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PREFACE

System modelling and the control of dynamical systems in the face of uncertainty
are two important topics in the study of system dynamics, which is currently a major
component of the research program in the Department of Systems and Decision Sciences
at the International Institute for Applied Systems Analysis.

In July 1986 an SDS IIASA workshop on Modelling and Adaptive Control at Sopron,
Hungary, was attended by prominent contral theorists and practitioners from both the
East and West. One of the main purposes of this workshop was to give an overview of
both traditional and recent approaches to the twin theories of modelling and control
which ultimately must incorporate some degree of uncertainty. The broad spectrum ol
processes for which solutions of some of these problems were proposed was itself a testa-
ment to the vitality of research on these fundamental issues. In particular, these proceed-
ings contain new methods for the modelling and control of discrete event systems, linear
systems, nonlinear dynamics and stochastic processes.

We believe that this workshop has also achieved one of the goals at IIASA, which is

to promote and encourage cooperation between the scientists of Kast and West.

It is our pleasure to thank Harold Kushner, George Leitman and Pravin Varaiya for
helping us organize this workshop as well as the indispensable support provided by the
Hungarian National Member Organization to IIASA.

C. 1. Byrnes A. B. Kurzhanski

Dept. of Electrical and Computer Chairman

Engineering Systems and Decision Sciences
Arizona State University International Institute for

Applied Systems Analysis
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Asymptotically Eflicient Rules in Multiarmed Bandit Problems

V. Anantharam and P. Varaiya

Department of Electrical Engineering and Computer Sciences
and Electronics Research Laboratory

University of California, Berkeley CA 94720

ABSTRACT

Variations of the multiarmed bandit problem are introduced and a sequence of results
leading to the work of Lai and Robbins and its extentions is summarized. The guiding con-
cern is to determine the optimal tradeoff between taking actions that maximize immediate
rewards based on current information about unknown system parameters and making
experiments that may reduce immediate rewards but improve parameter estimates.

1. Setup

We begin with an abstract description and then give two examples. We are given N

discrete-time real-valued stochastic processes

xL xt).xt@), - -

XM xNa), x¥@), - - .
The essential assumption is that these processes are independent. For historical reasons
these processes are also called arms or jobs.
A fixed number m, 1 <m <N, is specified. At each time ¢ we must select m different
arms. Let 7/(¢) be the number of times that arm j was selected during the interval

1,---,t;and let U(t)Ci1, - ,N}be them arms that are selected at time {. Then at time
t we receive the reward

viy= § xirie, (4 H)
JEU )

and the information available before making the next decision at time ¢ +1 is given by the



o-field
I¢y=oxd(s)|s=1,---,7¢nji=1--- N}

Our aim is to select the arms so as to maximize the sequence of rewards. Because the
rewards are random we are never sure which arm gives maximum rewards. Hence in select-
ing the arms we must consider both short term and long term gain. Short term considera-
tions lead us to select those arms which yield large expected immediate rewards, but then
we won't learn anything more about the arms we did not select. Therefore, we may select
arms with lower expected immediate reward simply to obtain better information about
those arms. In other words, in our selection we must weigh making immediate rewards

against gaining information that will be valuable in the future.

We consider two criteria for evaluating different selection rules. The discounted

reward criterion associates to a rule ® the number
Jg(9) = L BEY(L), ®)
t=1
and the average reward criterion associates the number
1 N
J(®) =lim inf = ), EY(¢). @3)
N =

In () 0<g8<1 is a fixed discount factor. The optimal selection rule will incorporate the
best tradeoff between immediate and future gains referred to above. How this is done is

discussed later after we consider two examples.
2. Examples

The first example is the original bandit problem. Each arm X isa sequence of iid vari~
ables X7(1),x?@), - - with probability density f(z,d,)¥(dz) relative to some common
measure v on k. Let u(¥) =f:cf (zx.¥)v(dz) be the mean. The parameters ﬂ’ that charac~
terize the arms are not known. However, if ¥,, - - -, By were known ahead of time, then the

best rule (for both (2), (3)) is always to select the m arms with largest mean values u('ti’).

At each time ¢ the mean value u(ﬂj) can be estimated for example by its sample mean

Ti(t)
1
wty=——"3 x\s)

T9(t) s=1
If arm j is not selected at time ¢, il (t) is unchanged, and so its sample mean stays the
same. So a good rule must balance selecting arms with larger sample means against arms

with lower sample means in order to improve the estimates of their means.

In the second example we are given N jobs which must be processed on m machines.
The jth job requires a random amount Q-’ of processing time and it costs ¢4 per unit time
that the job is not finished. The problem is to schedule the N jobs on the m machines to

minimize the total waiting cost. This can be cast in our abstract form by associating to the



jth job the ‘reward’ process
xI(t)=—c,;1(t <@7),
where 1() is the indicator function. If a scheduling rule @ finishes job j al the (random)
time S7, say, then the expected discounted waiting cost is
N s! .
P c; E I
j=t t=1

To minimize the cost one wants to select jobs with large ¢y and small Q-’. Q-’ is not known in
advance, but can be estimated using the fact that if j is not finished by time ¢ then we
observe the event 1Q7 > 77 (¢)).

Many applications of bandit problems are discussed in Gittins [2]. For an application
in microeconomics see Weitzmann [8]. In these references m =1 for which a fairly complete

result is now available as we discuss next.
3. The casem =1

For m =1 and the discounted reward criterion there is a striking result due to Gittins
and Jones [3]. We present it in the more general form given by Varaiya, Walrand and Buyuk-
koc [7].

Fix an arm X (we omit the superscript j):

X:X(1).X@), -

and let Fx(s) =0}X(1), - - ,X(s)] be the information available after this arm is selected s
times. The Gittins indez of X at time s is defined as

.
Ei ¥ B'x@) 1 FX(s))

¥(s) = sup ‘as:_l , (4)
Mgy Y 8t IFX(s))
t =5 +1

where T ranges over all stopping times of the family }F‘x(s)]. 7 can be interpreted as the
maximum rate of expected discounted reward per unit expected discounted time.

Now consider the problem of maximizing (2). By the index rule we mean the following
procedure for selecting arms: At each time ¢ calculate the current Gittins index of each
arm j, namely, 7’ (T-’ (t)), and at t +1 select the arm with the largest current index.

Theorem 1. The index rule is optimal.

The index of an arm does not depend on the other arms. That is what makes this result

important: it converts an ¥-dimensional problem into N one-dimensional problems.

The index y(s) of arm X in (4) summarizes the optimal tradeoff between selecting X for
immediate rewards versus selecting it for information that will be valuable in the future.
Note that in (4), T is a random stopping time, so that it allows us to continue or to stop

selecting X based on what we learn. For example, consider the arm: X(1) =0 and



_ |1, k=2, wilh prob. 0.5
X(k) =10, k 22, with prob. 0.5

Then,
.
E{R X))
70) = ili‘f L - =2f 2 )
E1Y 6t #
1

is achieved by the stopping rule

o, if X(2)=1

T=\a, £ x@=0"

which selects the arm twice and then continues indefinitely or stops accordingly as X(2) =1
or 0. Observe from (5) that as g »0 the value of knowing X(2) decreases (or the cost of
experimentation increases), while as g -1 this value increases.

Whittle [9] provides an alternative interpretation of the index by considering the two-
armed bandit problem: one arm is X and the other arm, A, gives constant reward A at each

time instant:
X:XAQ)X@2) -+ AANA

Clearly, if X is very small (A -+ —), it will be optimal to select X at ¢t =1, whereas if A is
very large it will be optimal to select A at ¢ =1. There is some intermediate value of A at
which the optimal rule is indifferent to selecting X or A at ¢ =1. This value of A is in fact
7(0) and gives an interpretation of the index as a ''reservation price."

While the index rule result "solves" the bandit problem for m =1, calculating the
index (4) may itseif be a difficult optimal stopping time problem.

It may be conjectured that the optimal rule for m =1 is simply to select the arms with
the m largest Gittins indexes. Unfortunately, this is false as can be seen from the following

simple deterministic example with N =3 and m =2:
x%:1,0,0,0--+; ¥%1,1,0,0--; X%1,1,1,0- - -

Now ¥1(0) =‘)2(0) =‘y3(0) =1 so the conjecture says that it does not matter which two arms
are selected at ¢ =1. In fact the optimal strategy must select X3 and either X! or X2. The
example can be strengthened by taking X3 = 1-g,1-¢,1~—¢,--- with £>0 small. Then
¥3(0) =1—¢ is strictly smaller than ¥*(0) and ¥%3(0), so according to the conjecture we

should select X! and X% at ¢ =1 leading to the instantaneous reward sequence
2,2-g1-~¢,1-¢0"-"" 6)
whereas if X3 and X! are selected at ¢ =1 we would have the sequence

2—-£2-¢1-£0--- Q)
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whose discounted value exceeds that of () by ﬁz —e—ﬂ3(1 — &) which is positive for <1
(and & small). However, this difference disappears as § +1 suggesting that although a
straightforward extension of the index rule for m >1 may not be optimum for the
discounted reward criterion, there may be an extension for the average reward criterion
3).
4. The average reward criterion

We return now to the bandit problem as formulated in the first example of §2. The

total expected reward up to time ¢ obtained by a rule ¢ is

N
¥ u@ET ().

i=1
For any parameter contiguration C = (9, - - -, ¥y) crRYletobea permutationof §1,---,N}
so that

“[1’.,(1)] A al"'["’,y()\l()]- 8)

If C were known from the beginning, the maximum total expected reward up to ¢ would be
m
T ulBgy,lt.
i=1
so we may define the regret of ® at ¢ as
m N
R(E.C.®) = T ul¥ylt — L ulv BT (¢), )
j=1 1=

and we want to find a rule to

Mini;nize R(t.C. @) forallt and C. (10)

It is evident that there will not exist & that minimizes the regret "for all £ and C". If
such @ exists it must achieve identically zero regret because the rule that always selects a
fixed set of m arms gives zero regret for configurations C for which those m arms have the
largest means, but for every other configuration this rule is quite bad since it wiil have
regret proportional to t. This suggests that in order to exclude such non-learning or
non-adaptive rules from consideration we should modify (10) keeping "for all C* while
relaxing the condition “for ail £"'. One way of doing this is to replace (10) with an expected

average reward over time in a Bayesian setting.

In such a Bayesian setting we suppose given a prior distribution P (d 1’,) for v, and we

try to minimize
J(®) =lim sup %_/-R(t.ﬂl. cr Oy DIP(dYy) - Pyld By). (11)

It is an easy matter to construct near-optimal rules for this problem. Note that (under

some simple restrictions on the density f(x,)) the mean u.(ﬂ’) can be accurately
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estimated by the sample mean, i.e., for § >0, there exists T < o such that for every j

T
1
Pjilu(oj)—?‘gle(m <6)>1-6. (12)
Now consider the following two-phased rule &,: In the first or estimation phase the rule
selects each of the N arms at least T times, and in the second phase the rule selects the m
arms with the largest sample means at the end of the estimation phase. >From (12) it fol-

lows that this rule is near-optimal since
J(®4) »0as 6 0.

Although &, is better than a fixed, non-adaptive rule, there are good reasons for not con-
sidering it close to optimal. First, observe that no matter how small § >0 is, with positive
probability the m arms selected will not have the largest mean values for a set of confi-

gurations C, and for each of these configurations the regret will grow proportional to ¢.

Second, as will be seen below, there do exist rules & for which %R(t .C,9) 0 for every C.

Such a rule is qualitatively superior to €, and leads us to conclude that the Bayesian loss
(11) while it excludes non-adaptive rules, it does not adequately discriminate among adap-

tive rules.

This discussion suggests that we should impose the adaptation requirement on admis-

sible rules:
lim sup %R(t ,C,®) =0, for all C. (13)

This is a significant restriction. For example, it excludes all rules that, like ¢4, stop learn-
ing after a predetermined finite time. Indeed, it is not at all clear whether there exist

rules satisfying (13). Furthermore, if there is such a rule ¢, then any rule ¢’ that selects
the same arms as ¢ except over n(t) time instants during 1, - - - , £ with ll—f-t—)- -0 will also

satisfy (13). This brings us to finally to the problem of distinguishing among arms that
satisfy (13) and to the work of Lai and Robbins.

5. Asymptotically efficient adaptive rules

In a remarkable study [4-6] Lai and Robbins posed and answered the question of
asymptotically efficient adaptive rules. Their work deals with the case m =1. We summar-

ize here its extension to m >1 by Anantharam [1].

Recall that an arm is described by iid rewards with distribution f (z, ¥)v(dz) and mean
u(w) = f:f (x.¥)v(dx). For a configuration C =(¥;,'--,VYy) let 0 be a permutation so
that (8) holds. Lel 0<l <m <7 <N be such that

MlBgqy] = UV 1 DUy 40)] = - = ulB g )] =
B =#[1’a(u )] >I‘[1’a(n 4-1)]2 e 2l"["“‘a(N)]'

We call o0(),-:'-,0(l) the best arms, o(l+1),  -,o0(m) the border arms, and
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o(n +1), - - -, o(N) the worst arms. [If ng(m)] >u.|1ia(m+1)]. then o(m) is simultaneously a
best and border arm. |

A selection rule ® is said to be uniformly good if R(¢t,C, &) =0 (¢t?) for every a >0 and
every C. >From (9) it follows Lthat ¢ is uniformly good iff
Eft =TI (¢)] =0 (t™) for every best arm j,
E[T? ()1 =0 (™ for every worst arm j,

for every a >0 and every C.

The Kullback-liebler number
o)
19,0 = [1ogLEB) ¢ (2 wyudz
@0 = flogE 2 1 (@ i)

is a well-known measure of dissimilarity between two distributions. In general
0</(¥, A)s = Define conditions Al1-A4.

Al. u(9¥) is strictly increasing in 9.

A2, 0<I(B, A)<=, for A>TV,

A3. [(¥, A) is continuous in A > ¥ for fixed 9.

A4. For all A\, and all 6 >0, there exists X’ with p(X) <u(N) <p(A) + 6.

Theorem 2. Suppose Al-A4 hold. Let ¢ be any uniformly good rule and C =(¥, - - -, ¥y) be

any configuration. Then

R(t.C. %) [4(Bg(m)) — K(P4)]
i .

(14)
ogt jisworse  1(85.0g(m))

lim inf

Thus every uniformly good rule must select each worst arm j at least
[1(1},. 1}a(m)]-1logt times during 1, - - - ,{. This number decreases as the "information dis-
tance" 1(19, B

[Remark: Unlike the mean w(A), the information distance 7(%, A) need not increase with A;

a(m)) between arm j and the arm o(m) with the mth largest mean increases.

however, that assumption is needed in Theorem 3.]
As example, in the Gaussian case, f (z, 9)v(dz) = N (¥, 02) so u(¥)=9. Then I(¥,A) =
(¥ =A%/ 20% and we get

. R(,C, 9 2%
f._.(;lz R <. SE—
lim in Togt P 5 =,

1 ts worst “ao(m)

Say that a rule ¢ is asymptotically efficient if its regret achieves the lower bound (14) for

every C.

The crucial feature in constructing an asymptotically efficient rule is this. At time ¢
we have Tj(t) observations of arm j from which we can estimate its mean. At ¢ +1 we must
decide whether to select the m arms whose estimated mean values are the largest -- “play
the winners” rule -- or to select an apparently losing arm. The idea is to consider an

apparently losing arm, say arm j, to estimate an upper bound for its mean value, and to
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compare that estimate with the estimate of the least best of the apparent winners.
We now describe a rule that is asymptotically efficient under the additional conditions
AD, AB.
Ab. logf (z, ") is concave in ¥ for each [ixed z.
A8, [z?f(z,9)v(dz) < = for each .
Assumption AS implies that 7(®¥, A) is convex in A, and since | is minimized at A =4, it is

increasing in A for A > 4.
Let X(1),X(2), - - - be the sequence of rewards from an arm. Let h:(0, =) +(0, ») be a

fixed continuous function with fh. (s)ds =1, and let

T f(X(b).¥—5s)
W(a,v)= : h(s)ds.
{0111 7 X(0). 9)

[AS implies that W (a, ) is increasing In 4.
For X >0, let

U(a.XQ1), - . X(a).K)=inf }¥ | W(a,¥) >K]|.
and, lastly, for a fixed p >1, let
g(t.a,X@), - X@)=ulU@ XA, . X@)t(logt)]
Now consider the following rule:

1. In the first N steps sclect each arm m times in order to establish an initial estimate.

2. Fix D< 6 <1/N?% At any time ¢ say that arm j is well-sampled if T7(¢) >6t. Then there
are at least m well-sampled arms when { >N. At each ¢, from among the well-sampled arms

choose the m leaders ranked by the sample mean u? (¢) for arm j:

XTI+ +x3(T )

wt)y=
74 (t)

Now consider the decision at t +1. Consider the arm j for which £t +1 =j mod N, and esti-

mate its upper bound
Hy=git. T ).x7 @), - X (T )]

(a) If arm j is already one of the m leaders at time ¢, then select the m leaders at ¢ +1.

(b) If arm j is not one of the leaders at t, and if its upper bound ;7.-’ ) < uk (t) for every
m leader k., then again select the m leaders at ¢ +1.

(c) If arm j is not one of the leaders at ¢, and if ﬂ.’ 2;4.“ (t) where k is a leader with the
least mean estimate, then at ¢ +1 select the (m-1) leaders other than k& and arm j.

Note that at each time (m —1) well-sampled arms with the largest estimated means are

always selected.
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Theorem 3. Suppose A1-A6 hold. Then this rule is asymplotically efficient.
8. Final remarks

Theorems 2 and 3 also hold without the "denseness' condition A4. They have been
extended to the important case where the arms are finite Markov chains with stationary
transition probability matrix depending upon one unknown parameter, see [1]. For several
families of distributions, including Bernoulli, Poisson, Gaussian and double exponential, the

stalistics g (¢, a) can be calculated recursively, see [6].

Condition AS is essential in the proof of Theorem 3. It would seem, however, that
asymptotically efficient rules should exist under Lthe condition that 7(9, A) is increasing in
Afor A>9.
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ON SOME NEW TYPES OF MATHEMATICAL MODELS OF
COMPLEX SYSTEMS

Asarin Ye,A., Kozyakin V.S., Krasnosel'skii M.A., Kuznetsov K.A.
and Pokrovskii A.V.
Institute of Control Sciences
Moscow, USSR

The paper is aimed at consideration of two new models whose

study has Jjust begun.

1. Desynchronized linear models

Consider a system LV/ consisting of independently operating
parts L4/, cevy LM/ « referred hereinafter to as syastem compo-
nents. Subsequent definitions and constructions will be referred
to such situations when the components states are described by
vectors of some dimensions. Below we shall restrict ourselves
with the cage when the state of each component is described by a
scalar.

;
Assume the variable state of component LW/ is a funotion

x}-ﬂél ("é 20) which may vary its values Jjumpwise in some
instants of time
¢ i —
<
0—1"1<T;<_'_</n <. ., )
where

Lim —Crzoo (j=41 k)

Nn-3» oo

. (2)



"

It is essumed thet .
y| /
. = <T < (3
x )= const (T‘;—i t Tn ).

4
To describe the functioning of component VV/ one should
specify the rule according to which the states following switching
time instants are defined. Let us regard this rule to be descri-

bed by the equality
. s+ L
T4
ICJ-_(T)ZQ}l?&(.S, J+CZ 1(5 1 +ax(,§)(4)

&
The time instants ;§n~1 will be referred to as the component
states measurement times.

