measure p
on B(E), then the restriction of p to F(E) is a probability sc-measure. And given A, a pro-
bability sc-measure, there exists a unique probability measure p on B(E) such that p = X

on ¥(E).

PROOF Suppose u is a probability measure on B and A is its restriction to 7. Clearly,

it is enough to check if A is T-u.sc. Since T has a countable base, it suffices to show that

lim sup A(F") < A(F)
n—oo

whenever F = T—lim F". First observe that

F=limsup F* =N FM) o Fr=F

1 (U
n—oo He)(c ( n

n U
€H Hey neH

where the first equalities follow from Proposition 2.2, and (2.7). Since u is a probability
measure and A(F") = u(F") we have that

lim sup A(F") = lim sup u(F") < p(F') < p(F) = A(F).
n—oo n—oo

I ) is a probability sc-measure on 7, we set p = A on ¥ and define for every open set
G, u(G) = 1-A(E\G). We see that p is an increasing finitely additive set-function on 4,
the field consisting of finite cups of open and closed sets. We can now appeal to the stan-
dard argument to extend u to a probability measure on B, the sigma-field generated by A
[1, Theorem 1.3.10]. This extension is unique. In fact, since (E,r) is a separable metric
space, for every A € B, we have that u(4) =sup {A(F) | FC A}. O

As can be expected from the preceding theorem, measures and sc-measures have
many common properties. Of immediate capest are certain continuity properties used in
the sequel.

By bdy D we denote the 7-boundaryof aset D C FE.

PROPOSITION 3.2  Suppose A\: ¥ — [0,1] is a sc-premeasure. Then given any nonemp-
ty F € 7, the function

e— A(eF): R, — R
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has at most countably many discontinuity points and A\(F) = limeloz\(eF). Thus, if X is a

probability sc-measure, the family of sets {eF | € > 0} contains at most countably many

sets such that A\(bdy € F) > 0.

PROOF  First note that F = T-lim, |, € F, see A.5. Since A is T-u.sc at F and increas-
ing, and hence A(F) < lim inf ;o A(e F), it follows that A(F) = lim,)q A(e F). The asser-
tion of at most countable discontinuity points follows directly from the (topological) argu-
ment given in [6, iv p.4] that applies to all monotone functions. Finally, if A is a probabil-

ity sc-measure, for any €¢; > 0 with A\(bdy ¢; F) > 0, we have for any ¢’ < ¢
M€e'F) + M(bdy ¢, F) = Ae'Fubdy €, F) + A(g) < A, F)
Taking the above into account, it yields

lim ;. A(e"F) = MerF) 2 Mbdy ¢ F) + lim,, . A(¢'F)

which shows that ¢; is a discontinuity point of € —A(eF) and there are at most a count-

able number of such points. []

The correspondence between probability measures and sc-measures carries over to
the natural convergence notions for probability measures (weak convergence) and sc-
measures (hypo-convergence). In those terms it is a "bicontinuous” correspondence, as is
demonstrated next. Recall that weak convergence, or more precisely weak* convergence,
of a sequence of probability measures {u,: B — [0,1], n€ N} to a probability measure

p:B(E)—[0,1], denoted p1 = weak' — lim—pu,, means that

n—oo
du= 1i d 3.4
[9dp= lim [gdu, (3.4)

for any bounded continuous g: E — R, or equivalently [5, Theorem 2.1|

lim sup p,(F) < u(F) for all closed sets F, (3.5)
n—o0

lim inf p,,(G) > u(G) for all open sets G, (3.6)
n—oo

lim p,(A) =u(A) for all sets A € cont p, (3.7)
n—oo

where

cont u:= {A € B | u(bdy A) =0} (3.8)
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THEOREM 3.3  Suppose (E, 7) ts a separable metric space, and {u; p,, n€ N} is a
Jamily of probability measures on B(E), and {\; A,, n€ N} the corresponding family of
probability sc-measures on 7(E). Then

p = weak*—lim p,,,
n—0oo

whenever

A = hypo—lim A,,.

n—0o0

This is also a necessary condition if (E,d) is a Polish space, i.e. (E,d) is also complete.