It is quite naturel to assume that

i k i ) | .
Sn 3 re ) n s'!T; (j-=.1,2,., k’) (%)

and

J T
Linm S =oo (j,w=12 k).

N oo (6)
Formula (4) means that component VV/i is capable of measuring

its own state and the states of all other components and then
use these measurements to calculate the correction in order to
update 1ts own (only its own) state. As evidence by this formula,
the complex system under consideration is linear.

Formula (4) could have been agssumed to simultaneously include
measurements of states of one or several components at different
instants of time. However this generalization would be only formal.

If the following equalities are true

e
)= =T, (fr= 4., k;n=0,2,..),
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then system (4) may be written as

x(n)zﬂx(t_i) (”:—2,3,.,,)7 (8)
where
Cpg Gpg - Ay x,
A= S ,x=| ). (9)

The first problem arising in the use of complex systems
models described by equations (4) i1s that of the asymptotic stabi-
lity. In the case of a synchronized system (8) this problem ias
solved most easily: the asymptotic stablility takea place if and
omly if

(A< 1), (10)
where Gr(Jd) is the spectral radius of matrix A, i.e. the lar-
gest of its absolute eigenvalues.

Our reasonings did not imply any conflicts between the system
components whatsoever, Moreover all components are assumed to
have a common goal which is to be attained by Jjolnt efforts.

Such joint efforts are reflected 1n an sppropriate cholce of those
coefficients in (4) which allow manipulation with respect to the
unovoidable constraints imposed by the components structure and
the available communication channels betwesn the components.

At first sight, 1t seems reasonable to synchronize the sys—
tem, 1.e. aloways try to make equalities (7) true since this
allows the use of sgimple mathematics to analyze the asymptotic
stabllity. However one should bear in mind that it is desynchro-
nization that 1s the easiest way to attain stability for some

systems - indeed, system (8) may be unstable white its simplest

desynchronizations (4) are stable.
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Besides, in many cases there is no way to achieve synchroni-
zation since the system components are, in principle, separated
(enterprises consisting of separate shops, systems of separately
moving objects, movable objects and dispatch services, etc.)
employ independent computers of different performance, and their
possible updates are determined by different technical, financial
and other potentials, One cannot speak of synchronization when
the switching times ere apriori unknown, planned updates for
individual components shipped, etc.

A few words on the terminology used. If system (4) is of

the form
X tn /i.,u(,af):ajlxlun-i)ﬂw,@;] +. ,+a}.k:r,k£m-{)ﬁ+ ¢;1, (1)

where £> (7 , and not all phase differences gﬂj_

switchings are identical, then it will be called a phase desynchro-

of components

nized system., If its form is
xi. (»n /;}.-ﬂ/j’): “j!. xilln-l)ir}. f'(@:]#—' + ajk de"'l) g}f (6' _'])(12)

where not all periods A} of switching the components are

identical, it will be called frequency desynchronized.

2. Asymptotic stability of desynchronized systems

We have first given consideration to phase desyhchronized
systems of two scalar state components. The degree of desyn-
chronization could be as small as required, therefore there was
a feeling that we might neglect desynchronization in the analysis
of asymptotic stability of the system., Four classes of systems
are possible: stable systems loosing their stability under de~
synchronizations; stable systems meintaining stability under
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arbitrary desynchronizations; unstable systems capable of geining
stability under desynchronizetions of certain types, and finally,
unstable systems maintaining their instability under all types

of desynchronization.

As a simple example, congider system (11) with two scalar
components. This aystem is synchronized with yQ = yg_ , and
phase desynchronized with ¢, % ¢, ( 0 < G o2 < é ).

Let o =ua, =a,, =-0,5 . If @ =1 the synchronized
system is asymptotically stable while the desynchronized system
is unstable. If 6212:—(26 the synchronized system is unstable

while the desynchronized system is asymptotically stable. With

Ay, = C7 both systems feature asymptotic stability and with

A, , = 22 both are unstable.

As noted above, the stability theory for desynchronized
systems has been insufficiently, developed. However some observa-
tions are already available, Some of them was reported in (1 - 5]
and other papers while other results have been obtained quite
recently. Below some easily formulated assertions will be given.

It is easy to prove that system (4) is asymptotically stable
with any sequences of moments of updating and observation of all

its components if the following condition is satisfied:
G(lAI) <1, (13)

where & (/J4/) is the spectral radius of the matrix

Iaf.[, /Cf“/.../a

(Al=1]

lqk1’ /akzl«.. /a

Lkl

(14)
k/</
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Since all the elements of matrix (14) are nonnegative condition
(13) may often be checked without any calculations of eigenvalues
of matrix (14): condition (13) is satisfied iff for some vector
Ug € /z‘; with positive coordinates the strict coordinate-

wise inequality in true:

[Al s < wo. (15)

Systems (4) with scalar components and nonnegative elements
ai}_ are insensitive to all kinds of desynchronizations - both

the gsynchronized and desynchronized systems are either asymptoti-
cally stable, or unstable.

An important class is formed by desynchronized systems with
the symmetric matrix A, If a synchronized system with matrix A
is asymptotically stable the same is true of any desynchronized
system with the same matrix. In a sense, desynchronized systems
with the symmetric matrix A feature a greater degree of stabi-
lity than synchronized systems with the same matrix, Thus, if
no two components are allowed to switch simultaneously the suf-
ficlent condition for asymptotic stability of a desynchronized
system states that the eigenvalues of matrix A should be less
than 1 while its diagonal elements < ; , more than - 1. The
necessary and sufficient condition G;(v/?) < 1 of asymptotic sta-
bility for a synchronized system imposes a greater deal of const-
raints.

A more detalled analysis was carried out for two component
phage desynchronized systems

x(n éifgﬁi):ﬁu-XEm—f)ﬁi+ %Jffjl%c(n—b%fqﬂij) 16)
bYin %1 t )= ﬂ“rum{)%lf %]#ﬂll%ﬂm-[)/;lﬂ&]'
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Here the states < and tf are vectors of some dimensions,
and ./QL{ are matrices of the corresponding orders. Major results
in the study of asymptotic stability of systems (16) were ob—
tained by our young colleague A.F. Kleptsyn. At each step of
Kleptsyn's algorithm a five-tuple of matrices QN), cans Cf (5)
is generated. These matrices are used to obtain the value of /‘\\(J),
If /\(5) < i , 8ystem (16) is asymptotically stable. Otherwise
if A (s) > l some explicit rules are employed to construct a

new five-tuple of matrices yielding the value of /\ (3 + 1) ’

and the validity of the inequality /\(5+1) < 1 is checked.

The algorithm suggested by A.F. Kleptsyn has an interesting
feature. It is unable to detect unstability of system (16) which
makes it rather "distressing" for a researcher., However in case
system (16) is asymptotically stable this fact is revealed by
the algorithm at some step.

If the update times are unknown it is more reasonable to
apply probabilistic techniques to investigate the desynchronized
systems behaviour.

Consider system (4) of the form

b y - ¢
DCJ_'(7;)—6{}111(7;_1)1-“-#-6(,/( xk(/_i). “m

n

Assume each sequence 7;&(”: f,,Z,,,,_ } is a simplest random flow
of eventa with intesity /\} > 0 , the flows with different j:
being independent of one other. Random events flow Tn is cal-
led simplest with intensity /\ > 0 if the values °f7:1_7,:-i and
are independent and distributed identically with the den-

sity

t

p(%):/\e_’\ t>0) . (18)
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#
The above conditions, in particular, imply that | ' ~> oo
with 7 - oo with probability one, and that 7r_$;5 T‘l
n w

with | j-2[+[n-m|> () with the same probability.

Introduce the k-th order square matrices

1 0 ... 0...0

o £ ...0...0
A =12, k)@
A Ay, - a,..a, (=12, k)0
0o 0 1

Put each matrix (19) into correspondence with its Kroneker
oy 2
square Eg y l.e. the k -~ order square matrix determined by

the formula

/ﬂ"‘ o .. 0.. 0

0 ‘ﬂ L 0 ... [)
a4 ' L PR i .. ,1_ o ) : ZI'A(2O)
B = Qﬂ_ﬂ azzﬁ.,.a”ﬂ,,,aikﬁ (1 l,)-))

2 LI

0 o ... 0.0

and, finally, construct a matrix

0 XLBL,L,_.+/\,< B
- Ay o+ +/\k - (21)

It turns out that inequality

sll)<c, <4 (22)

provides stebility of the desynchronized system (17) in terms

of probability. In other words, it follows from (22) that the
probability f)(le £HL>§j} of the inequality flx(é)”.> ¢  tends
to zero with T+ oo uniformly with respect to the initiasl
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states 1;(()) from the unity sphere. True 1s the following
estimate:
A~ TAOCL-eT E

p{//fué)//>é}<zz S/ (,‘x(O)”sj),(eB)
which characterizes the rate with which the trajectories of
desynchronized system (17) converge to zero. Coefficient 0[
in (23) is a function of merely the matrix (21) and the value
of &, o

Note, furthermore, that inequality (22) is not necessary
for the gtable system (17).

In the authors' opinion , further development of the de-

synchronized system theory is of great interest.
3. Limit hysteresis nonlinearities

The concluding part of the paper is deveoted to an almost
untouched mathematical operation associated with the known
Bogoluybov — Krylov principle of averaging 6 on the one hand,
and mathematical models of systems with hysteriesis, on the
other.

In its classicel form the averaging principle refers to

systems described by the equations of the form

i% = F(E,x)) =z, (xe /Qn) (24)

with @ amall parameter £ >>() and a time oscillating (for
instance, periodic) function F?(f) X ) . The averaging prin-
ciple is in replacing (24) with the autonomous equation

o _
I—L—%:Eh(y)’ %(0)110, (25)
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where T

E(V’): _é«_:woo ?ljj F(Ejy)([i'. (26)
D

The basic Bogolyubov's theorem includes a weakly limiting
condition due to the fact that the amolution of problem (24) with
a amall & within a finite interval of variation of the slow
variable T = g E displays little difference fromlthat of prob-
lem (25).

Now a few words on hysteresis nonlinearities. Phenomenolo-
gic models of hysteresis are sometimes associated with concepts
of a multivalued function and, rather rardy, with hysteresis
loops reflecting the system's responce on a periodic external
action. As a rule, both such representations are insufficient.

More sophisticated phenomenological models of such nonlinea-
rities as lost motion and rests, general hysterous and models
suggested by Ishlinskii, Mizes and Trocks, Traizakh and Giltei,
etc., and much more complete and allow consideration of a suffi-
ciently wide classes of externel actions. Such classes may, for
instance, include certain sets of plecewise~monotonic continuous
functions.,

The next step in developing the hysteresis nonlinearities
models implies treating them as systems with natural state spaces
and input-state/input-output operators. The transition from
initial phenomenological representation (similar in ideology to
the trensition from integral sums to integrals, but differing
from this transition in realization technique) allows one to
regard the above operators to be defined at the corresponding
complete functional spaces and to feature some useful properties.

Realization of the system approach to describing hysteresis
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nonlinearities has required substantial difficulties to be over-
come - see |7].

A general description of these and other forms of hystere-
8is nonlinearities looks as follows. A hysteresis nonlinearity
is a physically realizable deterministic system L\// with
continuous input o (f) , 8tates LLl(é) and outputs ;( £)
Extended states of the system { u, cJ 4 form the set S)_(LWO .
Here we consider only those nonlinearities whose properties are
time independent and whose functioning lews are independent of
the reference point and time scale. Under these conditions and

with the given initial extended state of the system

M, ={ute), cocta)r € QLW) (27)

its input (¢ {) determines the law of the system state

variation

weby= Wk, odyuck) b=ty (28)

and the law of its output variation

gtk):; r_{o,w(fo)] u({') (LL?fa), (29)

As an exemple, consider a stop and A. Ishlinakii's model.
For a stop U(A) with a 2h  span the set QN (M(%)j
is formed by a strip |0/ < /4 which may be conveniently
presented (see Fig. 1) as a number of sectors of straight lines
of the form w=(4+ ¢ . Provided the input L&(‘£ ) is monoto-

nic, the variable state
Mdy={udy wibye QcUihys t=t,) 6o

describes a part of an open polygon of an increased thickness in

Fig. 1. A transition to piecewise monotonic continuous inputs 1is
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carried out with the help of a semigroup identity which follows
from the deterministic nature of the system. The limit transition
allows consideration of arbitrary continuous inputs. In the case
of a stop, the output coinsides with the state. Tharefore opera-

tors (28) and (29) may be denoted by a common notation

W(£)=Z/L‘£,,JW(%O);/)JW£) t=t,) G

The state of the continuum family of stops Z{(%) (’%‘2 Cb
will be a function (/¢ A}) such that L«](U)ZZ é? and

jwth ) -cochy < 1h, -4, th h,>0), G2

The extended state (LQ bU('%)] by curve o parametrically

specified by the equations

XiZu—A—w%), a/,_:u+%7—W(/4), (33)

In Fig. 2 curve co igs shown by a double line,
The continuum family of stops is transformed into the
Ishlinskii nonlinearity if operators (28) and (29) are defined

as the equalities
w</’z)‘ ty=U E£°)W(Z)}‘£D))'/;j LA({) (é>, £,) (4

and

%*
§t£) = J Um{,)w(%,’fa))'/;]u(%)pémé) = Bfo)’ (35)

o
where /Lf(‘%) is some finite measure given on the interval

cl, 4,7 -
Let us now turn to differential equations with hysteresis
nonlinearities which are described by the above model. In case

of the equations with a amall parameter we obtain a system con-

sisting of the following differential equation
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Z(—(—gg = ¢ Z(Jf,x,g)) 95(0) =, (36)

and the operator equation

1= = 00w, ¢ ct, xcbi, {c}(on)’uo}GQ(M.(n)

Agsume functions £( é) x, %) and g ( zé)r) to be oscilla-
ting (for instance, periodically) in time t. An od-hoc averaging
procedure (see, for instance, 8)]) may, in certain cases, re-
duce problem (36) - (37) to problem (25). For such cases an
analog of Bogolyubov's theorem was found which gives ground for
the averaging.

However generally an averaging procedure leads to equations

gignifically differing from (25):

Adz

- (38)
7~ ¢ Py, xy==,

whose righthand part consists of the Volterra nonlinear operator

-
. (39)
CP(uJo)JCcS):ﬁ_,n:g% [13,220,W 0,cndg @ xes)33d3,
0

where W/, (0, cdo] 1s the limit hysteresis nonlinearity whose
importance is emphasized by the authors.

The concept of the limit hysteresis nonlinearity is applied
to the functions (¢ ‘l:) S ) of two variables for which
{ e 0, (])7 o} € Q(M/) s by means of the equality

W, E(jy LJOJL((A,S)‘: f{m Z £Q¢uuj wit (ﬁ([— s-5)7. (40)
S—)O 3 )7 2

where

- -4
Pt s 8) = {gf mtn J<b<5 s,

s with + > S_lb. (41)
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The investigation of limit hysteresis nonlinearities has
Just begun; some important results were obtained by T. Gilman
an A, Vladimirov, However a number of situations were found when
finding of the values of operator M[(]’ tUJs ] 1s reduced to
simple manipulations. As an example let us describe the procedure
of obtaining the limit hysteresis nonlinearity operator magnitudes
corresponding to A, Ishlinskii's transformations.

Assume that with 0< G< S

y, (&)= (nf (/((T/I,/ﬁ)’

—w<t<en S S

¥, (6) = Sup uCt, ) (42)
“eo <t <00, 6 € S
and plot curve /[ in plane ¢ Iz, 52 ¥ with a fixed S
(shown by a line of an increased thichness in Fig. 2). This curve

is specified by its parametric equations

Y, =xe), i=% @) (Use<s), (43)

The end points of curve /_I are

NO=45(D) (D)} ana V)8 ), 0 (O F, (aa)

Using curve af\)'o describing the initial state of the
Ishlinskii transformation (shown in Fig. 2 by a double line) and
curve [—' we have to obtain some new extended state {u(dj))
"‘);('A)} in the form of a curve b{B‘g in plane {7, & }
in order to find the magnitude of operator (40).

Curve /ﬂ and the section connecting point A/(S) and
point /\/*:{(,(((ZS)JM(O; $)Y will be a part of curve L«r\js .

Then we must include into this curve the part of curve c¢J,

which lies neither to the right of nor lower than point IV(O) .
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Let the terminal point of this section be denoted as A/ -~ .
To complete the construction me Jjust have to include into curve
L\OIS the section which connects points /\/(U) ama AT .
Curve ::% is shown yby a dotted line in Pig. 2.

It turns out that in & t-periodic input u{(f,s ) the limit
hysteresis nonlinearity magnitude corresponding to the Ishlinskii

transformation is determined by the equality

B
W, <0 co,chiuct s)- PJ U[@MS(A),'%]M({‘;S)&//(%), (45)
where F) is an operator puttfng each function .Z({) periodic
at large +{'s into correspondence with the function FZZ({)
periodic along the entire numerical axis and coinsiding with
2’(£J at large t's. A similar formule holds in the case of
almost t-periodic functions LA(f; sl .

Note in conclusion that N, Bogolyubov's theorem on the
averaging principle maintains its significance when turning from
problem (36) - (37) to problem (38) featuring operator (39).
This fact shows a reason for the importance of limit hysteresis

nonlinearities.
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Abstract

We define viabllity tubes and invariant tubes of a differential inclusion, we
study some asymptotic properties and we characterize them by showing that the
indicator functions of their graphs are solutions to the contingent Hamflton-Jacobi
equation. We provide some examples of viability tubes.
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Introduction

Let X be a finite dimonsional vector space and F : [0 «[X X -+ X a set-valued
map which associates with any slate z € X and any time £ the subset F(f , z) of
velocities of the system. The evolution of the system is governed by the differen-
tial inclusion
* z'(W)eF((t . z)).z(t,) =z,

We conslder now "tubes”, i.e., set-valued maps ¢ -+ P(t) from [o , «[ to X. We
say that a trajectory t + z(¢) € X is "viable” (In the tube P) If
(**) Vt20,z() €ep(t)

A tube P enjoys the vlability property if and only if, for all ¢, 20 and
z, € P(L,), there exists at least a solution z(*) to the differential inclusion (*)
which Is viable.
Remark

A simple-valued tube t - {x (¢)} enjoys the viability property if and only if
z () is a solution to the differential inclusion (*). So it is legitime to regard a tube
having the viability property as a "multivalued solution" to the differential inclu-
sion (1).

The knowledge of a tube enjoying the viability property allows to infer some
informations upon the asymptotic behaviour of some solutions to the differential

inclusion (1), as we do with Lijapunov functions. They also share the same disad-
vantages: the dynamics F' being given, how do we construct the tubes of F'?

We shall begin by characterizing such tubes as ’viability tubes”. For that
purpose, we need an adequate concept of derivative of set-valued map, the "con-
tingent derivative" defined as follows:

Itz € P(t) . v belongs to DP(t , ) (1) if Liminfd(v , ﬂ‘—thi)_—“) =0
-0+

Viability tubes are those tubes satisfying
(**)VELx0,VXELP).Ft,2) N\NDP(t ,z)(1) ¥ ¢
We can regard (***) has a "differential equation for tubes".

We prove in the second section that the "limit” when ¢ -» e of a viability tube
F(t) (namely, the Kuratowski limsup) is a viability domain: hence targets of a dif-
ferential inclusion are necessarily viability domains. We construct in the fourth
section the largest viabllity tube "converging' to a given target. We also provide
a surjectivity criterion which Is useful for solving such problems.