PROOF K A = hypo—lim ), then (3.5) follows directly from (2.12), since p, = A, on 7,
n—oco
and hence u = weak*—lim u,,.

To prove the converse we start with (2.13), i.e. we show that given any F € ¥ there

exist a sequence with F = T—lim F" such that
n—oo

A(F) < lim inf A (F™).
n—0oo0
We take F nonempty, since otherwise the inequality is trivially satisfied. From (3.6) it

follows that for every ¢ > O,

p(e® F) < lim inf p, (' F)
n—oo

and thus to every 6 > O there corresponds n; such that for all n > ng
AMF) < p(e’F) S pu(eF) + 6 < py(eF) + 6= A (eF) + 6.

In particular, this means that to every k € IN we can associate ng, with ng ; > n;, such

that for all n > n;
AMF) <A (K71F) + k71

With F* = k~1F, b, = k~! whenever n € [ng,mp 4], by A5 we have that F = T-lim F"

and

A(F) < lim inf [A,(F™) + 6,] = lim inf A (F™).
n—o00 n—oo

There remains to show that (2.12) holds when (E,d) is a Polish space. Since (E,d) is
complete p is tight, i.e. given any & > O there exist a compact set K such that

p(K) > 1-6. This implies that for any € > 0, p(cl (E\eK)) < 6. For such a compact set
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K, € sufficiently small, and for any sequence with F = T—lim F", we have

lim sup A,(F™ < lim sup p,(F"neK) + lim sup p,(cl (E\eK))
n—00 n— 00 n—oo

and by A.8, (3.5) and the above, this yields

lim sup A\, (F") < lim sup p,(¢'F) + § < p(e'F) + 6= A('F) + &
n—o00 n—o00

where €' > 2¢. Since by A.5, T—lime,lo ¢F=F, A is T-usc. (Theorem 3.1 and the

definition of sc-premeasure) and § is arbitrary, it follows that

lim sup A, (F") < A(F),
n—o00

which completes the proof. []

Theorem 3.3 can be viewed as giving a8 new characterization of weak convergence for
probability measures. The classical results of Prohorov [5, Section 6] could be obtained as
a direct consequence of this characterization, and the compactness results of Section 2.
However it is more enlightening to derive it as a consequence of the properties of the

hypo-limits of sc-measures as is done in the next section.

4. HYPO-LIMITS OF SC-MEASURES AND TIGHTNESS

In this section we are capested in the properties of the limit functions of a sequence
of probability sc-measures. In view of Theorem 2.5 we know that there always will be a
limit function, at least for some subsequence, what cannot be guaranteed is that this limit

function is a probability sc-measure. We being with a general result about sc-premeasures.

LEMMA 4.1 The space of sc-premeasures 1s sequentially compact with respect to hypo-
convergence. In particular, if {1, n€ N} is a sequence of sc-premeasures such that
AL(E) =1 for all n, and A:=hypo—lim X, then X is a sc-premeasure with A\(E) = 1.

n—o00
PROOF Every sequence of sc-premeasures has a hypo-convergent subsequence
(Theorem 2.5). The limit function is then T-u.sc., and clearly it is nonnegative. We need

to show that it is an increasing function. Suppose A = hypo—lim A,,, and let us consider
n—oo

any pair F; C F, in 7. Since XA is the hypo-limit of the A,, it follows from (2.13) and
(2.12) that there exists a sequence with F; = T—lim F} such that A(F,) = lim A (F}).

Since Fg = T— lim F, U FT, see A.3, it follows that

Vv—00
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A(F3) > lim sup A, (Fy U F}) > lim sup A (F}) = A(Fy).
n—oo n—0o

Finally, A(E) = 1 whenever A (E) = 1 for all n, since by (2.12)

A(E) > limsup A (E) =1 ,
n—oo

and A(E) < lim inf A,(F") < 1 whatever be the sequence {F", ne N}
n—oo
T-converging to E. []

Thus the hypo-limit A of a sequence of probability sc-measures is a sc-premeasure.
But not much more can be said except for a super-additivity property, at least not
without making some further assumption about (E,r); it is easy to verify that A always

satisfies:

In general, X is neither finitely additive, nor is A(8) = 0. As the ensuing development will
show these two properties are not unrelated. Let us begin by giving a necessary and

sufficient condition for having A(g) = 0.

LEMMA 4.2  Suppose {),, n€ N} is a sequence of probability sc-measures on F(E),
and A = hypo—lim A,,. Then A(g) = O if and only if to every € > 0, there corresponds a

n—oo

closed ball C, and n, such that for alln > n,

A(C)>1—¢ . (4.1)

PROOF Fix any € > 0. Proposition 2.1 and the definition of hypo-convergence yield the

existence of a sequence {F", ne N} such that forall n > n_,

F"C, =g, and A(g) = lim A (F").
n—oo

Since for all n > n,, A, (F") <1 - X,(C,) <, it implies that 0 < A(8) < e. This holds
for all € > 0, which means that A(g) = 0.

Let us now prove the converse. We argue by contradiction. Suppose A(g) = 0, but
for some ¢ >0 and every closed ball C, there exists Ho€ ¥# such that for all
n€EHp, A\,(C) < 1— €. Since

A(€) + Aglcl (B\C) 2 A (E) =1,

it follows that for all n€ Hp, A (cl (E\C)) > €. The fact that X is the hypo-limit of the
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A,, implies that for all closed ball C,

€ < lim sup A,,(cl (E\C)) < A(cl (E\C)).

Consider any increasing sequence {C", n€ N} of closed balls that T-converges to E. This

means that T—lim cl (E\C"™) = ¢, cf. A.6. The preceding inequality and the T-u.sc. of A
n—00

(Lemma 4.1) would yield the following contradiction.

0 < € < lim sup A(cl (E\C"™) < A(g) =0. 0
n— o0

This leads us to the following observations. A collection of probability sc-measures A
on ¥ (resp. measures M on B) is said to be tight, if to every € > O there corresponds a

compact set K, C E such that for all, but a finite number, of A in A (resp. p € M)
AK,)>1-¢ (resp. p(K,) > 1 - ¢). (4.2)

If the metric space E has compact closed balls, we can rewrite the assertion of Lemma 4.2
as follows: A(¢) = O if and only if the sequence {A,, ne N} is tight. But, as it turns out,
having A(g) = 0 is all what is needed to obtain the finite additivity of A when E is locally
compact. To show this one first proves that in the locally compact case, the hypo-limit of
a sequence of probability sc-measures is always a finitely sub-additive sc-premeasure.
Next, it is shown that if in addition this hypo-limit has A(2) = O, then X is actually finite-
ly additive and hence ) is a probability sc-measure. This means: if the {),, n€ N} are
probability sc-measures on F(E) with E a locally compact separable metrizable space, and

A = hypo—lim A,, then ) is a probability sc-measure if and only if the sequence
n—oo

{\,, n€ N} is tight. This follows from the fact that E locally compact, separable and
metrizable admits a boundedly compact metric [23]. When E is given this metric, we are
in the following situation: T-convergence and set convergence coincide, and

(SC¥(7; [0, 1]), hypo) is compact; details can be found in [19].

The same assertion can be made if E is simply Polish — and this is proved below —
but tightness plays then a double role. As in the locally compact case, it guarantees that
there is no escape of the probability mass "at infinity”, but it is also used to generate "re-
lative compactness” in the space of probability measures. Tightness already enters in the
proof that the hypo-limit is sub-additive. It essentially allows us to restrict our attention
to compact subsets of E where T-limits coincide with the standard set-limits, and up to
some technical adjustments we can rely, as in the locally compact case, on the built-in re-

lative compactness of the space of u.sc. functions (with the hypo-topology).
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THEOREM 4.3  Suppose {),, n€ N} is a sequence of probability sc-measures on F(E)

where E is a separable metric space, and A = hypo—lim A,,. Then
n—oco

(i) of the sequence {),,, n€ N} is tight, X is a probability sc-measure;
(ii) i X 1s a probability sc-measure and E is a Polish space, the sequence

{A, ne N} is tight.