We can characterize viability tubes P(¢) by the indicator functions VB of their
graphs, defined by: Vp(t . z): =0 If £ € P(t), + = if nol. We thus observe that p
is a viability tube if and only if VE is a solution to the "contingent Hamilton-Jacobi
equation”.

inf D,V(t,z)1,v)=0
v eFr(, )

where

Vit +h 2 +hv’) -V ,x)
h

D V(t, 1, : = limi
LY, )1, v) ':"T'on{
v oy
is the contingent epiderivative of V at (¢ , £) in the direction (1 , v).

We then investigate tubes enjoying a dual property, the tnvariance property:
forall {, 2 0 and z, € P({,), all solutions Lo the differential inclusion are viable.
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We justify in section 7 the claim that viability tube and invariant tube are in
some convenient sense ""dual”. When F(t ,x): = A(t)z Is "set-valued linear opera-
tor"” (called a closed convex process), we can define its "transpose”. Therefore,
we associate with the "linear differential Inclusion”

(L) € A(t)x (L)
its "adjoint” differential inclusion
—p(t) €A(t) p(t)

We show that if a tube £t -+ R(¢), the values of which are closed convex cones,
enjoys the invariance property (for the original system), its polar tube ¢ -+ R(¢)*,
where R (t)* is the positive polar cone to R(t), is a viability tube of the adjoint dif-
ferential inclusion.

We end this exposition of viability tubes with two families of examples. 1n sec-
tion B, we investigate "finite horizon' tubes of the form

P@):=¢t ,G, D)

where ¢(0 ,C ,D)=C and ¢(T , C , D) = D, which "carry" a subset C Lo a subset
D. In the last section, we consider tubes derived from 'potential functions” in the
following way

P):=lz | V(t,x(t) —c(t)) sw(t)]

where ¢ (t) and w (t) are given functions.

1. Viability Tubes

Let X be a finite dimensional vector space. We consider a set-valued map
F :[o ,T] XX + X which associates with every (¢ , ) the subset F(¢ , ) of veloci-
ties of the system at time ¢ when its state is z € X. We shall study the differential
tnclusion.

(f) z°(t) €eF(t ,z(t)) foralmostall ¢t €[¢t, . T[

(it) z°(¢) € F(T ,x(t)) foralmostall t 2T (if T < +) (1.1)
(iit) z(¢,) =z,

It will be convenient to regard a set-valued map P from [0 . T] Lo X as a "tube".
Definition 1

We say that a tube P enjoys the 'viability property” if and only if for all
to €lo, T], z, €P (¢,). there exists a solution x(+) to (1) which is "viable” in the
sense that

VL el T], z(t) €B(L)

)T <+, Vt2T,z(t) € P(T) .2

A subset X has the ''viabliity property"” if and only if the "constant tube"
t -+ P(t): =K does enjoy it.

For time independent systems, we know how to characterize closed subsets X which
enjoy the viability property (see Haddad [1981], Aubin-Cellina [1984]). For that
purpose, we introduce the "contingent cone"” Ty (x) Lo X at z, the closed cone of
vectors v € X such that

uminf g_(.zif.ll_'{l =0

h ~0 +



30

A subsel X is said Lo be a "viabllity domain" of a set-valued map F : X + X if and
only if

Vz €K ,F(z) N\ Txlx) # ¢

is upper semicontinuous with compact convex Images, such that
|I F(:) II <a (Il z Il + 1), Haddad’s viabllity theorem states that a closed subset X
enjoys the vlability property if and only if it is a viability domain.

Our first task Is to characterize tubes enjoying the viability property thanks
to its "contingent derivative" (see Aubin [1981], Aubin-Ekeland [1884]). We recall
that

v €DP(t . z)(7) <=5 limins dlv , ﬂ%ﬂ =0 (1.3)
-0+
f -7

We observe that it is enough to know this contingent derivative in the only direc-
tions 1, 0 and -1. In particular, we note that

@RE(E . 2) (1) = fv €X | limins alu ﬂ%)_—’ =0

'r -01
(4i)Tp (%) CDE(E . z)(0) 1.4)

(Equality in (1.4) (1) holds when P is Lipschitzian in a neighborhood of x ).
We observe that the graph of DP(t , ) is the contingent cone to the graph of P at
(t,z).
Definition 2
A tube P:[o,T]+X is calied a '"viability tube” of a set-valued map
F:[o,T] xX » X {f its graph is contained in the domain of F and if
[(i) Vtelo, T[Vz €P(t) F(t.z) \NDE(t ., z)1) # ¢

(it) f T <oo/z € P(T) . F(T,xz) NDP(T.z)o) ¥ ¢ (1.5)

A tube is sald to be "closed" if and only if its graph is closed. Haddad's viabiiity
theorem for autonomous systems and other results imply easiiy the following:

THEOREM 1
Assume that the set-valued map F : [0 , o[ X X + X satisfies:

[(t'.) F upper semi ~continuous with closed convex values 1.6)

@) Ft o)l sadlzll +1)

(a) a necessary and sufficient condition for a closed tube to enjoy the viability
property if and only if P(+) is a viablility tube.

(b) There exists a largest closed viability tube contained in the domain of F'.
(c) If P, is m sequence of closed viability tubes, then the tube P defined by the
Kuratowski upper limit

Graph (P): =limsup Graph(Z,) a.m
n +w

is also a (closed) viability tube.
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Proof
We Introduce the set-valued map @ from Graph (P) Lo R, X R™ defined by

[y xF(s , z) its €fo.T(
G(s ,z):=4[0o ,1]xF(T.,z) ifs =T
fo} x (T, z) ifs >T

We observe that (s (*) , z (*)) is a solution to the differential inclusion
N @), z(t))ec(s(t), z())
(1) (s(t,) . z(t)) =, . x,)

if and only if z is a solution to the differential inclusion (1). We also note that the
tube P has the viabllity property if and only if its graph enjoys the viability pro-
perty for G and that P is a viablility tube if and only if its graph is a viablility
domain of G. It thus remains to translate the time independent results.

2. Asymptotic properties of viability tubes
Theorem 2

Consider a set-valued map F from X to X, which is assumed to be upper semi-
continuous, convex compact valued and satisfies

hF@E)ll <adlz !l + 1) for all z € Dom (F)

Then the Kuratowski upper limit
C : =limsup P(L)
t »

is a viabllity domain of F.
Proof

We shall prove that C enjoys the viability property. Let ¢ belong to C. Then
& =lim ¢, where ¢, € P(t,). We consider the solutions z,, lo the differential

inclusion.
z,°(t) €F(z,(t)), z,(t,) =&,
which are viable in the sense that
Vitxt,, z,(t) €P(L)
The function y, defined by v, (t) : =z, (¢t + t,) are solutions to
Vn () €F (Y, (1)), y,(0) = &,

The assumptions of Theorem 2 imply that these solutions remain in a compact subset
of C(o , = ; X). Therefore, a subsequence (again denoted) in convergence to y,
which is a solution to

V@) EF(t)) . v(e)=¢.

Furthermore, this solution is viable in C since for all t 2 0 , ¢ (¢) is the limit of a
subsequence of y,(t) =z,(t +t,) €P(t + t,) and thus belongs to C.



32

3. The target problem

A closed viabllity domain C of F being given regarded as a 'target”, find the
largest closed viabllity tube P. ending at C In the sense that

PT)=C I T<+w
or

li‘msupfc(t)=c If T=+4+o

Knowing such a tube P, we thus deduce that starting at time o from X : SP_ (o), a
solution to the differential inclusion z* € F(x) must bring this initial state to the
target.
Proposition 1

The assumptions are those of Theorem 2. We can assoclate with any closed
viability domain C of F a largest viability tube P, ending at C. This tube is closed
if we assume, for instance, that for any compact subset X, the set S of solutions to

z(t) €eF(z(t)) ,z(0) €K
is compact in the Banach space B(o , « ; X) of bounded functions.
Proof
(a) The solution is obvious when T' € + «: We take

P):=fx(t) |z eF(z), z(T)ecCy.

It has the viabllity property: if (¢, ¢) belongs to the graph of P, there exists a
solution z to the differential inclusion ° € F(x) such that z(t) = ¢t and x(T) € C
and z (s) belongs to P (s) for all s 2t by the very definition of P.. Hence it is
viabllity tube ending at C. It is the largest one: if P is any viability tube, then, for
all (¢ , ¢) € Graph(P), there exists, thanks to the viability theorem, a solution =
tox” €F(x) such that z(s) € P(s) forall s 2¢. Since z(T) € P(T) C C, so that ¢
belongs to Pr(t).

The graph of P, is closed : if ¢, € P.(t,,)and If (¢, , ¢,) convergesto (¢, &),
we see that (¢ , {) belongs to the graph of P.. For there exisls a sequence of solu-
tions z,, to z,° € F(x,) satisfylng z,(¢,,) = ¢, and x,(T) € C. Since these solu-
tions remain in a compact subset of C(o , T ; X), a subsequence (again denoted) z,
converges uniformly to a solution z to the differential inclusion z° € F(z) which
satisfiesx(t) = ¢and x (1) = lim z, () € C

n +w

We also observe that
Pe)={y(T -t) |y €-Fy).v() ecC|

Those two subsets do coincide because x is a solution to x° € F(z) if and only if the

function ¥ defined by y(¢): =2 (T —t) is a solution to ¥y° € —F(y) such that

v (o) = z(T).

(b) Consider now the case when T’ = = and denote by L the set-valued map associ-
ating with any continuous functlon z (¢) € C(o , o, X) its llmit set

L(x): =limsup {z(t)] = N cl(z([T, »[)
t+=- Tao

The same arguments as those In the finilte horizon case imply that the tube F,
defined by

Fot):=fz(t) |z’ €F(z),L(x) cC|
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is the largest viabillty tube "converging’ to C. We have to show that it Is closed.
As in the finlte horizon case, we consider a sequence (¢, , z,) € GraphP, which
converges to (¢ , ) and solutions z,, to

z'q(t) €F(z, (1)), z,(t,) =&, and L(z,) CC

Since the £, ’s belong Lo a compact X, the last assumption we made implies that the
solutions z, () lie in a compact subsel of B(o , «,X). A subsequence (again
denoted) =z,() converges uniformly on f{o,«[ to a solution z(s) to
z’ €F(z), z(t) = ¢ We deduce that its limit set L (z) is contained in C from the
fact that the set-valued map L is lower semicontinuous: for if y belongs to L(z)
and if a sequence z,, converges uniformly to y, then there exists ¥y, € L(z,) cC
which converges to ¥, and which thus belongs to C, which is assumed to be closed.
The lower semicontinuous of L follows from:
Lemma 1 Let B(o, =, X) be the Banach space of bounded continuous functions.
The set-valued map L is lower semicontinuous from B(o , = ; X) to X.
Proof of Lemma 1

Let ¢ €L(x) and z, € B (0, =, X) converge uniformly to = on [o, »[.
There exists t, - = such that x(f,) converges to ¢&. Further, for all € >0, there
exists N such that |l E :(t)ﬁl < g foralln 2 N. Hence llz:n (ty) — ¢ |l < & for
all t, large enough. Since the dimension of X is finite, the subsequence z, (t.)
converges to an element ¢, which belongs to L(x,) and thus, [ £, — ¢ |l <2 & for
all n & N. Hence L Is lower semicontinuous.

4. A surjectivily criterion for set-valued maps

We propose now a criterion which allows to decide whether a compact convex
subset C lies in the target of a differential inciusion. It belongs to the class of
surjectivity theorems for "outward maps" (see Aubin-Ekeland, [1984]). The idea is
the following. We consider a set-valued map R (the reachable map in our frame-
work) from a subset X of a Hilbert space X to another Hilbert space Y. We want to
solve the following probliem:

For everyy € C ,findx € K such that y € R(z) {(4.1)

(l.e. we can reach any element of the target C from KX).

Assume that we know how Lo solve this problem for a "nicer" set-valued map ¢
from K to Y (say, a map with compact convex graph).

For every y € C , find z such that y € Q(x) (4.2)
The next theorem states how a relation linking R and @ (R Is "outward with respect
to" @) allow to deduce the surjectivity of R from the surjectivity of Q.
Theorem 3

We assume that the graph of @ is convex and compact and that R is upper
semicontinuous with convex values. We set

K :=Dom Q , C:=lm @ (4.3)

if R Is "outward with respect to” @ in the sense that
Vz €K, Vy €@(z),. v €R(z) +T (V). (4.4)
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then R is surjective from K Lo C (in the sense that C C R(X)).
Proof

It is a simple consequence of Theorem 6-4.12 p.343 of Aubin-Ekeland [1984].
We replace X by X x Y , X by Graph @ (which is convex compact), A by the projec-
tion n, from X XY toY and R by the set-valued map G from X XY Lo Y defined

by:
Gz ,v): =R(z) —y, where y, is given in C. (4.5)
The outwardness condition implies that the tangential condition is satisfied.

O €—-y +R{(z)+ Te(y) and, since y, —v belongs to To(y) (because y, € C),
thenO € —y, +R(z) + To(y) =C(z . ¥) + Tc().

We observe that
Te() = Tipew) = T"u(G"'P" @ (@ . V) =cl(my, Tgupn @ (£ . V) —CG(z .¥))
Theorem 6.4.12 Implies the existence of (£ , ¥) In Graph @, a solution Lo the inclu-
siono € G(z ., ¥). l.e., Lo the inclusion Y, € R(Z).
Remark
The dual version of the "outwardness condition” is the following:

Ve eENY), VzeA W y), <q . y>soR(z).q) (4.5)

where
gR(z).q): =supli<g ,z>| z € R(z)}

is the support function of R (z).

Remark By using the concept of T-selectionable maps introduced by Haddad-Lasry
[1983] (see also Aubln-Cellina [1984], p. 235), we can extend the above theorem to
the case when R is T-selectionable instead of being convex-valued. We obtain:

Theorem 4.

We assume that the graph of @ is convex and compact and that R is T-
selectionable. If R is "strongly outward with respect to" @ in the sense that

VzeK,Vy €Q(z) . R(z)cy —Tely) (4.6)

than R is surjective from X to C.
Remark

Other sufficient conditions can be proposed to guarantee the surjectivity of
R. For instance, "inwardness' condition

—Cc N (Rz) + Tc(Q(zx)) (4.7)
z ek

implies the surjectivity condition when R is upper semicontinuous with convex
valued and "strong inwardness' condition

C—-R@Ex)c N T (4.8)
v €Q(x)

implies the surjectivity condition when R is only T-selectionable. We use the same
methods applied to the set-valued map H(z , ¥) : =R(z) —v,.
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§. Contingent Hamilton-Jacobi Equations

We may regard condition (1.5)(i) involved in the definition of viability tubes as
a "set-valued differential inclusion” the solutions to which are "viability tubes”
and condition (1.5)(ii) as a "final" condition.

Actually, conditions (1.5) defining *viability tubes” is a multivalued version of
the Hamilton-Jacobi equation in the following sense.

We characterize a tube P by the indicator function li, of its graph defined by

o if z €pP(t)

‘i’(t 1x)i= +e {f not

(5.1)
The contingent epiderivative D, V(¢ , ) of & function ¥V fromR XX toR | [+ =| at
(t , z) in the direction (alpha , v) is defined by
D, V(t . x)a, v): =liminy YL ¥ BR  Z Yhw) ~V(, z)
h ~0+ h
w -9
g~a
The epigraph of D, V(t ,x) is the contingent cone to the epigraph of V at
(t ,xz,V({,x)). Hence, conditions (1.5) can be translated in the following way:
Proposition 2

A tube P is a viability tube if and only {f the indicator function iﬁ, of its graph
is a solution to the "contingent Hamilton-Jacobi" equation.

i D W . 1, =0 5.3
uei‘?tf,:) Vp . 2L, V) (5.3)

(5.2)

satisfying the final condition (when T < ):

inf D . 0, =0 5.4
DR (T 20, v) (5.4)
Remark
When the function V is differentiable, equation (5.3) can be written in the form
v

Yy Pz, =0
0t ver,z) o 0xg

We recognize the classical Hamilton-Jacobi equation (see Aubin-Cellina [1984],
Chapter 6). A thorough study of contingent Hamilton-Jacobi equations (for
Lipschitz maps F({ , )) is carried out in Frankowska [1986]), where relations with
viscosity solutions introduced by Crandall-Lions P.L. [ ] (see also Lions P.L.
[1982]) and generalized Hamilton-Jacobi equations (Clarke-Vinter [1983],
Rockafellar [to appear])

8. Invariant tubes

We distinguish between viability tubes and invariant tubes in the same way as
viability domains and invariant domains.

Definition 3.

We say that a tube P enjoys the invariance property If and only if for all ¢,
and z, € P(i,), all the solutions Lo the differential inclusion

z(t) eF(t, z(t)) (6.1)
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are viable in the tube P.
We say that P is an "invariant tube” if

(@) VL €[0T, Vz € P(t),F(L .z) cDP(t, z)(1)
YU T <+, z cP(T), F(t.z) CDP(t,z)O) (6.2)

We obtain the following theorem.
Theorem § Assume that F:{o , T [ X 1 »R" is Lipschitz with respect to z in the
sense that

Je@eLllo,. DI Ft. 2)cFt, v +k)lz -y lB (6.3)
(B is & unit ball). Let t » P(t) C 0 be a closed tube: If P is invariant, then it
enjoys the invariance property.
Proof

The theorem follows from the following lemma, an extension to a result from
Aubin-Clarke [1977].

Lemma 2

Let P be a closed tube and nL’(t)(V) denote the set of best approximations of
v by elements of P(L).

liminf d(y +hv P(t +h)) —d(y , B())
h -0+ h
< inf d(y . DP(t , z)1))) (6.4)

r € lpu)(y)

Then, with any solution to the differential inclusion z* € F(f , z), we associate the
functiong (£): =d(z (), P())

let us choose Yy (L) € TB(‘) (x(t)). Inequalitles

gt +h) ~g(t)
h

=9(z(t) +hz(t) + ho(h), P(t +h)) —d(z(t).FP(t))
h

sllo(n) |l + SE=(E) +hz"(t) Pt +h)) —d(z(t) . P(t))
h

<d(z’(t), Pt ,y()1)
d(z’(t) . F(t, v

< sup d(v,F(t,y()))
v EF(t,x(t)

sk lly@) -z =k d@@). P
=k (t) g(t)

imply that g(t) is a solution to the differential inequality.
D,g(t)X1) <k(t)g(t):g(t,) =d(x, ,F(L,)) =0

Hence d(z (t) ,pP(t)) =g(t)=0forallt € (¢, , T[.

Proof of Lemma 2

(8) Let y € P(t) and u € DP(t, y)1) be given. We consider sequences h, -0+
and u, - u such that

dy +h, u, ,P(t +h,))
liminf L n =0

n +w h'ﬂ




37

Hence, forallv € X,

-}Td(y +hov. P +h N sllv—u, I+
AW +hy u, P>+ R))

h

n

which Implies the desired inequality by letting h,, gotoo.

(b)

Let us choose y £ P(t) and z € P(t) such that lz -y | =d (y , P(t)). We
observe that

-}Td(y +hu  P(t +h) —d W . P())
‘%(uy —zll+d(z +hv, Pt +R)) ~d(y , P(t)

=%d(z +hu, P +h)).

Since z belongs to P(t), the desired inequality for x implies the one for y since

liminf S@@ +hv , P(t +R) —d(y . P(t))
A0+ h

1
s}llr[\.lsi Y (d(x + hv , P(t +1R))

sd(v.DP({t,z)(1))

Remark
This lemma implies that if

Vt, xepP(t),F(t ,z)cDP(t, x) (6.5)
and if

Vit ,z » F(t,x) is lower semicontinuous, (6.6)
then

Vi, WxepP(t).F(t . z) cCP(t,x)(1) (6.7)
where

v € CP(t . z)(1)

if and oniy if

im S thv PGt +R)
A0+ h
AR

Pt

This convergence Is uniform with respect to v € F(t , ) if this subset Is compact.
In particular, if

xz »DP(t, x)(1) (6.8)

Is lower semlcontinuous then

Dp(t,z)(1)=CP(t,z)(1) (6.9)
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Remark
If we assume that the condition

V(t,y)€DomF ,Jz €llpg,y(v) such that
(t,y)cDP(t,z)1)

then the tube P is Invariant by F: thls knowledge of the behavior of F outside the
graph of the tube P aliows to dispose of the Lipschitz assumption.

(6.10)

We can characterize the indicator functions of the graphs of invariant tubes
in the following way.

Proposition 8

A tube P is Invariant by F if and only if the indicator function of its graph is a
solution to Lthe equation

sup D, VB(t ,z)1,v)=0 (6.11)
v EF(t, )
satisfying the final condltion
T <+ o, sup D,VB(T.:)(O ,v)=0 (6.12)
v EF{,x)

7. Duality relations between invariant and viability tubes

Let us consider the case when F(t ,x): =A(t)x is a time dependent closed
convex process A(t) whose domain Is the whole space X. In thls case, we look for
tubes R the images of which are closed convex cones. We assoclate to the tube R
its "polar tube” R * assoclatling with any ¢ the (positive) polar cone

R(t) :=fgeXx'| Vy eR(t), <@ . v > =0} (7.1)
We also associate with A(¢) its "transpose” A (t)° defined by
PeEA(L) g <>
V(. Yy)€EGraph A (t) ,<p .,z ><<g ,y > <> (7.2)
(~p ., q) €(Graph A (1))*.

We consider the "linear" differential inclusion
z(tYeA(t) z(¢L) (7.3)
and its "adjoint” differential inclusion
P (t) €A(t) p(t) (7.4)
We shall prove that the invariance of the tube X implies that its positive polar
tube R ¥ is a viability tube of the adjoint inclusion.

THEOREM 6

Let us assume that Lthe domains of the closed convex processes are all equal to
X and that

(1) the lipschitz conslants of A(f) are less than

or equal a function of k (¢) of L% , T)
(7.9)
(i) (t,q) ~» o(A(t)z , ¢)is lower semicontinuous
forallz € X
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Lel R be a tube with closed convex cone values. [f R enjoys the viability property
for A(t), then the tube R* is a viabillty tube of the adjoint differential inclusion
and thus, it enjoys the viablility property in the sense that vt € [o, T], V

g ER()Y, there exists a solul.lon q to the adjoint inclusion such that ¢(¢) =
and ¢ ('r) € R('r) forall T €[o, t].

Proof
We have to prove that
Vtelo,T], Vg, €R(t)*
AW q VDR, q)(-1) # ¢ (1.6)

Since the transpose A (t)* ¢ is upper semiconlinuous with compact convex images,
Theorem 1.1 will imply that R * enjoys the viabilily property. Let S C Hio , T; X)

be the set of solutions to the differential lnclusion z°(t) € A(t) z(t). We denote by
7, the linear operator from H? (o, T; X) to X associaling with every z its value
Yex:=z(r)at 7 €0, T]

To say that R enjoys the invariance property means that for all
0o<s<(t<T,

7 SN 7T R(s)) CR(L)
By polarity, we deduce that
R (SN 7 REM* =77 SN 7T Ris M
We deduce from Frankowska [1986a] that
SNYTRENT =5 + 97 R(s)*
Hence, for all ¢, € R(t)t and for all s <t, there exists - € R(s)*? such that

Y 9y — 75 95 belongs to S*. Always by Frankowska [1986a], there exists a solu-
tion p; to the adjoint inclusion on the interval [s , t]

2., (N €A’ p, () ip, () =q, . r.7mn
which satisfies

ps(s) €R(s)*

By replacing t by s and s by o, we can extend the solution p,(+) on the whole
interval [o , t]. We now let s converge to t. Since Dom A(t) =X, we know that

o(At)'p ,x) = —0(A(t)x , = p)

Hence the lower semicontinuity of (¢ ,p) + 0(A(t) z . —p) implies the upper semi-
continulty of o(4(t)°p .x), and thus, the upper semicontinuity of
(t ,p) +A(t) ' p. (See Aubin-Ekland, [1984], Theorem 3.2.10). Therefore for all
€ >0, there exists 77 > Osuch that, forall T €[t —~7,t]Jand p €¢;, + 7118,

A(T)'p cA(t) q, + B
The set of solutlons p; to the adjoint inclusion being contained in a compact set of
C(o , T ; X), a subsequence (again denoted) p; converges uniformly to a solution p,

to the adjoint equation. Hence there exlsts a < 7 such that, forall vt €[t —a ,t],
and for all s , [ Py(1) —q < 71. Therefore

Vs, Vrelt —a,t], A(1)' p (1) CA(t) ¢ +eB
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By integrating (7.7) on the interval [t ~h ,t]withs =t —h ,h < a, we deduce
that

L Pe-n(t —h) —q
vy = ry

t
1 ,
="T f Pyp(T)dT
t -h

t
€ —% S A p (M) dT € ~ & (A(t)" g, + £B)
t -h

—A(t) ¢, + eB
This subset being compact, a subsequence v, converges to an element

v € A(t)" q,. Since q +hy, =p 2t —h) €R(L —h)* forall h >0, we deduce
that v belongs to DR*(t , ¢;)(-1).

8. Examples of viability tubes

Let us consider two closed subsets C and D of R™ and differentiable map ¢
from a neighborhood of [0, T] X C x D to R®. We consider tubes of the form

P(t): =%t ,C.D) (8.1)

Proposition 3: Let us assume that
VtET Wz €P(t),J(.2z)€C xDsuchthat &t , v . 2z) =z ,

J(u . v) € Toyp (¥ . 2) such that

(i)iret<rT, ¢, .V yZu + &,y 2 EF( . 2) &t .Y, 2)
()if t =T, 8T,y . 2)+ (T, v,z €F(T, z) (8.2)

Then the set-valued map P defined by (8.1) is a viability tube of ¥ on [0, T].

Proof: We observe that Graph (P) is the image of [0, T] X C X D under the map ¥
defined by ¥(t , ¥ .z)=(t, &t .y .z)).

By Proposition 7.6.2, p. 430 of Aubin-Ekland [1984],
¥ (@.v . 2)Tp, rixcxp (8. V 1 2) CTogpnpy (¥, ¥, 2)).

we deduce that conditions (8.2) imply property.
When C and D are closed and convex, we can characterized viability tubes of
the form (8.1) through dual conditions. If X is a subset of R®, we denote by

oK ,p): =sup <p , x> (8.3)
z ek

its support function.

Proposition 4: Let us assume that the values of F are compact and convex and that
the subsets C and D are closed and convex. If for any t € [0, T], Wz € P(t),
there exists (¥ , 2) € C x D satisfying &(t , ¥ , 2z) =z and for all

ped(t.v.2) TNV N (v . 2) T Np(2),
we have

() Vt<T, <p, & (t,v,2)> +olF(t,¥t.v.2)), Pao
(it) for t =T, oF (T, (T, y . z)), —p) 20 84
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then the set-valued map P defined by (8.1) is a viabilily tube of F on {0, T].

Proof: When C and D are convex, Toyxp (¥ + 2) = Tc(y) X Tp(z) so that conditions
(8.2)1) and ii) can be written

(@) F.z)—¢°(t .y, 2NNty .2)Tcly) +4,°(t,v.2)Tp(z)) # ¢
(i) F(T.z) N (T, 1. 0TcW) +4, Ty TN #¢ D

The separation theorem shows that they are equivalent to conditons (8.4).

Corollory 1: Let us assume that C and D are closed convex subsets and that the
values of F are oconvex and compact. Lel ¢:R, » R, be a differentiable function
satisfying either one of the following equivalent conditlons:

Foranyt 20, VWV, xz, €P(l),thereexist y € C,2z €D such that z =y + &(2)z
and either

@) (L. y+et)2) - €1)z) N (T W)+ Tpz)) ASirL<T
()  FT.y+Dz) N Te@w) +Tpz) #pirt=r &6
or
VP €New) N Npz)

(i) ¢ (t) op(p) + oF (t ,y +¢&)z, -p) 20 ift <T (8.7)
(it) oF (T ,y +&T)z, p) 20 ift =T

Then the set-valued map P defined by
P(TYy:=C + &it)D (8.8)

is a viablility tube of F on [0, T].

Let us consider the instance when C = fc{ and when O belongs Lo the interior
of the closed convex subset D.

We introduce the function ay defined by

a,(t ,w): =
) P :S#E(x) v ER( }[::ffw 7) <P.v> (8-9)
opp)=1
= sup inf 3U <p,v>
2 €D veEF(t ,ctwz) p €ENp (2)
opP)=1

(The last equation follows from the minimax theorem.)

Letl us assume Lhat there exists a continuous functiona : R, X R, +R, satisfy-
ing a(t ,0) =0 for ali ¢t & 0, such that

V(t,w)€ER, xR, ,a(t . w)za,(t,w) (8.10)
Let @ be a solution to the differential equation

¢(t) =a(t, ®(t)), &0) = ¢, given (8.11)
satisfying

a(T, &T)) =0 (6.12)

Since op(p) >0 fpr ail p # 0, we deduce Lhat for all z €D and all p € Np(z),
¢(t) op() 2 a(t, &1)) op(p) 2 a,(t, &1)) op(p)
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D <'-—L , VD
v (i‘(t.cp+ *(t)x) op(@)

=—a(F(t ,c + &t)z), =)

zap(p)

Hence, condition (8.7)1) is satisfied. Also

0=a(T, &T) = ag(T . #(T)) & ——— a(F(T , ¢ + ¥T)z), —p)
ap(@)
Then
P(t): =c + #(t)D (8.13)

defines a viability tube of F.
For instance, if D : = B is the unit ball, then ag(p) = li P Il and Ng(z) = Az for
allz €S : ={z | l z Il =1]. Hence, In this case we have

inf <v,z> (8.15)

ag(t , w): = s
of ) ||gﬂp=1~u €eF{t ,c +wz)

In other words, the function a, defined by (8.8) conceals all the information
needed to check whether a given subset D can generate a tube P.

Remark: When a is non-positive and satisfles a(f ,0) =0 for all t 2 0, then there
exists a non-negative non-increasing solution ¢(-) of the differential equation
(6.11).

When T = e, we infer that f a(7T, ®(7))d 7 is finite. Let us assume that for 0
[
allw, €R,,
lim a(t,w)=a,(w, (8.16)

t -w-

w *w,

Then the limit ¢, of €(t) when t - = satisfies the equation
a.®) =0
Otherwise, there would exist € >0 and T such that a (%, + £ <0 and for all

t>T,a(t, &t)) <a &, + &by definition of a,.

We deduce the contradiction
t
#t)=&T) = [a(r, ¥(TdT S (t ~T)a 8, +¢&)
T

when t is large enough.
Ezxample: Let us consider the case when F does not depend upon t. We set

Po: =Sup wln>f° Aw —ag(w)) (8.17)

Assume also that Ay, € R achieves the supremum. We can take y(w): = Aow —p, .
If py > O, the function

';‘,—Z(l —~exp (A, (t =T) if Ay #0

op(t): = (8.18)

—po(t —T) If 2 =0
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is suoh that P(t) : ={c + #y(t) D] iIs a pipe of F such that P(t) = fc{. If po =0 and
Ao <0, then the functions

Aot

ot): %o (po — ™) (8.19)

are such that P(t): =c + &,(t)D defines a pipe of F on [0, e[ such that P(¢)

decreases totheset P_:=c¢c + % D.
]

9. Tubes derived from potential functions

Let X CR™ be the viability domain and let us consider a "potential function” V
fromR™ toR, (U {+ =]. We shall study in this section tubes of the form

P(t): =lz €X | V(z) s w(t)] . (9.1)

where w is a non-negative function defined on [0, T]. We shall begin by providing
sufficient conditions on X, V, w and F implying that set-valued maps P of the form
(9.1) are viability tubes of F. We obtain in this case the following resuit:

Proposition 5: Let us assume that X {s closed and that V is locally Lipschitz around
K. Let w be a C1- function defined on a neighborhood of V such that

Wt €[0, T[, the elements of P(t) are not critical pointsof Von kX (9.2)

We posit the following condition

Vit eE[O,T[, Vz € K such that V(z) = w(t) ,

Ju € F(t, z) N Cx(z) such that C, V(z)(u) < w*(t) @.3)
and

If £ € X satisfying V(z) = w(T) is a critical
pointof Von X ,then0 € F(T , z). (8.4)

Then the set-valued map P defined by (9.1) is a viabilily tube of F on [0, T].
We shall also study tubes of the form

Pt):=lz €K | w_(t)<V(z —c(t)) <w ()] (9.5)
where ¢ is a function from [0, T'] to X and w _and w, are non-negative functions,
which define some kind of neighborhood around a function ¢t -»c(t), such as

periodic trajectories of the dynamical system (1.1). They are speclal cases of
tubes associated to p potential functions ¥; by the formula

P(t): =z €K | V(o{t ,z)sw(t), t=1,...,p)| (9.6)

where € is a smooth map from [0, T] X X to Dom V. We shall then provide suffi-

clent conditions on ¢ , w and the functions V; for a set-valued P of this type to be a
pipe for a given set-valued map F'.

Theorem 7: Let us assume that X is closed, that € is C! around [0, T] x X, that w
is C! around [0, T] and that the p potentiai functions V; are locally Lipschitz on a
neighborhood of ([0 ,T'] xX) .
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It,z):=lt =1,...,p | V(%1 ,z)) =w () 9.7
We assume Lhat

Vvt e€[0,T]), WV € P(L),

. 9.8
O co[ U e (L. x) BV (8t ,x))]+Ny(z) @.8)
tel,x)
and that
0 € F(t , ) for all z € P(T) such that there exists ©.9)

i €I(T ,z)suchthat 0 € ¢ (T, z)° 8V (# (T, x)) + Ny(xz)

We posit the following assumption

) Wtelo,T[,Vz €eP(t),Ju € F(t , z) N Cx(z) such that
Vi €It ,x), C, V(8 . 2))(8°(L . z) + & °(L , z)u) < w (L)

(it) Wz € P(T), Ju € F(T , =) M Cy(x) such thal (3.10)
Viel(T ), C, Vi (T , z))(¢," (T ,x)u) <0

Then the set-valued map P defined by (9.10) is a viability tube of F.
Remark: Observe that the elements x € X satisfying

O (L ,x)° OV (8t , x)) + Ny(x) 9.9)
are Lhe critical points of z + V;(¢(f . £)) on X. Assumption (9.9) states that criti-

cal points of some functions V(¢ (T , ¢)) on K are equilibria of F(T , ). We can say
that a solution to

0€co (G € (t,x)° OV, (8(t ., z)) + Ng(x) (9.11)
i=1

is a Pareto critical point of the functions V‘(Q(t . *)), ( Pareto minima do satisfy
this inclusion).

Corollary 2 Let K be a closed subset, V be a C?! function from a neighborhood of
[0, T]JtoK ,w_and w, be C! non-negative functions satisfying

Vit el0,T[.Osw (t) <w (T) =w (T) <w,(t)
andw (1) >0, w,’ <0 (9.12)

We posit the following assumption:

t) Wte[0,T[, Vz suchthatV(z -c(t)) =w (1),
there exists u € F(t , ) N Cx(z) such that
C(x —c(t)N(u —c(t)) sw (L)
(it) Wt €[0,T[, Vz suchthatV(z —c(t)) =w_(1), (9.13)
there exists u € F(t , ) N Cx(z) such that
C_V(x —c(t))(u —c’(t)) 2w _’(L)
(iii) Vz such that V(z —c(T)) =w (T) =w (T).,0 € F(T . z)
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Then the set-valued map P defined by
Pit):=lx €K, w_(t)<V(z —c(t)) s w,()] (9.14)
is a viabliiity tubeof Fon [0, T].
Proof of Theorem 2.2:

- P -
We set, DomV= (N DomV;,V{z): = (Vy(x),..., V() and
{=1

Ep(V):={(z ,w) €DomV XRP | V{(z)<w, for{ =1,..., p)|. Let 4 be the ct
map from a neighborhood of [0, T) X X to R® P defined by

A(t ,z):=(8(t ., z), w(t)) (9.15)
Then we can write

Graph(P): = {(t ,z)e€[0, TIxK | A(t .:)€Ep(-.V)l (9.16)
We then use Proposition 7.6.3, p. 440 of Aubin-Ekeland [1984]. It states that

T t), u €T, A(t ,z) {7, u)eT + (AL,
[Te€T, rt) . v €Ty(z) | A7 .zX (T, u me(( ED]

S Tcmphcf’)(‘ , z) (9.17)
and that if the transversality condition
At ,zXT t) x C -C .+ (A(t,z))=R"™ xRP 9.18
z)(Tpo, i€ x(z)) Ep(h z ( )
then
iT € T[O, T](t) , u € CK(I) |
. 9.19
At BT w)y €C o (Al . 2 € Coraph py (L + 2) (819)
Inclusion (9.17) implies that for ali t € [0, T],
IDP(t , z)
clueTy(z) | Vi el(t,z). D,V (&t ,x)(& (t . z)+&.°(t . 2)u) (9.20)
< w, ()}
since
At jz) (T, u)=(8(t , )T+ &' . x)(u), wit)r) ) (9.21)
and since
T A .zN=T . (&t.,z),w(t))
Ep(V) Ep (N
(9.22)

=f(u ,A) €R™ xRP | Vi €I(t ,x2), A 2D,V (¥t , ) (u){

In the same way, inclusion (9.19) can be rewritten in the following form
fu €Cyl(z) | Vi €1(t ,x),C,V, (8(t . x)) (8§ °(t, z)T+&°(t, z)u)
Sw ()T} CCP(t ,z)(7) COP(t ,z X(T). (9.23)
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This inclusion and assumption (8.10) imply that P is a viabllity tube of F. It
remains to check the transversality condition (8.18), which can be written in the
following way:

Vug €R" , Wiy €RP, Ju € Cylz), 7 €T, r(t)

such that
Vi eIt ,z), w't)rz
, , _ (9.24)
CoVe(o(t ,z)(@(t . z)T+8.°(t ,x)u —uy) + g

By assumption (9.8) and the separatlon theorem, there exists « € Ck(z) such that
Vi €el(t,z), C,V (&t ,x)) (8,°(¢ ,z)u) <0 (9.25)

There exists 7 such that C, V,(&(t , z)) (&,°(¢ , z))+v) <0 when v € nB. Let
B=0If Ay <Oand

B>Ay / | C V(8. x)) (8, °(t . z)E) | ifAg >O0.

We take a =8+ 7 | Il uy Il Hence, T: =0 and u : =at provide a solution to
(9.24).
Then this transversality condition holds true for all ¢ € [0, T[ and all x € P(¢).