PROOF [If the {A,, n€ N} are tight, then X is a sc-premeasure with A(E) =1 (Lemma
4.1), but also A(¢) = 0 (Lemma 4.2). To show that X is sub-additive (3.1), observe that
since A is the hypo-limit of the A, for any pair F,,F, in 7, there exists sequences such

that T-lim F{ = F; and T— lim FJ = F, such that

n—oco
lim A, (FT) = MFy), and lim A (F%) = F,.
n—oo n—oo
Given €>0, le¢ K, be a compact set such that for all, but finitely many,
n: A, (K,) > 1 — e. Since the A, are probability sc-measures:
An(FT) + An(F2) = A, (FTUF3) + Ap(FT N F3)
< Ap(FTUF3) + Ap((FINF3) U (FNFy))
< Ap(FTUFZ) + A [((FTNF3) U (FINF))NK ] + e.

Taking limsup on both sides, using the fact that X is the hypo-limit of the A, (2.12),
since F{UFy = T-lim (FTUFg) by A3, and F;NFyNnK, =T-lim
n—oo

[((F1nF3) U (FINFZ))NK,]

(cf. Proposition 2.2, A.2 and A.4), we obtain
S /\(FIU Fz) + A(Fln Fz) + €,

where for the last inequality we used the fact that )\ is increasing since it is sc-
premeasure. This yields (3.1) since ¢ > O is arbitrary. To complete the proof of part (i),

there remains only to show that
AMFy) + A(Fg) 2 MFU Fy) + A(Fyn Fy). (4.3)

Since A(g) = 0, we may as well assume that F; and F, are nonempty, the inequality being

trivially satisfied otherwise. Let {R", ne N} and {S", ne N} be sequences of sets such
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that T- lim R" = F|UF,, T— lim S" = F;N F,, and

n—oo n—00

A(FIU Fz) = nli’ﬂclx’ An(Rn), /\(Flﬁ F2) = nli’ncln z\n(S").

The existence of such sequences follows as before from (2.13) and (2.12). Pick any n > 0.
With F’' =cl (E\n F,), and using the fact that the ), are probability sc-measures, we

have
Aa(R™) + A,(S™) < A (RN Fy) + A (R™ F') 4 A, (S™)
< Ap(n Fg) + A ((R™N F)US™) + A,(R™N F'n §™)
< Ap(n F3) + A, ((R™N FUS™UF,) + A,(R"N F'n 7).

Moreover, the sequence {),, ne N} is tight. Let K, be a compact set such that
A, (K,.) > 1 — (¢/2) for n sufficiently large. Thus for n sufficiently large

Aa(B™) + 2,(S™) < An(n Fy) + A ((R™ F)US™UF)NKe|
+ A (R F'NS™NK,) + ¢.

Taking lim sup on both sides, using the fact that A is the hypo-limit of the {},, ne N},

and since
T-lm[(R"NnF)YuS"UF)NK]|=F nK,
and

gp=T- lim (R®"NnS"NnF'NnK,)

n— oo
as follows from Proposition 2.2, A.2, A.3 and A.4, we have
AM(F(UF,) + A(FUF,) < AX(n Fy) + M(FyNK,) + ¢,

< A(n Fo) + A(Fy) + e

We obtain (4.3) from the above by observing that X is T-u.sc at Fy, T— lim nFy=F, by
n—oo

A.5, and that € > 0 can be chosen arbitrarily small.

To prove the converse, part (ii), observe that since (E,r) is a Polish space every pro-
bability measure |5, Theorem 1.4, and thus every probability sc-measure (Theorem 3.1)
is tight. In particular, this means that for all ¢ > O there exists K C E, compact such that
AM(K)>1—-¢ In turn, this implies that for all n >0, A\(E\n°K) <e. Since
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A = hypo-lim A,

lim sup A, (E\ n°K) < A(E\n°K) < ¢
n—00

from which it follows that there exists n, such that forall n > n, and n > 0:
An(nK) 2 1-2,(E\ n°K) > 1 - 2¢.