When it falls to be true for some z € P(T), we then assume that such an z is an
equilibrium of F(T , »).
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L. Introductlon

Despite ubiqultous success in the implementatlion of classical automatic con-
trol, there are many presslng necds for the design of more advanced, high perfor-
mance, real-tlme command generators. For example, the needs for a significant
increase In the accuracy, speed and versatility of robotlc manlpulators have led to
a reexamination of classical (e.g., PD) controllers for DC actuators and an explor-
atlon and evaluation of the use of new and more sophisticated control schemes (see,
e.g., [1]-|6]). Aslde from specific needs to meet more demanding performance re-
quirements, more versatlle command generators are now required to fully realize the
benefits of the new deslgn optlons which have been made possible by recent hardware
innovatlons, ranglng from devices such as microprocessocs to DC motors. Indeed,
recent advances 1n DC motor technology have made the Implementation of direct drive
actuators for robot arms attractive and feasible: the first of two new kinds of DC
motors, based on rare earth cobalt magnets, has already been used in the Carnegle-
Mellon direct-drive arm 1n 1981 and 1n the MIT direct drlve arm (sce [7]) In 1982,
while a second kind of DC motor 1s currently being used Ln the construction of a
four degree of freedom robot arm at the ASU Robotics Laboratory. The advent of
direct drive actuators will allow robot arm motion which Ls an order of magnitude
faster than previous conventlonal arms, with end effector speeds of up to 30 feet
per second and accelerations of up to 5 to 7 G's, bringing robot motion control out
of the quasl static domain and into a more complex dynamic domain.

In order to deveiop command generators capable of real-time high performance
operation In a varlation of environments, it becomes necessary to be able to use
analysis and design princlples which apply to (at least some broad class of) non-
linizae systems as well as llnear systems. In thls paper, we descrlbe 4 research
program which we have been pursulng for the past 3 years, whose goal 1s the devel-
opment of heurlstics for nonlinear control, slmilar in scope and splrlt to classi-
cal control, to be used 1n the analysis and design of nonlinear feedback control
systems. Thus, for example, we wish to develop nonllnecar generalizatlons of some
of the concepts famillar from frequency domain theory and to use these, Ln much the
same way as classical control methods, to design and analyze nonlinear versions of
PD control, lead-lag compensation, etc., to "shape thec response" of nonlinear sys-
tems. The methodology we propose in Section 3 1s based In part on providlng a set
of sufficiently powerful system-thcoretic heuristics to permlt the development of a
class of sImply structured control laws capable, for example, of stabillzing a non-
linear system given only a crude knowledge of the actual system parameters. In
practice, these parameters would typically consist of literally thousands of tran-
scendental functlons, renderlnyg the on-line parameter estlmation of the system
coefflclents an extremely unattractive alternatlve, from the polnt of view of both

rlgorous analysls and cost-effectiveness. We also belleve that the simpler the



50

deslgn phllosophy and the simpler the controller structure, the more likely it 1is
that the controller can be "molded" to fit a particular nonlinear application.

Thus motivated, ln & recent secles of papers, we have begun the development of
analogues, for nonlinear systems, of famillar frequency domain concepts based on a
reformilation of classical control theory in a state-space setting. Suggestlons of
such a reformulation can be found in the use of singular perturbatlon methods in
the analysis of adaptive control or learning systems (see, e.g., Sec. 2.5), as well
as In the differentlal geometric reformulation of (A,B)-lnvariant subspaces by
Isidorl et al ([8], see also [9]). Combining these methods with tools from global
differentlal geometry, dynamical systems and PDE's we have further developed the
nonlinear formulation and use of famillar concepts such as "mlnimum phase",
"relative degree". Naturally, for linear systems our usage of this terminology
agrees with the classlcal usage. For nonllnear systems, there also are antecedents
in the literature for certain of these "frequency domain" notions; e.g., our
relatlve degree plays a fundamental role Ln Hirschorn's work [10] on system Iinvert-
Ibility, where it is called the system relative order. It also plays a cruclal
role in Freund's intriguing design of computer-controlled nonlinear robotic manipu-
lator, where 1t is called the system dynamical order. On the other hand, perhaps
one of the major technical and novel contributlons In this program Is the intrinsic
definition of (finite) "zero dynamics.” For llnear systems, the zero dynamics ls a
canonically assoclated linear system wlth natural frequencies preclsely at the
system transmlsslon zeroes. For nonlinear systems, (finite) zeroes correspond
Instead to a nonlinear dynamical system whose asymptotic properties determlne the
stabllity of closed-loop fecedback systems. In this regard, our design philosophy
retalns much of the classical control Intuitlon. Our definition of "zero dynamlcs"
was Insplred by and In the scalar case colncldes with the (local) definition glven
in Isidori-Krener [11], see however Isidori-Moog [12]| for a (local) development of
the MIMO case.

To 1llustrate what we have in mind, in section 2 we discuss the PD control of
a robotic manipulator, to which we return in Example 5.5. Section 3 contains some
of the basic development of the analogues, for nonlinear systems, of certaln class-
ical control concepts such as relative degree or minlmum phase properties. Section
4 gives a sketch of our program to deslgn, e.g., stabilizing compensators on the
basis of our nonlinear enhancement of root-locus methods. Finally, in section 5,
we 1llustrate, ln a series of 5 examples, our design methodology. Notable among
these examples Is the control of rigid satellite motlon, using only two actuators,
to a revolute motion about a principal axls and a rigorous analysis of PD control

of a robotlc manipulator, glving ln effect a nonllnear version of the Zlegler-
Nichols rules.
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2. Nonllnear PD control of a Robot Manipulator

for the sake of illustration, we consider the problem of set-point control,
1.e., stabllization about the state (q, q) = qy 0), for the rigid body model of a

robotlc manipulator.
M(q)q + B(q,q)q + K(q) =T (2.1)

In contrast to path-planning using the method of computed torque (see, e.g., [1] -
{2]), which requires explicit knowledge of thousands of nonlinear terms in (2.1),

one might expect that a nonlinear PD controller
1= K (a-qy) - K (q) (2.2)

could be designed using much less explicit knowledge. Indeed, one of our goals to
find systematic means, perhaps using describlng function methods together wlth the
"frequency domain" methods developed in section 3, to obtaln a nonlinear version of
the Zlegler-Nichols rules which would determine appropriate nonlinear functions

K, K 1in (2.2). There are, of course, several existing heuristic derlvations of
controliers (2.2). For example, one design cited In the robotlics llterature (see,
e.g., [13], [14]) 1nvolves cancelling only the gravltational fleld K(g) and adding

as a dissipative term a linear PD controller; e.g.
= -[K(q) - (qd -q)]-4§ (2.3)

We note that, In particular, for space or underwater applications the gravitational
field can be ignored, in which case (somewhat remarkably) we would be controlling
the nonllnear system (2.1) by a fixed parameter linear PD controller. The argument

offered in [14] used the Lyapunov functlon
oy 1 et . 0T _
Viq,q) = 3 (9 M(q)q + (qd q) (qd Q)

for which one can show

ve-dta
By LaSalle's invarlance principle, each bounded solution tends to the largest
Invariant set contalned in q = 0, which 1s simply the equilibrium point

(qd’ a) = (qd’ 0)

Elementary counterexamples show, however, that boundedness cannot be automatically
guaranteed; from a dynamical systems polnt-of-view, 1t is a question of whether =
behaves like a saddle point for (2.1) - (2.2).

The Justification ([13], [14]) offered for global stahility of (2.1) - (2.2)
1s the somewhat heuristic belief that "all physical trajectories are bounded".
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Certalnly, all initial states xy have finite energy, but for an actual digital con-
trol Implementation of (2.3) eventual unboundedness of X manifests itself ln over-
flow, saturatlon, etc. Such closed-loop behavlour of (2.1), (2.3) has, In fact,
been observed In simulations of a 2 degree of freedom direct-drive horlzontal arm
(where one can also neglect the gravitational terms) designed by D. W. Parish (see
[15]) at the ASU Robotics Laboratory. Nonetheless, we believe the derlvation and
Justification of (2.3) ls appealling, retaining as Lt does classical control
intuition. Our goal Is to extend this intultion by regorously developing a set of
classically-based heurlstics tor nonlinear systems, glving a basis for designing
the nonlinear analogues of classical control laws (2.2) and for a rigorous analysis
of resultlng closed-loop behaviour. Since llnear state space concepts often gener-
alize more lmmediately than frequency domain concepts, in this paper we will expli-
citly describe how to interpret the latter for nonlinear systems. In particular,
on the basls of thls theory we can give a rigorous analysls of the closed-loop

behaviour of feedback systems such as (2.1)-(2.2), see, e.g., Example 5.5.

3. Frequency Domain Methods for Nonlinear Systems

In this sectlion, we illustrate our development of the analogues for nonlinear
systems of those frequency domain notions so important In classlcal control. One
of our long-term goals, about which we can say quite a bit in the scalar input -
scalar output case, 1s to develop a deslign philosophy for the construction of
(globally) stabllizing compensators for nonlinear systems. Rather than a depend-
ence, say, on expllcit knowledge of the Taylor coefflcients, this deslgn philosophy
1s based on seemingly famillar notions such as the (strong) relative degree of a
nonlinear system, or knowledge that a nonlinear system ls "minimum phase". And,
based on such knowledge, we design classical compensators, e.g., leadlag compensa-
tors, which we show stablize the system (globally) for initial data ln any given
bounded open subset of state-space. Thus, these algorithms are designed to achieve
set-polnt control of lnitial states with an a priori bounded "energy". This gives
us a rlgorous version of the often appealed to heurlistic bellef that "all physical
trajectorles are bounded".

As a flrst step, we formulate several definitions which are the nonlinear
analogues of the linear notlons of left or right half plane zeroes and of zeroes at
infinity. For slmpliclty, these definitlons are given in the scalar real analytic
case. The approprlate multlvariable deflnitions are given In Isidori-Moog ([12],
these proceedings). We consider then real analytic systems evolving on a real

,analytlc manifold M of dimension n. Thus, In local coordinates, such a system is
described by

x = f(x) + ug(x) (3.1a)

y = h(x) (3.1b)
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Denotlng the Lie derivative of a function F with respect to a vector fleld V
by LVF, we formulate

Definition 3.1. The system (3.1) has a zero at infinity of multiplicity v _ if

v -2
o«
Lgh(x) = Lgth(x) T ie. = LgLf h(x) = 0 (3.2)
and
vl
LgLf hi(x) #0 . (3.3)
For a linear system
X = Ax + ub (3.3a)°
y = CX (B-Ib)'

one computes LbL:x cx = cA"b. for this reason, we shall also call v, the relative

degree of (3.1).

Definition 3.2. The system (3.1) has strong relative degree v, provided it has a
v -1
zero at Infinity of multiplicity v_ and LgLf h never vanlshes.
Turnlng to the multiplicity of "finite zeros", denote by aA* the maximal

locally (f,g)-invariant distributin contained in ker(dh) (see [8], [9]).

Definition 3.3. The system (3.1) has finite zero dynamics of orver ve provided

Ve = dim a* ,

where dimension 1s understood in the generic sense.

We note, for example, that just as in the llnear case,
Vo * Vp = N
Example 3.1. (A local form of systems of relative degree 1.) To say v =1 is to

o €M such that Lgh(xo) ¢# 0. In particular, a* = ker(dh). Thus,
there exists a coordlnate chart (xl, eey xn), centered at X, and defined on a

say there exists x

nelghborhood U of xo, such that
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(1) a* + span{g) = TX(U), x € U;
(11) a* = span (L0, ..., 2 )
ax axn_l
(111) span {g} = span [ 3.
axn

In these coordinates, setting z =.§3_ , (3.1) takes the form
X
n

z = fl(z’xn)

;n = fz(z,xn) + ugz(z,x")

Yy = h(Xn)
In the light of the third equation, the second equation may be replaced by
y = f(z,y) + ug,(z,y)

where, of course, f, = Lch and g, = Lgh. Therefore, (3.1) can be expressed as

Ne
i

fl(z,y) (3.4)

<o
]

th(z,y) = uLgh(z,y).
In this setting, the zero dynamics 1s the (n-1)-th order system
Z= f (z,0). (3.5)

Remark: 1In the linear case, a stralght forward Laplace transform argument shows
that the llnear system (3.5) has its spectrum precisely at the original system
zeros. Thus, our definition of zeroes does not correspond to a set of complex
frequencies, but rather to a dynamical system which, in the linear case, has the
zero locus as its set of natural frequencies. We now proceed to give a global,
coordinate free definition for v 2 1.

Suppose Xe 1s an isolated equillbrium point for (3.1) and suppose (3.1) has
strong relative degree v . Wlthout loss of generality we can assume h(xe) = 0.

If v =1, then A* = ker(dh) and we can consider the leaf

Lix,) = h™! (0) (3.6)
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of A* contalning X1 see Figure 3.1. As In the llnear case, the "zero dynamics"
should correspond to the drift, f(x), In (3.1) constralned to the locus (3.2.6) as
Flgure 3.1.

¥ R
0

Figure 3.1 Constraining the drift term to h™1(0)

Motivated by Euclldean geometry, we proceed formally, first defining the
constrained vector fleld F via

F:f-ﬁg (3.7)
<g,9>

where, however, the inner product (or Rlemannian metric) <,> Is of course not
defined, either intrinsically or extrinsically. Indeed, we will instead think of
the 1-form dh as being "dual" to the vector flield g since

<dh,g> = Loh # 0

and Interpret (3.7) as the following definitlon, which does make Intrinsic sense,

-
-
-

(3.7)

-
i
-
1
-
|
['=]
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If v =1, taking into account the definition of F and (3.4), we see that
(3.5) is clearly the expression, in local coordinates, of the vector field F|L(x )
of the zero dynamics. As in [17,18], we have chosen u(x) so as to constrain the

dynamics (3.1a) to the locus (3.6), 1.e. u(x) 1s chosen so as to satisfy
<dh, f(x) + u{x)g(x)> =0
or, if one computes, so that

th + uLgh = 0.

If Lgh = 0, we also impose thls constralnt and repeat, as in the "zero

dynamics algorithm" (see [12]), to obtaln a constralning input, viz.

f

utx) = N
Lobe¥th

For arbltrary v_, then, we set

1
v -1
LgLf h(x)

\Y
Blx) = a(x) = - B(x)Lg “h(x)

and define the vector flelds
F=f+g9ga, G=g8

Thus, we may take as our definltlon of zero dynamics the restriction FlL(x ) where
e

F=f-—" g 3.7)"

and L(xe) 1s the leaf of A* passing through X g We must, however, check that F is
tangent to L(xe). For this we need some technical results from the geometric
theory of (f,g)-Invariant distributlions:

Lemma. The followlng ldentlitles hold:

(1 L) = LG, 1=0, vy v - 15

(11) Léh(x) 0, 1=v, ..., dim K;
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v -

() Lt © hx) - 1;

£
(1v) [F,a*]e a*; and
(v) [G, a*]e= a*.

We can now verify:

Lemma. F is tangent to L(xe).

Proof. By (iv) of the above Lemma, F maps leaves of A* to leaves of a*. On the

other hand, L(xe) contalns an equilibrium polnt for F, viz, X because

v -1
f(xe) = 0 and u(xe) = —B(xe) < de h(xe), f(xe), f(xe) >=0

Definltion 3.4. Suppose (3.1) has strong relative degree v_. The zero dynamics of
(3.1) 1s the dynamical system defined by the vector fleld

FIL (x,) (3.8)

As for the case v_ = 1, for l1lnear systems the spectrum of (3.8) colncides
precisely with the zeroes of the system transfer function. Thus motivated, we
define what is meant by zeroes lying in left or right half planes.

Denote by Ws(xo) and Wu(xo) the stable and unstable manlfolds of X0 for the
system (3.8) and let Wc(xo) be a center manifold for (3.8). Setting

s = dlmws(xo), u = dlmws(xo), c = dlmwc(xo)

we wlll say that (3.1) has s left half plane zeros, u right half plane zeros, and ¢

purely imaginary zeros, in analogy with the linear case. Note that
s$+u+c=v, (3.9)

Deflnition 3.5. The system (3.1) is minimum phase on M, provided (3.1) has vp left
plane zeros. The system (3.1) ls globally minimum phase on M provided it is

minimum phase and the zero dynamics (3.8) 1s globally asymptotically stable.

In [16,17], 1t was shown that the local normal form for systems of relative
degree one glven in Example 3.1 holds globally, under some addltional minor
technical hypotheses (which in fact are also necessary). from the existence of the
normal form, 1t ls possible to obtaln many results concerning stabilization and
control of (strong) relative degree one nonlinear systems, see e.g. [16]-[17]. The
recent extensions of these methods to arbltrary relative degree reposes on the

following normal form for v_ > 1, see [18] for proofs and more detalls:
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Theorem 3.1. Suppose (3.1) has strong relative degree r, the vector flelds

G,adFG, veey adF"IG are complete, and the level sets
h(x) = Leh(x) = ... L:_h(x) =0
are connected. Then there Is a globally defined diffeomorphlsm
T:M.L(x)xR"
~ e

where In the new coordinate system the system (3.1) takes the normal form

X, = fl(xl, Xz)’ X, € L(xe)

iz,l = Xg,2

iz,r-l = X (3.10)
. Ve vl

Xpr = Le h(xl,xz) +u LgLf

Y = %0

Remark. In (3.10) il = fl(xl,xz) i1s the expression In local coordinates for an
xz—dependent vector fleld on L(xe), which is now parameterized In local coordinates
by X, and Ls therefore deflned by the equations, X, = 0. As for the case v =1,

setting x, = 0 we obtaln In (3.2) the following expression
X, = fl(xl’ 0) (3.11)

for the zero dynamics, evolving on L(xe). As In [18], if (3.1) is globally minimum
phase, by Milnor's Theorem we have L(xc) = R® and (3.4) can be interpreted as a

stable system of 0.D.E.'s on R,

4. Feedback Stablilization of Nonlinear Minimum Phase Systems. In this section, we

Iilustrate the use of the frequency domaln heuristics for nonlinear systems derived
In section 3 In the desfign and analysis of stabilizing feedback laws. In
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particular, we sketch some initial results for the construction of both dynamic
compensators (e.g. lead-lag laws) and nonlinear state-space feedback (e.g. PD)
controllers. While the results presented here do comprise the first general
approach to nonlinear stabilization which can, for example, stabilize open sets (in
the Whltney topology) of unstable control systems, we view these as preliminary
results and one of the primary research goals we are proposing is the systematic
development and extension of these methods.

The design and stabliity analysls of the dynamlic compensation schemes proposed
here fall Into three sequentlal strategles. Flirst, the analysls of hlgh gain
feedback for globally minimum phase systems of strong relative degree one; second,
the effects of adding stable zeroes to systems of higher relatlive degree; and,
third, the effects of adding sufficlently stable poles to stable high gain
systems. Slnce, of course, root-locus arguments cannot be applled directly to
nonlinear systems to determine global results, we shall require an alternative
approach. Explicitly, we make heavy use of singular perturbatlion methods ploneered
as a tool for root-locus analysis In the linear case by Kokotovic et al. [19] and
used as an analogue to root-locus arguments in the nonllnear case by Byrnes-Isidori
([16]-[181) and also by Marino ([20]).

We begln with a simple example. Consider first the system, defined on R

x=x2+u,y=x (4.1)

Trivially, (4.1) 1s minimum phase and has relative degree 1, leading to the
classical control strategy u = - ky whlch In fact locally stabllizes (4.1).
Moreover, for all Xg there exlsts k, viz, k > Ixol, for which X, * 0 1is
closed-loop. While the closed-loop system 1s never globally asymptotically stable
for any flxed cholce of k, thls feedback strategy has the pleasant property of
stabllizing arbitrarily large relatively compact sets of inltial data. In this
sense, classical controllers can be designed to globally stabilize all "physical"
initial conditlons of a (strong) relative degree 1, globally minimum phase

nonlinear systems.

Theorem 4.1. Suppose the system (3.1) on R" has strong relative degree 1, 1is
globally minimum phase, has 0 as an equillbrium, and the vector fleld G is
complete.

Conslder the output feedback law u = - ky. For any bounded open set U¢=Rn,
there exlsts kU such that for all k 2 kU and all X, € U the solutlon X of the

closed-loop system tends to O.
Because the deslgn philosophy and the analysis of such laws Is rather
orthogonal to conventlonal nonlinear feedback control, we will present a falrly

complete proof of Theorem 4.1.
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Proof. We flrst note that, by Milnor's Theorem, L(xe) 1s diffeomorphic to R™M!
and 1s, In particular, path-connected so that normal forms exlst. As ln (3.10)

choose coordlnates (z,y) 1n which the closed-loop system takes the form

Ne

= fl(z,y)
ey =¢ th(z,y) - ngh(z,y)

of a slngularly perturbed system, where ¢ = 1/k. Settlng ¢ = 0, we obtaln the

constralnts
ngh(Z,y) =0

which Imply, by hypothesis,

In particular, the reduced system (see [19]) ls preclsely the zero dynamlcs which
1s assumed to be globally asymptotically stable. The boundary layer equatlon 1s
simply

2 ~ ~ -~
y=-y Lgh(zo,y) y(0) =y,

which 1s uniformly asymptotically stable on bounded sets, so that Tychonov's
Theorem applles. Thus, for inltlal data (zo, yo) one obtalns the asymptotlic

expresslon

¢ it + 0(1/k)

N
1l

Yy = y + 0(/x)

Therefore, there exlsts ko’ k = k(zo, yo), such that

0
1im 2, = 0
[
limy_ =0
t+oo t

holds for each k > k0 on an open nelghborhood of (zo, yo). If U 1s any bounded

nelghborhood of (z ) a standard compactness argument ylelds the exlstence of

o' Yo
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k > > 0 such that for all X0 the solution Xy of the corresponding closed-loop

system tencs to 0. Q.E.D.

We now consider a system (3.1) with relatlve regree r. Let c(s) = e, *+ ¢
r-2
s

r-2 +s" 1 he a lurwitz polynomial and conslder the "derived" output

_ r-2 dr'l
Y=Cy+e ==t tC d %y + y
d r-% g¢f2 dtf !
(4.2)
=c, xz,1 +c xz,2 +oeee + cr-zxz,r-l + xz’r

y(t) 1s thus the output of a cascade connectlon of (3.1) with (4.2). Heurlstically,
the augmented system should also be "minimum phase". While this is correct locally,
appeal to the normal form (3.12) and to Tychonov's theorem (cf) ylelds, however, a
far more subtle perturbation problem. Combining the methods sketched above with
Lyapanov methods and LaSalle's Theorem, we are nonetheless able to rlgorously prove
global stability for a restricted class of minimum phase systems, e.g., for systems

with a stable Inverse, see [21]. As an easy example we note:

Theorem 4.2. Suppose the system (3.1) on R" Is mlnimum phase, has 0 as an
equllibrium and has strong relative degree r. Then, for any bounded open set U
there exists oy < 0 such that if

c(s) = 0 » Re(s) < %y

the cascade system (3.1) - (4.2) 1s minimum phase on U with strong relative
degree 1.

The final phase of our construction 1s to analyze the effect of adding to
(3.1) a "pole" which lles sufficlently far to the left of the imaglnary axis. The
key Inductive result ln the analysis of lead-lag compensators follows from a

standard singular perturbation argument.

Theorem 4.3. Suppose v_ =1 and that for some k the closed-loop system 1is locally
and globally asymptotically stable to x, on R". IfU1s any bounded nelghborhood
of X, there exlsts a positive gy sufficlently small, so that the closed-loop

system with compensator

k

+ €S

y(s) e < g

G(S) =

is locally and globally asymptotically stable on U.
Summarlizing these results we obtaln the following heurlstic design principle

for stabilizing nonlinear minimum phase systems of arbltrary relative degree:
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Suppose (3.1) 1s a globally minimum phase system having strong relative degree r.
For any bounded open set U Rn, there exlsts ku’ a,» B, such that 1f the proper

transfer function
k(s) = k p(s)/q(s) (4.3)

satisfles k > ky» p(s) = 0 » Re(s) < @ q(s) = 0 + Re(s) < B, then the closed-

loop system satlsfles:

For all Initial data X, € U and z, an inftial condition for a realization of
(4.3)

x, + 0, zy 0ast + =

t

5. Examples and Illustratlons. In thls section we 1llustrate the design

techniques sketched In the previous sectlons.

Example 5.1. The system on R? defined via

-z + 2%

N
H

(5.1)

2
= cos(zy) + e+Z(l+y )u

<.
|

has (strong) relatlve degree 1 wlth positlve "hlgh frequency” galn and stable zero

dynamlcs

i = = Z. (5-1)'
Clasical control suggests using the output feedback law
u=-ky (5.2)

to achieve closed-loop stability. In fact, since z = 0 is a hyperbolic
equilibrium, by setting ¢ = 1/k and applying a singular perturbation argument

(based on Tychonov's Theorem) to the closed-loop system

2=-2+12%

2 2
ey = € cos(zy) - e*? (L+y )y
one can conclude that for a flxed bounded open subset U R? there exlsts a kU such
that the feedback law 5.2 wlth k > kU stabllizes the closed-loop system (5.1) -

(5.2) for all Initlal data (zgyy) e U,
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Remark. Examples {e.g., (5.1) with the second equatlon replaced by y = u) show
that, In general, the requlred galn kU must grow with U, in sharp contrast to the
i1inear case. Nonetheless, for fixed U, the law (5.2) with k > kU does have an
intinite galn margin (In the sense of [37]), retalning some of the robustness

features of classical llnear control.

Example 5.2. The system evolving on R® deflned via

2
1

- - &Y (z23- 3
(I-y)z, - e(zy-z ) + y’ sin z,

-zeY% (5.3)

z
2 1

y = cos{z z
y s ) 2) +u

has (strong) relatlve degree 1 (with positive high frequency galn) and has as zero
dynamics the van der Pol osclllator
i =z -Za+z

1 2 1 1
(5.3)'

2, =-12.
2 1

Implementing the output feedback law (5.2), nonlinear root-locus theory (l.e.
the closed-loop dynamics should limit to the zero dynamics in a sultable sense)
would predlct the existence of a stable 1lmit cycle for k >> 0. 1In fact, since the
1imit cycle in (5.3)' is normally hyperbolic, by setting € = 1/k and appealing to
Anosov's Theorem, we see that for a flxed bounded set U of inftlial data L there
exists a kU so that In the closed-loop system (5.2)-(5.3) wlith k > kU’ x
approaches a unlque (stable) limit cycle.

In Examples {(5.1)-(5.2), we could appeal to a singular perturbation argument

t

because the w-ilmit sets for the "zero dynamics" were normally hyperbollc and
because the systems were in a "normal form" expllicitly displaylng the "fast" and
"slow" state varlables, glving a nonlinear generallzatlon (see [25]-[26] and also
[561, [57]1) of the llnear, relative degree one (SISO or MIMO) case treated by
Kokotovic et al. In [58]. We now consider an example where, In fact, 1t wlll be

necessary to choose the outputs in order to reallze a state feedback law.

Example 5.3. Consider the system evolving on R accordlng to

N |
X, =X,
y = x3
x, = X3 (5.4)

Xe
1]
c
.
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In order to render (5.4) a relatlve degree 1 system we choose a "dummy output" y of
the form

y = h(xl,xz,x3) = x_ + y(xl,xz)

3

and then choose y(xl,xz) so that the zero dynamlcs are stable. In "normal form"

(5.4) takes the form

M 3
= X
xl 2

x, = (y - y(xl,xz))3 (5.4)"

y = u+ y(xl,xz)

choosing y(xl,xz) = x €12, we have the zero dynamics

1

x = x3
X, = x5
M 33X X,
X, = -x’e
2 1 172

which can be seen to be locally and globally asymptotically stable by applying
LaSalle's theorem to the "energy" function V(xl,xz) = x: + x;. We Implement the

control law

u=-Kky- y(xl,xz) (5.5)
For example, with k = 1 (5.5) specializes to the control law

+x x" e xX2e* %2 (5.6)

- - _ 3
u=-x_+ (x1 X X2 i

3

which is locally asymptotically stabilizing by the center manifold theorem. We
stress, however, that (5.6) was derived In a systematic way using geometrlc
nonlinear control theory. For a given bounded open set U, there exlsts a kU such

that

X X
u=-kx, - (- kx. +x3+x x4+ xXx?%)e 2
30 ¢ 1 2 XXyt xx)eTl
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stablllzes all Inltlal data x_ e U, for k > ky» glving an Inflnite galn margin even

0

in the critically stable case.

Example 5.4. We describe here an exampie from spacecraft attitude control whlch
exhibits some of the problems we propose to study. The example considered in some
depth in Crouch [22] concerns the speclflc case of atitude control of a rigid
spacecraft wlth actuator fallure, Ln thls case Lhruster jets, so that there are
only two remaining control torques acting about principal axes. The equations

describing the system are then given by

&1 = awu, +u) a = (3, - 1)/},
&2 T a,wuw, + U, a, = (Ja - Jl)/jz
(5.7)

by = e, ag =3 - 3,4,
R = S(wR

0 Wy "W,

Stw) = T, 0w
w, "W, 0

attitudeﬂof the spacecraft refative to inertial axes, and wy are the components of
angular velocity. There are two problems of special lnte;est, controlling the
system to the equilibrium state w = 0, R = R0 some desired attitude, and
controlling the system to the perlodic trajectory consisting of rotation at a
constant rate wy = A about the third princlpal axis. It is shown in Crouch [39]
that If a, # 0 the system above {s controllable, and locally controilable about
each of the equllibrlun (trajectories) above. However of more interest would be
the development of closed-loop state feedback controls which would locally and
perhaps globally stablllize the system about these equillbria.

We first 1llustrdate how to stabillze the angular velocity equatlons (see also
[23] - [25]) usling a multlvarlable extenslon of our technlques. We proceed by

choosing Ypp ¥, s0 that the system has relative degree 1 through each channel and
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is minimum phase. Explicitly, we take

yp = e+ ley)

Y, = w, ¥ Yz(“3)

leading to the zero dynamics (i.e. Y, =Y, = 0)

wy = agy () v, (u)

Let us assume } > j2, 1.e. that a, > 0. Then, choosing

L o2
Yilwg) = - ey, v, lug) = g

glves the stable zero dynamics

'=.+ = u_ + 2
Yo T Wy T Y, T A0 Uy Uyt caun 0,0y

In particular, by the center manifold theorem the feedback law

u = -a4a - -
1 1% T Y, T

Uy =T Ayt Y,

locally asymptotically stabllizes the system about the equilibrium, wy = 0.

In the original coordinates, we have

(5.8)
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At one time, it was the hope that feedback laws such as (5.8) would ultimately
lead to the design of feedback laws stabiiizing the full set of satelllte equations

{(5.7). It is now known [26] that there does not exlst a smooth (l.e. C”) state
feedback law, u = F(w,R), which makes the equilibrium w = 0, R = R, locally
asymptotically stable. However, using our design philosophy we can derive state
feedback control laws for which the closed-loop trajectories asymptotically
approach a motlon about the third principal axis. Explicitly, using Euler angles

to parametrize the frame R (see e.g. [22]) the feedback law

- - - 2 2y _ -
u1 = n':l1 63m2m3 K(ml+ ¢+ Ala3“’3 + Bla3“’3) cos(n)uu1 + aasln(n)m3 Ala3w2
2
-2 aju w,u, (5.9)
u:-aamm-K(m +n+A +Ba2m2)
2 237173 2 2 2 373
_ _ _ _ 2 2
sin(n) tan (¢) @ - w, - 3, cos (n) tan (¢) w, - 2B ajw]
where
AIAZ = 0 and Al(Al - BZ) - AZ(AZ + Bl) <0

satisfles: For a glven bounded set U of initlal conditions X4 there 1s a ku such

that (5.9) for any k > ky» drives (uxl)t >0, n >0, ¢ +0, a5t + =

Example 5.5. Conslder the rigid body model (2.1) for a robotic manipulator, we

wish to analyze the effect of the PD control

= - klk,(q-qy) + Q) (5.10)

where kl, k, > 0 or, more generally, are matrices with o(ki)t:.c+. We analyze
(5.10) In two stages, first we set y = q - 94z = q and consider the stable

differentiator
z = kzy +2

which has the effect of making the robot arm minimum phase, relative degree 1 in

each channel. Explicitly,
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s
1]

z - kzy
(5.11)

z = f(;,y) + M(y) te

which has zero dynamics, i.e. constraining z = 0,

y =-ky.

Now, implementing (5.10) takes the form

which can be analyzed as above using Tychonov's Theorem.
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1 Introduction

The central problem of control theory is to design a control law that will
cause a system to meet some set of design specifications. For example the
problem may be as simple mathematically as to find a function u(t) so that
the system

z = Az + Bu, z(0) =z

takes on the specified value zr at time T or it could be as complex as
defining the control law that will allow a robot to function on an assembly
line. In either case the primary function is to assure that the control law will
meet some set of specifications. In the first example the problem usually
becomes in practice one of designing the control law and then becomes
the problem of keeping the system as close to the designed trajectory as
possible, i.e. of defining a feedback control law that stabilizes around the
trajectory. At this point in both examples a new complication enters the
picture—in order to control the system the designer must be able to calculate
where in the statespace the system is located. A problem of observation has
complicated the design. In almost all control problems there is ultimately
an underlying problem of determining the position of the system in the
statespace or a problem of determining the particular trajectory that a
system is following, [5,6].

It has only been in the last decade that problems of observability have
gained importance in themselves. The paper of Herman and Krener, [11]
was fundamental in that it placed the theory of local observability of nonlin-
ear systems on a solid framework of differential geometry and showed that
in fact the problem of observability was not simply the dual of the problem
of controllability. However from a practical point of view the problem of lo-
cal observability is not as critical as the problem of being able to determine
in a universal way where the system is located in the statespace. With the
work of Elliott and Tarn and their students [1,13,14] the study of global
observability was initiated. The problem of being able to distinguish be-
tween any two points in the statespace is very complicated mathematically
and as we will see in this paper has very little connection to the a problem
of local observability.

The intent of this paper is to give a partial survey of the theory of ob-
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servability of dynamical systems. We will begin in section 2 with a recap
of the theory of observability of linear systems and some of the attendant
problems—tracking, observers, inverse systems, etc. In section 3 we will
consider the problem of local observability of non-linear systems and will
recount the developments of the paper of Hermann and Krener, [11] and
related work on the geometric aspects of the local controllability. In sec-
tion 4 we consider the problem of global observability of nonlinear systems
which have differential constraints. In particular the work of Elliott, Tarn,
and Aeyels, [1,13,14] will be considered along with the somewhat different
approach of Sussman, [18]. In section 5, we consider the recent work of
Drager, Martin, Byrnes and others on the global observability of transla-
tional flows on the torus or more generally flows on abelian groups. This
work shows that there are fundamental differences between the local theory
and any systematic development of a global theory of observability. In sec-
tion 6 we consider the work of McMahon on the existence of a vector field
on a manifold which is observable by every nonconstant continuous func-
tion. Relevant to this section is paper by Byrnes, Dayawansa and Martin,
[24], which contains results about which manifolds can admit such vector
fields. In section 7 we consider the problem of observability of continuous
time system with discrete sampling and show that this leads to a version
of the easy Whitney embedding theorem. Here the work of Aeyles, [22],
Martin and Smith, [21], and a recent paper of Dayawansa and Martin, [20]
are relevant along with a paper of Bendsge, [23].

2 Linear Theory

Perhaps the simplest problem in control theory is the following:
Let

T = Az (1)
y = cz. (2)
What conditions must be smposed on the matrices A and ¢ in order that the
output function y(t) uniquely determines the solution of the system £ = Az?

Here we assume that the A is an n X n matrix and that ¢ is an 1 X n matrix.
We first note that the solution of the system is given by the action of the
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one parameter group exp(At) on the underlying space R". That is, z(t) =
exp(At)z, for some initial data point zo and hence that the output function
is given by the analytic function y(t) = cexp(At)zo. Since the output
function is analytic the function is determined uniquely by the sequence
{y"(0)}%2,. Calculating the derivatives of the output and evaluating at
t = 0 we see that the n'th term is ¢cA" 'z, and hence we have that the
condition for observability is that the infinite system of equations

Cxy = 0
CA:IJQ = 0
cAtzy = 0

has a unique solution, namely zo = 0. Thus the condition is that the matrix

cA*

has rank n. However by the Cayley Hamilton theorem the rank of the
matrix is determined by its first n rows and hence we have derived the
classical result that the system is observable iff the rank of the matrix

c
cA

cAn—l

is equal to n.

We first note that we have made fundamental use of the fact that the
semigroup exp(At) is analytic and hence that the function y(t) has a Taylor
series expansion L ¢’ A"zot" /n!. As we will see in the next section this con-
struction is basic to the determining conditions for observability in the gen-
eral nonlinear case as is posed by Hermann and Krenner. Each coefficient
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in the Taylor series is a function of the initial data and hence the problem
of uniquely determining the solution is problem of solving an infinite set of
equations for the unknown initial data. In the linear case, because of the
recursion induced by the Cayley—Hamilton Theorem the problem reduces
to a linear problem in a finite number of equations and hence either has
infinitely many solutions or a unique solution. Unfortunately there is no
hope of this generalizing to the nonlinear case or to more general systems
defined on manifolds.

Although the proof of observability using the Taylor series is simple
there is another proof that appears to be more relevant to the problem of
determining conditions for global observability. Consider the linear system

t = Az

= c'z.
The above systemn is observable iff there exists a matrix P such that
PA = AP

and
cP=c

then P = I. This result is well known, at least in the control case but the
proof is interesting. Suppose P exists with the hypothesized communativity
properties and suppose P is not the identity. Let x be a vector such that
Pz # z. then we have that ¢'exp(At)z = c¢'Pexp(At)z = ' exp(At)Pz
and hence that the system is unobservable. On the other hand we now
need to show that if the system is unobservable then there exists such a
P. We first assume that A is cyclic. Let £ be a nonzero vector such that
c'exp(At)z = 0. Now we note that by differentiating this expression we
have that ¢'A*z = 0 for all k. We define a matrix Q by the following,

Q = [z, Az, A%z, A" 2]

From @ we will construct a matrix that satisfies the commutativity prop-
erties. First consider

AQ = Alz,Az, A'z,..., A" g]
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[Az, A*z,---, A" 'z, A 1]
[0 ... a; |
1 .
= [z,Az,A%z,---, A" ]| o

= QRAR™!

Hence we have that
A(QR) = (QR)A

and QR is nonzero. We also note that since ¢'A*z = 0 that
dQR =0.

Now let
P=QR+ al.

It is clear that there exists an a such that P is invertible and P is the desired
matrix. If A is not cyclic then the preceding argument can be modified by
decomposing the statespace into the sum of a cyclic invariant subspace and
a complimentary subspace.

The fact that there exists such a P iff the system is unobservable is
equivalent to saying that there is a linear symmetry for the system. This
phenomena will occur in several different contexts and seem to underlie
much of the theory of global observability, especially in the case that there
is group involved at the level of the statespace.