Now, we use the fact that n > 0 is arbitrary, that by A.5, K = T—lim nK and that the A,
are T-u.sc. at K to conclude that for all n > n,, A, (K) > 1 — 3¢. This means that the se-

quence {),, n€ N} is tight, since there is such a compact set K for any ¢ > 0. []

The theorems of Prohorov and Varadajaran [5, Section 6; 15, Theorem 6.7] are im-
mediate consequences of the above. As in [5] or [16], we say that a family M of probabili-
ty measures is relatively compact (with respect to the weak* topology on M) if any se-
quence {u,, n€ N} C M contains a subsequence weak converging to a probability meas-

ure.

COROLLARY 4.4 Prohorov’s Theorems Suppose (E,d) is a separable metric space and
M is a family of probability measures on B(E). Then, if M is tight it is relatively compact.

Moreover if (E,d) is a Polish space, then relative compactness of M implies tightness.

PROOF Let A= {X: 7(E) — [0,1] | A=p on F, u € M} be the associated family of
probability sc-measures, cf. Theorem 3.1. If M is tight, so is A. Moreover, any sequence in
A contains a hypo-convergent subsequence (Theorem 2.5) which is necessarily tight, and
hence its hypo-limit is a probability sc-measure (Theorem 4.3. (i)). The first assertion

now follows directly from Theorem 3.3.

For the converse, let us first consider the case when M = {u,, n€ N}. It follows
directly from the definition of relative compactness, Theorem 3.3, Theorem 4.3. (ii), the
definition of tightness and the fact every probability sc-measure on the Polish space (E,d)
is complete, that for all € > O there exists K, such that not only p,(K,) > 1 — ¢ for all
n € N, but also u(K,) > 1 — € where u is any (probability) measure in the weak* closure
of M. To complete the proof simply observe that the weak* topology (on the space of
measures on B) is separable, and thus there exists a dense subset {u,, n€ N} c M
whose weak* closure is (uniformly) tight. [J

We note that the separability of weak” topology can be obtained as a consequence of
Theorems 3.1 and 2.3.
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5. TIGHTNESS AND EQUI-SEMICONTINUITY

Theorem 2.5 can be viewed as a generalization of a version of Helly’s Theorem for
probability sc-measures. The standard formulation of Helly’s Theorem is, however, in
terms of a "pointwise” convergence of the distribution. From the results of this section it
will follow that hypo-convergence of sc-measures can be given a pointwise characteriza-
tion, which also leads us to relate tightness to an equi-upper semicontinuity condition "at
infinity”.

The relationship between pointwise and hypo-convergence has been studied in [9)].
Neither one implies the other, unless the collection of functions is equi-u.sc. [9, Theorem
2.9]. A family U c SC,(7; [0,1]) is equi-upper semicontinuous at F (with respect to the
T-topology) if to every € > O there corresponds a T-neighborhood V of F such that for all
vevu,

sup Vey v(V) < y(F) + e (5.1)

PROPOSITION 5.1 Suppose {A; A,,, n€ N} are probability sc-measures such that
A = hypo—lim A,. Then

n—o0
(i) the sequence is equi-u.sc. on cont A,
(i) ¢ € cont A

where cont A = {F € 7| A (bdyF) = 0}.