3 Nonlinear Theory

Consider a system with controls

T = f(:z:,u)

v y = g(z)

(3)

where £ € R", f is a C™ vector field, g is a C*® real valued function and
u € 1 a subset of R . We could of course allow u and y to be vector valued
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but for the purposes of this paper the scalar case will suffice. We could
also assume that the system was evolving on C® manifold but the theory
we are presenting is basically local and hence we will restrict ourselves to
the Euclidean case. We denote the solution of the differential equation
£ = f(z,u) with initial value z5 by w,,(u,t). Following Hermann and
Krener, [11], we say that two points zo and z, are sndistinguishable iff for
every input function u(t)

9(wzo (u,t)) = g(wz, (v 2))-

Indistinguishability is an equivalence relation on R™ and we denote the
equivalence class of z by I(z). We define the system X to be observable at
ziff I(z) = {z} and we say that the system is observable if it is observable
at x for all x. An equally valid theory could be developed for the case at
hand by removing the dependence on the control, that is we could assume
that either the control is not present or it is fixed.

The definition above is inherently global. In order to take advantage
of differentiable structure we have hypothesized it is necessary to restrict
the definition. Let U be an open subset of R™ and let zo,z, € U. We
say that z — 0 is U-indistinguishable from z, iff for every control u such
that w,,(u,t) and w,,(u,t) both lie entirely within U fail to distinguish
between zo and z;. U-indistinguishability is not an equivalence relation
because it may fail to be transitive. We will, however, denote the set of
points U-indistinguishable from = by Iy(z). We now define the system L
to be locally observable at z, if and only if Iy(zo) = {zo} and simply locally
observable if it is locally observable at z, for all z,.

If we are only interested in distinguishing a point z( from its immediate
neighbors we can weaken the definitions in the following way. In analogy
with the definition of observable we will say that the system ¥ is weakly
observable at z; iff there is a neighborhood U of zq such that I(zo) NU =
{zo} and we say the system ¥ is weakly observable if it is weakly observable
at z¢ for all values of zo. Again this concept require arbitrarily large times
and the trajectories may wander far from the neighborhood U. In analogy
with the definition of locally observability we define the system to be locally
weakly observable at z; if there exists a neighborhood U of zg such that for
every open neighborhood V contained in U we have Iy(zo) = {z¢} and
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simply locally weakly observable if this true for every z;. We have the
following relations holding between the four definitions of observability.

locally observable Sl observable
Y Y
locally weakly observable = weakly observable

It is easy to see that for linear autonomous systems as we considered in the
last section these four concepts are equivalent. We will develop a simple test
for local weak observability that reflects the controllability rank conditions
for linear systems.

Let C*®(R") denote the linear space of all C*® real valued infinitely
differentiable functions on R". Let X denote the Lie algebra of all C*®
vector fields on R™. C®(R") is a X-module with the operation being given
by

h*¢(z) = g%(z)h(z).

This is , of course just Lie differentiation. Let ¥ denote the sub Lie algebra
of X generated by all vector fields of the form f( ,u) where u is some
constant. We finally let G denote the F-module generated by a function
g € C*(R"). Recall that this module is the central object in the description
of local controllability of non linear systems.

We let X* denote the space of all one forms on R", that is just the space
of linear combinations of gradients of elements of C*(R"). Vector fields
act on one forms according to the definition

1)@ = (5o @hia)) + o052

where w is a one form, h is a vector filed and * denotes transpose. A
standard result is that if w = d¢ then L, and d commute. Thus d§ is also
an F-module. We denote by d§(zo) the space of one forms evaluated at the
point zo. The system X is said to satisfy the observability rank condition at
o if the dimension of d§(z,) is n. We can now state the canonical theorem
from the paper of Herman and Krener, [11].
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Theorem 3.1 If ¥ satisfies the observability rank condition at zo then L
15 locally weakly observable at zq.

The proof is simple and is based on an application of the inverse function
theorem. However it should be noted that the proof o the observability
rank condition for linear systems is likewise a simple (linear) application of
the inverse function theorem. The approach of Hermann and Krener can
be pushed somewhat further but ultimately it must be concluded that the
methods are essentially local and that only by very artificial hypothesis can
the methods give global results.

4 Global Observability and Differentiability
Constraints

Again we consider the system ¥ but we will now assume that the control
is not present. So we are asking if we can distinguish between trajectories
of an autonomous dynamical system. Assume for the moment that the
functions f and ¢ are analytic and hence that we can construct the Taylor
series of the output function. Consider the simple example of the differential
equation

£ =sincz.

The solution of the differential equation with initial data z(0) = a, £(0) = b
has Taylor series

z(t) =a+bt +sinat’/2+bcosat®/6 + (sinacosb — b*sina)t!/24 + .- -.
If the system is observed with a linear function of the form

y(t) = ez(t) + A(t)
then the output function has Taylor series

y(t) = (ca+ Bb)+ (ab+ Bsina)t + (asina + fbcosa)t?/2
+(abcosa + Bsinacosa ~ fb*sina)t®/6 + - -
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to determine if the system is observable one need only determine if the
initial data, a and b, can be recovered from the coefficients of the Taylor
series. That is to say can we solve the infinite set of equations

(aa+Bb) = n

ab+ fsine = n
asina + fbcosa = 13
abcosa + fsinacosa — fb’sina = 7,

for the unknown initial data a and 4?7 This is a formidable task even for
this simple system. This approach has been used by Elliott and Tarn and
their associates, [14,13].

The basic idea of this attack is very powerful and in general depends
on being able to expand the output function as a series of functions in
such a way that the coefficients are uniquely determined by the initial data
of the differential equation. The series need not be a Taylor series and
we will see in later sections that there are times when the expansion can
be accomplished in terms of a Dirichlet series or a Fourier series to prove
observability. The main shortcoming of the attack is that the resulting
set of equations is in general very difficult to solve. One could visualize
a much more sophisticated attack on the problem of observability based
on the idea of approximation of the output function in much more general
function spaces.

A more subtle attack on the problem of observability was begun by Dirk
Aeyls in [1]. In this seminal paper Aeyls takes advantage of the fact that
the class of Morse-Smale systems have very well behaved trajectories. Let
M be a compact C*® manifold and let X be a C™ vector field on M. We
recall that a vector field is Morse-Smale if

1. The number of fixed points and periodic orbits is finite and each is
hyperbolic.

2. All stable and unstable manifolds intersect transversally.

3. The nonwandering set consists of fixed points and periodic orbits only.
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Morse-Smale vector fields have the property that every orbit converges
asymptotically to an equilibrium point or to a periodic orbit. Thus there
arises the possibility of waiting until an orbit is in the neighborhood of
an critical set to attempt to distinguish it from other orbits. The main
theorem of the Aeyls, [1], is the following

Theorem 4.1 Let there be given a Morse-Smale system on a compact man-
tfold with a nonzero number of critical elements and let there be given a
smooth output function h into Euclidean space R". Then the system is
globally observable if

1. the rank condition for is satisfied at the critical elements,
2. h separate critical points,

3. the images of periodic orbits under h are different and every output
trajectory corresponding to a closed orbit has mintmal period, equal
to the period of the closed orbit.

The rank condition is just the rank condition for local observability in a
neighborhood of the critical elements as developed in the paper of Hermann
and Krener, [11]. The proof of the theorem is quite technical but the ideas
are quite intuitive as is expressed by the following example which again is
contained in the paper of Aeyls, [1].

Loosely speaking, the Aeyl’s proof of global observability fro Morse-
Smale systems is carried out by selecting subsets of the manifold such that
at some specific time they are “pushed forward” by the flow into some
of the neighborhoods of the critical sets,N,,, where they are distinguished
at some well-picked time instant, either by the rank conditions for local
observability, RC, or by the fact taht the observation function distinguishes
critical points, MS. This will be illustrated through a discussion of a
particular example. Consider the unit sphere S* C R® centered at the
origin. A flow is defined on S? with two critical points, a source at the
“north-pole” z, = (0,0,1) and a sink in the “south-pole” z, = (0,0,—1).
The other orbits of the flow are the “meridian lines.” Let A be an output
function which assumes different values at z,, and z,. Let the rank condition
be satisfied at both poles. Let IV, and N,, be neighborhoods of the critical
points. Let V,, be an open set covering M less P,,, where P, C N, isa
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neighborhood of z,,. Any pair of points in V,, is distinguishable at some
time T, by RC at z,. There remains to be shown how to distinguish
V., from its complement in M, or, to be sure, from N,, which contains
the complement. This is carried out in two steps. First, corresponding
to Ty, there exists a neighborhood V, of z,, contained in N, , such that
®(T,,V.,}) C N.,. Therefore, V,, is distinguishable from V,, by MS at
time T,. Finally, V;, is distinguishable from N;_ less V;, by RC in z, at
some finite time T3 > T,. Thus any two orbits are distinguished.

In a general proof problem of saddle points must be faced. This adds
conceptual and technical difficulty. Indeed, at this point it is clear - follow-
ing the ideas explained in the example — how to construct a proof of global
observability for the case of a Morse-Smale vectorfield containing a finite
number of sources and sinks and no saddles. When saddles are present,
one might at first consider neighborhoods N,,, around the saddle points.
Then one might be tempted to say that, since all points — except for the
sources — eventually wind up in the neighborhoods N, of the sinks and the
saddles, the example again contains all the ideas on how to give a proof in
the general case. Such a reasoning would indeed show how to distinguish
all pairs of points on the manifold if one is willing to accept an snfinstely
long observation interval. Indeed, points belonging to the stable manifold
of one saddle N,,, but sitting close to the stable manifold of another saddle
take a long time before they are trapped in N, —the closer they are to the
stable manifold of the other saddle, the longer it takes, by continuity of
the flow. These points have a somewhat similar behavior to points in the
neighborhood of the north-pole-source of the example. Therefore, in the
distinguishability process of a formal proof, these points should somehow
be treated together with the stable manifolds to which they are close to -
and not together with the stable manifolds to which they belong to — in
order to reduce the observation interval to finite time. The general proof
relies heavily on the cellular structure induced on the manifold by the stable
manifolds of the Morse-Smale vectorfield.

Another approach to observability in the large was undertaken by Suss-
man in [18]. There the idea is to define an equivalence relation on the
points of the manifold in terms of indistinguishability, that is, two points
are equivalent if and only if the orbits emanating form them are not distin-
guished by the output function. It is fairly easy to see that the relation is an
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equivalence relation and the natural approach is to consider the quotient of
the manifold and the equivalence relation. Sussman gives various conditions
under which the resulting object is 2 manifold and determines conditions
under which the system descends to the quotient as an observable system.
The resulting system is of course globally observable. Sussman’s technique
is not really a method for determining if the system is observable but a
method for constructing globally observable systems. The main object of
his construction was to produce realization of nonlinear systems that are
globally observable and controllable.

5 Translational Flows on the Torus

The work of Hermann, Krener, Aeyls, Elliott, Tarn and others on the prob-
lems of observability of nonlinear systems and on the problems of global
observability did not really attempt to determine necessary conditions for
global observability. The conditions that were imposed were of the nature
of differentiable conditions of linear control theory. There are just two sets
of results that had promise for studying really general systems and had the
potential of giving fundamental insight into the problem of observability.
The first was the work of Aeyls, using Morse-Smale systems. The condi-
tions that he imposed were not that different from the general conditions
of Hermann and Krener but were conditions that attacked the problem of
global observability directly rather than obtaining global observability from
accidental conditions. The second set of results were the results of Kuo,
Elliott and Tarn. Their methods were quite direct and consisted of exam-
ining the series expansion of the output function. This approach leads to
sufficient conditions for the observability of the systems. A natural exten-
sion of their work is to consider the expansion of the output map in terms
of series other than a Taylor series.

A first attack on the problem of global observability that did not at-
tempt to impose differential constraints was by Drager and Martin in
[9]. There the following problem was considered. Let T" denote the
n—dimensional torus and consider the vector fields on the T" that gen-
erate the irrational winding lines. These are the simplest vector fields on
the torus and are natural to consider. The question that was posed was to
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determine necessary and sufficient conditions for the observability of these
flows. Thus the problem is just to determine the conditions on the obser-
vation function that will render the system observable. In [9] this prob-
lem wasn’t solved but never-the-less an interesting result was observed. If
the observation function was assumed to be continuous and was assumed
to have a unique maximum then, using a result of Kronecker on the ap-
proximation of real numbers with linear rational combinations of irrational
numbers it was shown that the system consisting of the irrational wind-
ing lines and any continuous function with a unique maximum value was
observable. the result is not particularly difficult but it was the first case
in the literature that observability was obtained without the assumption
of smoothness. It was stated in [9] that the underlying phenomena was
ergodicity. However later developments seem to belie this statement.

In a sequel to this paper Byrnes and Crouch, (3], showed that this
result followed without the assumption of a unique maximum and that the
relevant conditions was that the observation function had a special point,
value that was obtained exactly once-a minimum or a maximum. However
the only technical requirement was that the observation was continuous.
More interestingly they showed that the vector fields could be replaced
with vector fields that had the property that they were minimal distal. This
simply means that the if the initial data for two orbits is separated then
the time parameterized orbits remained separated by at least a distance e.
The condition of minimality ensures that the orbits are dense. The idea of
the proof is to follow one of the orbits until it is sufficiently close to the
special point and so that the value of the observation function is distinct
from the value on the other orbit. In this paper it was also recognized that
the general case should consist of a compact abelian group instead of the
torus, T .

In the setting of a compact abelian group three more papers quickly
followed. Drager and Martin reproved their original result using Fourier
analysis on the torus and showed that a sufficient condition was that the
observation function should be continuous and that no Fourier coefficient
should vanish. This paper was distinguished only by the neatness of the
proof and was not a real extension of the theory. the late Douglas McMa-
hon, to whom this paper is dedicated, mad a major extension with the
following result, the system consisting of a dense translational flow on a
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compact abelian group and a continuous observation function, is observ-
able if and only if there is no subgroup that leaves the observation func-
tion invariant. Independently Balog, Bennett and Martin showed that the
observation function need not be continuous but that the characteristic
function of certain ‘nice sets’ sufficed, i.e. those sets that had the property
that they consisted of the interior of their closure provided that there were
again no symmetries. These last two results were very satisfying since they
mimic the result for linear systems. McMahon proved his results using har-
monic analysis techniques and the result of Balog, et. al. was proved using
very different techniques of point set topology. There has been a recent
announcement by Drager, Foote and McMahon of a result that incorpo-
rates both of the above results into a single theorem with the proof being
based on techniques from harmonic analysis. Byrnes and McMahon have
announced a major new formulation of the theorem in terms of the dual
group that generalizes the results of drager and Martin seems to imply the
results of Drager Foote and McMahon-namely that the necessary and suf-
ficient conditions for observability is that the characters not represented in
the fourier series of the observation function should not include any group
of characters.

6 Universal Observability

The winding lines on the torus of the last section are easily proved to be
observable by a large set of continuous functions but it is easily seen that
there are continuous functions, even analytic functions, which fail to observe
even the simplest winding lines. Consider for example the observation
function

f(6) = cos 26

and the uniform rotation on the circle S!. An easy calculation shows that
the flows starting at 8, and 6y + 7 are indistinguishable. Interestingly
enough the system is locally observable but not observable.

At first thought it would seem that one would always be able to con-
struct an observation function that would render the flows generated by any
vector field unobservable. But this is not the case. In a very clever example
Douglas McMahon, [16], constructed a vector field on a compact homoge-
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neous space that is observable by every continuous nonconstant function.
The manifold is the homogeneous space

¥ =5I(2,R)/H

where H is a nonarithmetical, co-compact subgroup. The flow is generated
by the matrix element
01
(05)

The proof is dependent on technical results from the field of topological
dynamics but ultimately rests on the fact that it can be shown that the
flow is strongly mixing in the sense that the flow generated in the product
space ¥ X ¥ has the property that any flow that initiates at a non diagonal
point is dense in the product. It’s clear that this property implies that
every nonconstant continuous function is observing since we simply select
two points at which the function has distinct values and eventually any two
distinct orbits will pass through any arbitrarily small neighborhood of the
two points.

At the present time this is the only known example of a universally
observable vector field. There are a few properties for which it can be
demonstrated that any manifold that has a universally observable vector
field must possess. First it is clear that the closure of any two orbits must
be the entire manifold. For if not there would exist a continuous function
that is zero on the union of the orbit and one at some point not in the
closure. Thus the two orbits would not be distinguished. Clearly there
can be at most one singular orbit and there can exist no periodic orbits.
thus there is at most one equilibrium point and every other orbit is dense.
Byrnes, Dayawansa and Martin, [24], have shown that there can exist no
equilibrium points and hence every orbit is dense. By constructing the one
point compactification of the manifold and suitably modifying the flows in
the neighborhood of the point at infinity it can by be shown as a corolary of
the fact that every orbit is dense that the manifold is compact. From this
it follows that every manifold that admits a universally observably vector
field has Euler Characterisctic zero. It is not known if every universally
observable vector field has the stronger property that orbits are dense in
the product space.
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McMahon’s example is dependent on the existence of non-arithmetical
co-compact subgroups of SI(2,R). For n > 2 such subgroups fail to exist
due to rigidity theorems. Thus his construction does not generalize. For
two dimensional manifolds the only possible example is the 2-torus. At
this point it is undecided whether or not the torus admits a universally
observable vector field. This question is discussed but not decided in [24].

7 Another Point Of View

Let (X, f) be an smooth observable system on a compact n-dimensional
manifold M. The integral curves of X, ¢;(zo) composed with f, f(#:(zo)),
defines a map from the manifold into the space of real valued functions of a
real variable. Since the manifold is compact the functions are bounded and
we may as well assume we are mapping inte the space of continuous func-
tions with the supremum topology. Elementary properties of the system
imply that the mapping

ToH— f(¢:(10))

is smooth. Observability implies that the map is one to one and the various
forms of local observability imply that the mapping is locally one to one.
We would like for the mapping to be nonsingular but in general additional
conditions are necessary to ensure this.

A very realistic problem has been posed in Aeyels, [22] and in Smith
and Martin, [21], which has interesting implications in the above setting.
Suppose that instead of the function f(¢,(zo)) we are given the value of this
function at n preselected times, t;, ,t3, --- ,t,. Does this preserve observ-
ability? In general the answer is no, even in the case of linear systems, [21].
In the case of nonlinear systems a positive answer would have provided a
one-to-one mapping of M into R". This wouldn’t have necessarily have
been impossible but would have certainly have been pathological. Aeyels
showed that generically it suffices to evaluate the output function at 2n+1
points and a mapping of the manifold into R***! is obtained. It is possi-
ble to extend Aeyel’s result and construct a nonsingular map from M into
R2*t1_the easy imbedding theorem. The paper of Bendsge, [23], is rele-
vant in that he constructs a globally observable vector field on an arbirary
compact manifold. An interesting open problem is to determine if there
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ABSTRACT

The fundamental feedback control problem of obtaining desired system behavior
in the presence of uncertainties is considered for a class of uncertain systems
described by differential equations.

Taking a deterministic point of view, a class of adaptive controllers which
yleld stable behavior 1is proposed.

The use of these controllers is illustrated by examples and applications.

I. INTRODUCTION

In order to control the behavior of a system in the "real" world, be it physical,
biological or socio-economic, the system analyst seeks to capture the system's
salient features in a mathematical model. This abstraction of the 'real" system
always contains uncertain elements; these may be parameters, constant or varying,
which are unknown or imperfectly known, or they may be unknown or imperfectly known
inputs into the system. Despite such imperfect knowledge about the chosen mathematical

"steer" the system in some

model, one often seeks to devise controllers which will
desired fashion, for example so that the system response will approach or track a
desired reference response; by suitable definition of the system (state) variables,
such problems can always be cast into the form of stability problems.