PROOF From Theorem 3.3, (3.7) and Theorem 3.1, it follows that for all F€ cont ),
lim A,(F) = A(F). This means that on cont A we have both hypo- and pointwise con-
n—oeo

vergence, and this only occurs if the sequence is equi-u.sc. on cont A [9, Theorem 2.18]; a
direct proof is given in Appendix B.
Part (ii) follows from: bdy ¢ =g and A(g) =0. [

THEOREM 5.2 Suppose {X; A,, ne N} are probability sc-measures. Then
A = hypo—lim A, if and only if A\(F) = lim A, (F) for all F € cont A.
n—0co n—oo

PROOF For the “only if” part, see above. For the converse we rely on Proposition 3.2
and the fact that X is T-u.sc. Indeed they imply that given any ¢; > 0, there always exists
€ € (0,¢;) such that € F € cont A and A(e F) < A(F) + ¢;. Because of pointwise conver-

gence on cont A, we have that

lim sup A (F) < lim Ap(e F) = A(e F) < A(F) + ¢,
n—oo n—0oo
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whatever be ¢; > 0. Hence lim sup A,(F) < A(F) for all F € 7. But this via Theorem 3.1,
n—oo
(3.5), and Theorem 3.4 yields the hypo-convergence of the A, to A. [

If we are given a sequence {)\,, n€ N} of probability sc-measures that hypo-
converges to A, and it also pointwise converges on cont A, this would not yet imply that A
is a probability sc-measure: finite additivity and A(g) = O might still fail to be satisfied. If
(E,r) is boundedly compact however, it does suffice to have ¢ € cont A, as follows from

the next proposition.

PROPOSITION 5.3  Suppose (E,r) ts a boundedly compact separable metric space, and
{Ap, n€e N} are probability sc-measures on F(E). Then the following statements are
equtvalent:

(i) the sequence {),, nc N} is tight;

(i1) the sequence {)\,, n€ N} is equi - v.sc. at g;

(iii) for any sequence {F", n€ N} withg = lim F", we have

n— 0o

lim sup A, (F") = 0.
n—oo

PROOF Using the characterization of basic neighborhood systems of ¢, and recalling
that the closed balls are compact (E,7) are compact, we see that the {\,, n€ N} are
equi - u.sc. at g if and only if to every € > 0, there corresponds a compact ball K, such

that for all n
A(F) < Ap(8) +e=e whenever FN K, =g,

or equivalently A, (K,) > 1 — €. In other words, if and only if the sequence is tight.
The equivalence of (i) and (iii) follows from Theorem 4.3 and Proposition 5.1. []

Proposition 5.3 and Theorem 5.2 allow us, in the compact case, to rephrase Theorem
4.3 as follows: Suppose (E,7) is a compact metric space, {),,, n€ N} is a sequence of pro-

bability sc-measures on F(E) such that A = lim A, on cont A\. Then X is a probability

n—oo

sc-measure tf and only if the {),, n€ N} are equi - u.sc. at g.

Acknowledgment We are very grateful to Professor G. Beer for a substantial number
of suggestions and pointers, in particular in connection with the boundedly compact as-

sumption in Proposition 2.2, and its relationship to local compactness.
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APPENDIX A

We begin by a collection of facts about set- and T-convergence that are used in the

text. We always assume that (E,d) is a separable metric space.

A.1 T-convergence implies set-convergence

PROOF To being with we show that if F = T-lim F", then F C lim inf F". There is

n—oo
nothing to prove if F = g, so let us assume that F is nonempty. By Proposition 2.1, if
z € F and € > 0, then B° (z) NF" # ¢ for all n sufficiently large. This means that for all

HeH#, x € r—cl(U, F™) and hence, by (2.9), z € lim inf F™.

Next, let us show that F O F':= lim sup F", or equivalently that E\F C E\F.

n—0o

There is nothing to prove if F = E, so let us assume E\F # ¢. Suppose z € E\F, then
there exists n > O such that FNBubn(z) = ¢. By Proposition 2.1 this implies that for any
€ €(0, ), for n sufficiently large F"NB.(z) =¢. Thus there exists H € } such that
z 1—cl(Upey F™), and by (2.7) this implies that z lim sup F", ie.,z € E\Fr. [

The fact that T-convergence and set convergence are the same when (E,d) is a Eu-
clidean space is well know, see [17, Theorem 2.2] for example. Beer [4| pointed out that

this equivalence can only be obtained for spaces whose closed balls are compact.

A.2  F,=lim F}, Fy=lim F} implies FyNF; = lim[(F{nF;)U(FINF})]

PROOF Set F=F,NF, F"=F7nF3. Since FC FUF", F C liminf(FU F*). If
z € lim sup(FUF™) this means that there exists He}¥#, z"c FUF™ for all n € H such
that z=limz". U z"€ F infinitely often then =z€&€ F, otherwise
z € lim sup F" C lim sup FTNlim sup F§ = FNF, = F; the inclusion can be proved from
the definition (2.6) of lim sup, or one can consult [12, §25. II|. Hence lim sup(FU F") C F
and, with the above, this yields (2.5). [
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A.8 Fy= T-lim F}, F,= T—lim F} implies F{UF,= T—lim(F}UF}).

PROOF  Use the definition of T-convergence [J

A4 F=lim F* FC F*. Then FNK = T-lim F'n K

where K ts any compact set in E.

PROOF We use the characterization of T-convergence given by Proposition 2.1. For
any pair 0 < e < n, Fn K NB°,(z) # ¢ implies that F" N K N B°,7(z) # ¢ for all n, since
F C F". Now if for some n > 0, F N K N B,(z) = @, but there exists ¢ > 0, and k € n#
such that F'*NKNB(z)=¢ for all neN, it would mean that
limsup,, _, (F*N KN B,(z)) is nonempty, contradicting the assumption that
Fn (KN B,(z)) = & since

lim sup(F" N K N B(z)) C (limsup F*) N (KN B(z)) c FN(KN B,(z)) . O
n— oo n— 00

AsS F=T- limelo e F.

PROOF Since (7, T) is separable (Theorem 2.3) we only need to consider this limit in
terms of a sequence {¢,, n€ N} with lime¢, =0. f F =g then the result is a direct
consequence of the definition of e-fattening of the empty set and the comment that follows
Proposition 2.1. Now suppose F is nonempty, then for all n > 0 such that FNB° (z) # ¢
it follows that ¢,FNB,(z) #¢ for all n, since F C ¢, F. If FNB,(z) =g then for any
€ €(0 n), for n sufficiently large ¢, FNB,(z) = ¢ as follows from the fact that E is normal.

O

A6 {C™ne N} is an increasing sequence of closed balls with E=T-1limC"™.
Then {cl(E\C"),n€ N} is decreasing and ¢ = T—lim cl(E\C").

PROOF The sequence is clearly decreasing. Suppose D is any bounded set, then for n
sufficiently large D C int C" and hence D Ncl(E\C") =g. Since this holds for any
bounded set D, from Proposition 2.1 it follows that {cl (E\C"), n € N} T-converges to g.

O
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A.7 F = T-lim F", or more generally F = lim F", and K C E compact.

Then for all €>0, there exists n, such that for all n>n,., F"NKCeF.

PROOF If F =g, then F"NK = ¢ for n sufficiently large (Proposition 2.1), in which
case the inclusion is obviously satisfied. If F is nonempty and F"NK is not included in ¢F,
it means that there exists H € ¥# such that for all neH, F"nKN(E\eF) # o. Passing to
a subsequence if necessary, it means that there exists {z",n € H} such that

z"e F"NKN(E\cF), and by (2.6) we have
lim z” = z € (lim sup F")NnKnel (E\eF) = Fnel (E\eF)NK

But this latter set is empty, contradicting the possibility that F"N K is not included in
¢F for n sufficiently large. [

A8 F=TImF", ¢ #K compact and ¢ >0. Then for n sufficiently large
F"NeK C €'F where €' > 2¢.

PROOF The case F =g is argued as in A.7. Otherwise, for contradiction purposes,
suppose that there exists H € ¥# such that for all n in H, dist (2, F™\ ¢'F) < ¢ for some
z,, € K. Passing to a subsequence, if necessary, we have that lim z" = z € K N €F, since
K is compact, eF = T-lim € F" and every z,, € ¢ F". On the other hand d(z", F) > ¢' — ¢
and thus d(z, F) > ¢, again by T-convergence, contradicting the possibility that z € ¢ F.
O

APPENDIX B

B.1 Proof of Theorem 2.5

This theorem, an application of a general result about convergence of sets to the
space of hypographs, has a long history that starts with a result of Zoretti [22] in the
complex plane; Hausdorff, Lubben, Urysohn, Blaschke and Marczewski, having contribut-
ed in bringing the theorem in its present form. We give a direct proof patterned after the

argument used in [12] for sequences of sets (see also [21] for sequences of functions).

To being with let us observe that to any sequence {A,€ SC¥(7; [0, 1]). n€ N} we
can associate an upper hypo-limit hypo-Is A, defined by
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h Is A,)(F):= li A (FT
(hypots A )(F):=supy  ySU o oo o B 2 ()

and a lower hypo-limit hypo-li A,, defined by

hypo—h F).= li f A, (F™).
( ypO ll An)( ) sup{Fn eN | F—T—llmFV} lnn_l’ln n( )

As a direct consequence of the definition of hypo-limit, we have that A = hypo-lim A, if
and only if

hypo—Is A, < A < hypo-1li A, (B.1)

If we denote by N(F), the T-neighborhood system of F, the upper and lower hypo-limit

can also be expressed as

hypo—Is A,(F) = inf e w(F) ll'r'n_’sol;p sup . A (F1.
and
hypo—li A (F) = inf lim inf sup A (F').

AEN(F) n—o0o0 F'e

Let {A,,l=1,...} be a countable open base for T, see Theorem 2.3. Note that for each

1, the sequence

{SuPFEm A, (F), ne N}

has at least one cluster point in (the compact space) R. Let N 16}(# determine a subse-
quence such that

lim su A,) ezists.
Define recursively N; C N;_; such that for all

lim (su A, ) exists.
i M( P n)

By diagonalization, construct N’ ¢ N as follows
N':={n;| n, is the I-th member of N;} .

Since for all [,{n;, | = 1,...} C N/, we have that for all I:
lim sup A, (F) exists.

neN’ FEAI
Now for any F € 7, we have
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(hypo—Is A, )(F)
nc N’

= inf lim sup sup A

F’
qex(F) s sup . An(F)

= inf im

1 An(F
aEn(F) TneN T Prey (F)

= inf lim infsup

An(F
AEN(F) neN' T F'eg P

= (hypo-1i A,)().
neN’

Since this holds for any Fe€ 7, we have that (B.1) is satisfied with
A = hypo-Is A, = hypo-li A for the subsequence N' c N.

The second assertion follows from the fact that T-convergence coincides with the
standard set-convergence (Proposition 2.2) and the second part of Theorem 2.3, if one ob-
serves that the hyperspace of hypographs is a closed subset of the hyperspace of closed
subsets of 7(E) X R where 7 is 7-compact since E is locally compact; for details see (9,
Corollary 4.2]. [

B.2  Direct proof of Proposition 5.1. (i).
Arguing by contradiction, let us assume that the {A,,, ne N} are not equi-upper

semicontinuous at F € cont A. This means, there exists ¢ > 0 such that to every T-

neighborhood V of F there corresponds Ny €¥ # such that forall n € N v

sup

prey n(F) > An(F) + ¢ (B.2)

Now, let {V;, k=1,...} a (countable) fundamental neighborhood system of F, the existence
of such a system follows from Theorem 2.3. For every k, let H,e H# be such that (B.2)

holds with U = U,. Pick nge H\{n,...,n;_,}, and choose F™ € V, such that
A (F™) > X, (F) + €

Let N' = {n;, k=1,...} and define the collection { F"*, n€N} as follows:
F*=F if ne N\N/,
F*=F™ if n€ N and n=n;.

then F = T—lim F", and
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v

lim sup A,(F™) > lim sup A, (F™)
k—o0 k

> e+ limsup A, (F) = € + A(F)
k—o0 k

where the last equality follows from Theorems 3.1 and 3.3, and (3.7) since F € cont A.

But this is in contradiction with the hypo-convergence of the A, to A, in particular with

(2.12). O
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