Two main avenues are open to the analyst seeking to control an uncertain dynami-
cal system. He may choose a stochastic approach in which information about the
uncertain elements as well as about the system response is statistical in nature;
e.g., see Refs. (1-2). Loosely speaking, when modelling via random variables, one
is content with desirable behavior on the average. The other approach to the control
of uncertain systems, and the one for which we shall opt in the present discussion,
is deterministic. Available, or assumed, information about uncertain elements is

deterministic in nature. Here one seeks controllers which assure the desired response

of the dynamical system.
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In this paper, the mathematical model is embodied in ordinary differential
equations, the state equations of the system. We divide the systems under consider-
ation into three subclasses depending on the type of potentially destabilizing
uncertainties present in the system description and on the way the control enters
into the description. For each of the systems considered there exists a state feed-
back controller which assures that the zero state is globally uniformly asymptotically
stable. However, these controllers depend on constants in the system description
which are not known; e.g., such constants are the values of unknown constant distur-
bances or unknown bounds on time-varying parameters or inputs. We propose controllers
which may be regarded as adaptive versions of the feedback controllers mentioned
above; 1in place of the unknown constants, one employs quantities which change or
adapt as the state of the system evolves. Under some circumstances, these adaptive
quantities may be considered to be estimates of the unknown constants. The method
of devising these adaptive controllers is based on the constructive use of Lyapunov

theory as suggested, in a somewhat different context, in Refs. (3-8).

II. SYSTEMS UNDER CONSIDERATION

All of the systems under consideration belong to one main class S4. However,
we introduce first three subclasses S1, 52, 83, each of which is included in the
main class.

System Class §1

The systems in this class are described by

x(e) = £(t,x(e)) + 3P exen P +a) + a1, 2.1

m
where t ¢ R, x(t) ¢ R" is the state and u(l)(t) € R.l is the control; da and db are
1

unknown (Srbitrgry) constants and the functions f: R x R" ->1Rn, B: R xR™ > R ,
and y: R + R are uncertain, i.e., they are not assumed known but are only assumed
to satisfy certain conditions (Al, A2, A3(1), AS5(1l)).

Concerning the function f we introduce the following assumption.

Assumption Al. 1) f is Caratheodory1 and
£(t,0) =0 ¥teR . (2.2)%
2)° There exist a ¢! function V: R xR" +R , and functions

Yy Yo Ygi lR+ +lR+, where yl,nyg belong to class KR and Y3 belongs to class K,
such that for all (t,z) ¢ R xR

1
See Ref. (9), Appendix, sec. A, or just note that if f is continuous, it is
Caratheodory.

2We use "0" to denote a zero vector.

3See Appendix.
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v D < veex) < v (x|, (2.3)
B0 + & e < vy xlD. (2.4)

Assumption Al asserts that there exists a Lyapunov function V which guarantees
that the zero state is a g.u.a.s. (globally uniformly asymptotically stable) equili-

brium state of the system described by

x(£) = £(t,x()); (2.5)

see Refs. (5, 10-12).
Concerning the function ¢ the following is assumedml m
Assumption A2. 1) ¢ is onto; i.e., given any n ¢ R ~, there exists w ¢ R
that y(w) = n. m
This assumption and Al imply that, given any constants da. db e R ', there exists

1 such

a constant control u(l)(t) = v given by

vVe=w- da, Pp(w) = -db. (2.6)

such that the zero state is a g.u.a.s. equilibrium poin* of (2.1).
2) wT 8 the deri%atiue of some 01 funﬁtion ¥: R 1R,

3) For each w e R ! the function W: R 1.R given by

W) = ¥ - ¥ - 2w - W) Q.7
satisfies
w#we> Hw >0, ~ (2.8)
lim W(w) = =. (2.9)
[[w]] + =

We also make the following additional assumptions.

Assumption A3. 1) The function B(l) ie strongly C&ratheodory.4

Assumption A4. One of the following two conditions is satisfied.

Cl. There exists a continuous function Y4? 1R+ +1R+ which satisfies

1im YA(r) = o, (2.10)
r+w
. m, m,
such that for all (w,w) eR ~ xR
- T~ R .

(b)) = v 17w = w) 2 v, (v - w|D]]w - w]]. (2.11)
C2. For each d > 0 there exists bl(d) > 0 such that for all (t,x) e R xR

[xl] < a= [« ]| < 1@, (2.12)
A (1)

See Ref. (9), Appendix, sec. A, or just note that if B is continuous, it is

strongly Caratheodory.
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where
T T
D, = 81 (e,x) % (£,%). (2.13)

(1)

Assumption AS. 1) At each t e R, o ' (t,x(t)) ie known.

Remarks 2.1. 1) If f is linear time-invariant, i.e.,
£(t,x) = Ax  ¥(t,x) ¢ R xR", (2.14)

where A ¢ R and A is asymptotically stable (i.e., all of its eigenvalues have

negative real parts), then Al(l) is satisfied and Al(2) is satisfied by taking any

nxn

positive-definite symmetric Q ¢ R and letting

V(t,x) = % * Px ¥(t,x) e R x R" (2.15)

where P e RY™ 15 the unique positive-definite symmetric solution of

PA + ATP + Q = 0; (2.16)
see Refs. (5, 10-12). 1f, in addition, B(l) is constant, 1i.e.,
B (t,x) =B ¥(t,x) eR x K" (2.17)
nxm,
where B ¢ R , then
oM (t,x) = BTex (2.18)

and C2, and hence A4, is satisfied.

2) As a part%culatmexample of a function which satisfies A2 and Cl consider

any function ¢§: IR 1 + R 1 given by

y(w) = Fw, (2.19)
m, Xm -1
where F ¢ R is symmetric positive-definite. The existence of F = implies A2(1)
is satisfied. Assumptions A2(2) and A2(3) are shown to hold by letting
1 T

¥(w) = Tw Fw,

and Cl is assured with

Y, () = A, (F)r, (2.20)

where Amin(F) denotes the smallest eigenvalue of F, and Amin(F) > 0.

3) As a more general example of a function which satisfies A2 see Ref. (9).

4) Assumption A5(1l) is made in order to ensure that there is sufficient infor-
mation available to implement the proposed controllers for this system class. Note
that this assumption is completely independent of y and does not require complete
knowledge of f and B(l). For example, some of the controlled systems presented in

Refs. (13-15) contain an uncertain f which satisfies Al for a known V. There B(l)

(1)

is known, so that the function a is known. For another example see sec. V.A.
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5) For some previous literature on controllers for systems subject to unknown

constant disturbances see Refs. (16-23).

System Class S2
The systems in this class are described by

x(6) = £0e,x(0)) + B (6, x () [Fu’? (£) + Dh(e,x(t))] (2.21)

m
where t,x(t)‘h di f are as defined for Sl and u(i)$5) e R 2 1s the control; the

matrix D e R %§munknown and the matrix F e R and functions
B(Z): R xR" + R 2 and h: R xR" +RP are uncertain, i.e., they are not assumed
known but are only assumed to satisfy certain conditions (A3(2), A5(2), A6).

In addition to assuming that f satisfies Al, we also make the following assump-
tions for this class.

Assumption A6. The matrix F is symmetric positive-definite.

Note that this assumption and Al imply that for each F and D there exists a
state feedback control given by

() = kh(t,x(t)), K = -F Ip, (2.22)

such that the zero state is a g.u.a.s. equilibrium point of (2.21). However, the

matrices F and D are not assumed to be known.

(2)

Assumption A5. 2) At each t e¢R, 0(2)(t,x(t)) and h(t,x(t)) are known, where

for all (t,z) eR xR

Assumption A3. 2) The functions B and h are strongly Caratheodory.

T T
P (e,x) = B (£, %%— (t,x). (2.23)

The following condition, which is not an assumption, will affect the choice of
one of the parameters in the proposed controllers for this system class,

C3. For each d > 0 there exists b,(d) > 0 such that for all (t,x) eR x '

Hxl] < a = |neeol] 1P el

| A

bz(d). (2.24)

Remarks 2.2. 1) Quite frequently the error equation which arises in the problem
of requiring a linear time-invariant system with unknown parameters to track a refer-
ence model falls into this class of systems; see Refs. (6-8, 24-32).

2) For a particular example of a system in this class see sec. V.B.

System Class S3
In this class we consider systems which contain potentially destabilizing

uncertainties of a more general nature than those considered in Sl and S2. The

systems are described by
x(0) = £¢t,x(0) + B (e,x(e))a(t,x(0),u (0)) (2.25)

m.
where t,x(t), and f are as defined for Sl and u(a)(t) e R 3 1s the control; the
m

nxm: m
functions B(3): R xR" >R 3 and g: R x R" x R 3 >R 3arze uncertain, 1.e., they
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are not assumed known but are only assumed to satisfy certain conditions (A3(3),
A5(3), A7). In addition to assuming that { satisfies Al, the following assumptions
are made for this class.

Assumption A7. 1) There exist an uncertain function p: R xR +ﬂ?+ and an

m
unknown congtant 8 > 0 such that for all (t,x,u) ¢ R xR' xR s

wg(t,w) > 8 ([uf[ (luf] = o(t,x)]1. (2.26)

2) There exist an unknown congtant B ¢ (O,w)k and a known function
H: R xR x (O,W)k 4z%; such that for all (t,x) e R x 7

p(t,x) = II(t,x,B). (2.27)

That is, we do not assume that the bound p(t,x) 1s known; we only assume that it
depends in a known manner on an unknown constant vector B.

3) For each (t,x) e R xmn, the function H(t,x,-):((),m)k +R, ig Cl, concave5,
and non~decreasing with respect to each coordinate of its argument, B.

(3)

Assumption A3. 3) The function B i Caratheodory and g, 1, and %% are strongly

Caratheodory.
Assumption A5. 3) At each t ¢ R, u(S)(t,x(t)) and x(t) are known where for all
(t,x) eR xR

T T
e, = 83 (6,0 T . (2.28)
Remarks 2.3. 1) 1In the earlier literature (see Refs. (15, 33-40)) systems of
this class have been considered where g is of the form
g(t,x,u) = {1+ E(t,x)]u + e(t,x), (2.29)
and E(t,x) and e(t,x) satisfy

HE(e 0]

[ A

C, c <1,
¥(t,x) e R x R" (2.30)
[leCe,x) || < e (&,x),

for a known constant ¢ and function Py Hence A7(1) is satisfied by taking
BO = l-c, (2.31)
p(t,x) = po(t,x)/(l—c). (2.32)

In other words, in these references 80 and p are assumed completely known whereas
here only A7(2) and A7(3) are assumed.
2) As an example of a function which satisfies the assumptions on II, consider

any function II: R xm" x (O,cr:)k —>]R+ given by
M(e,x,8) = k (£,%) + k' (£,%)8

where Ko R x R" ->]R+ and k: R xR" +]R_l:_ are known strongly Caratheodory functions.

5That is, -N(t,x,-) is convex.
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3) For a particular example of a system in this class, see sec. V.C. For

applications of this class, see Refs. (44-46).

System Class S4
This is the main class of systems. It includes each of the preceding subclasses,

S1, S2, and S3. Systems in this class are described by

x(E) = F(E,x(t)) + 6(t,x(£), u(r)),

G(t,x,u) = B(l)(t,x)[w(u(l) + da) + db] + 8(2)(t,x)[Fu(2)

+ B(3)(t,x)g(t,x,u(3)
T T T
WL @@ T

+ Dh(t,x)]

) (2.33)

where all quantities are as previously defined.
All of the preceding assumptions Al - A7 are made for this class.

For an example of a system in this class see Ref. (47).

III. PROPOSED CONTROLLERS

In this section we present a class of controllers which guarantee the desired
stability properties for each of the system classes considered in the previous sectlon.
In essence, each controller proposed is an adaptive version of a zero state stabil-

izing controller which depends on unknown constants.

Controller Class Cl (for S1)

The controllers in this class are given by

oDy = vie) - Elzlé(z), (3.1)

) = —zli(z), (3.2)

~ m
where v(to) eR 1 is arbitrary,

2, >0, % >0, 3.3)
El > 0 if condition C2 is not satisfied, and
a(t) = o (e, x(e)). (3.4)

Note that u(l)(t) is also given by

ooy = v(oy + (e (3.5)

t .

WPy = —Elzla(c) -y J a(r)dt + Q(co). (3.6)

t

o]
Thus, these controllers can be considered as versions of the classical PI (proportional
plus integral) controllers.

For an application of these controllers, see sec. V.A.
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Controller Class C2 (for S§2)

The controllers in this class are given by

WP (6) = K(OREx()) - Ta(on (E.x(0)M(E,x(©), (3.7
K(t) = -a(t)h (t,x(c))T, (3.8)
m. Xp .

where K(t) e R 2 s K(to) being arbitrary, I' is any positive-definite symmetric

p x p matrix,

i, >0, (3.9
12 > 0 if condition C3 1is not satisfied, and
ace) = oD (e,x(0)). (3.10)
Note that u(z)(t) 1s also given by
Do) = ko) + izﬁ(t)]h(t,x(t)) (3.11)
t
@ ey - [-T,8(0) - J a(r)dt + K(e ) Th(E,x(t)) (3.12)
t:0
() = a(t)h(t,x(c))Tr. (3.13)

It may readily be seen that an S2 system with
h(t,x) = 1 ¥(t,x) eR xR" (3.14)

is also an Sl system and its C2 controllers are the same as its Cl controllers. Cl
controllers are special cases of C2 controllers.

For an application of C2 controllers, see sec. V.B.

Controller Class C3 (for $83)

The controllers in this class are given by

uP(0) = pee,x(e), BO), e(0), (3.15)
p(Esx,B,8) = ~T(t,x,B)s(t,x,B,€) (3.16)
B = 1™ gi; (£x(0), 8| [« (e, (e | ], (3.17)
e(t) = -2.e(t), (3.18)
Bt ) & (0, c(c ) € (0,), (3.19)
2, > 0, (3.20)
where L6 ¢ RO 15 diagonal with positive elements and s: R x K" x (0,e)*! 4+ 3

1s any strongly Caratheodory function which satisfies
- 3 o 3
S(t,x,ﬂ,E)IIa( )(t,X)II = ||s(t,x,8,€)||a( )(t,x), (3.21)
i.e., the two vectors have the same direction, and

. ) 3
[uaxa® || > € => s(ex,8,0) = S8 — (3.22)
[ a7 (t.x)]
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oy (3)

u(t,x,8) = 1(t,x,8)a'P (t,x) (3.23)

for all (t,x,B8,¢) e R x R" x (O,W)k+1. A particular example of such a function s is

given by
s(t,x,B,e) = sat[u(t,x,8)/el (3.24)
where
noos sl =1
sat(n) = N (3.25)

o el
These controllers can be considered as adaptive versions of those presented in
Refs. (34-38) and modified in Ref. (39) for systems of this class where g 1is of the
form considered in Remark 2.3(1).
For applications of C3 controllers, see sec. V.C and Refs. (44-46).

Controller Class C4 (for S4)

Roughly speaking, the controllers in this class are combinations of controllers

from the preceding three classes. More precisely, they are given by

T T T
uT(t) = (u(l)(t) u(z)(t) u(3)(t)). (3.26)

where u(l)(t), u(z)(t), and u(3)(t) are given by controllers in classes Cl, C2, and
C3, respectively.

For an application of a C4 controller, see Ref. (47).

IV. ©PROPERTIES OF SYSTEMS WITH PROPOSED CONTROLLERS

Before stating a theorem, let us consider any system belonging to class S4 subject

to any corresponding controller in class C4., By defining the parameter "estimate"

vector
a= Tk koeok 8T )T, (4.1)
1 72 m,
where ki' 1= 1,2,...,m2, are the rows of K, and by appropriately defining

f(l): R xR" x Q - R" and E(Z): R x R® x Q- Rr, (see Ref. (9), Appendix) where

m m,p
Q=R IxRZ x (0,0, 4.2)

r=m +mp+k+l, (4.3)
such a controlled system can be described by

x(e) = E (e, x(e),q(e)), (4.4)

a® = D (e,x(0),4(0).

This is a system whose complete state (x,q) belongs to R® x qQ.

Defining the parameter vector

a= &k ke 8T 0T, (4.5)
2

where ki, 1= 1,2,...,m2, are the rows of K, we are now ready to state a theorem.
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Theorem 4.1. Conuider any system belonging to class 54 and subject to any corre-
sponding controller in class C4. The resulting controlled system can be described
by (4.4) and has the following properties.

P1) Exist?nce of Solutions. For each (t o Tos q ) eR le x Q there exists a
solution (x(-),q(-)): [to,tl) + R x Q of (4. 4) with (x(t ),q(t )) = (xo,q ).

pP2) Uniform Stability of (0,q). For each n > 0 there exists & > 0 such that
if (x(-), q(+)) is any solution of (4.4) with ||x(t R ||&(t0) - q|| < & then
[|zt)]], ||q(t) -q|l <nforall te iz,

P3) Uniform Boundedness of Solutions For each P Ty > 0 there exist d (r ,r,),

dg(rl,r ) > 0 such that if (x(-), q( )) is any solution of (4.4) with ||x(t I <1r 2
and ||q(t ) - qll < vy then [lx(t)|| < dj(r;,ry) and ||q(t) -ql| <4, (rp,ry) for aZZ
te [to,tl).

P4) Extension of Solutions. Every solution of (4.4) can be extended into a
solution defined on [to,w) .

P5) Convergence of x(+) to Zero. If (x(:), q(-)): [to,m)-+an x Q 18 a golution
of (4.4) then

lim x(t) = 0. (4.6)

t >
Proof. The details of a proof may be found in Ref. (9), Appendix, sec. D.
Remark 4.1. The above theorem also applies to a system of class Sl, S2, or S3

subject to a controller belonging to Cl, C2, or C3, respectively. For example, an

Sl system subject to a Cl controller may be considered an S4 system subject to a C4

controller with B(z)(t,x) = B(3)(t,x) =0

V. APPLICATIONS AND EXAMPLES
A. LUR'E TYPE SYSTEMS
Consider a system described by

2(t) = Az(t) + By(u(t) + d) +d, (5.1)
y(t) = Cz(t), (5.2)

where t ¢ R, z(t) e R", u(t) e]Rm, and y(t) e R™ is the output; d, eR™ and d ¢ R"
are unknown constant disturbances; the matrices A E_men, B e Rnxm and C cﬂfmxn are
uncertain, i.e., they are not assumed known but are only assumed to satisfy the
following assumptions. 1) A is asymptotically stable. 2) (A,B) is controllable.

3) (C,A) is observable. 4) The transfer function G, given by

G(s) = C(sI - &)7'B, (5.3)
is strictly positive real; see Refs. (48,49). 5) y: R” » R™ satisfies A2.

For a given constant reference output y¥* E]fm, it is desired to obtain a con-
troller which assures that, for any initial condition of the controlled system, z(-)
is bounded and

lim y(t) = y*, (5.4)

t > o
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It is assumed additionally that, for each t, y(t) 1s known.

If we let
x(t) = z(¢v) - 2°, (5.5)
2° = alpcca )y L(y* + calay - a7l4, (5.6)

then, utilizing (5.5), (5.6), (5.1), and (5.2), the system can be described by

x(t) = ax(t) + Bly(u(t) +d ) + d 1, (5.7

4 = (ca” )y ryx + calay, (5.8)
and the output tracking error is given by

e(t) = y(t) - y* = Cx(t). (5.9)
System description (5.7) is in the form of (2.1) with

£ = ax, 30 =8, P = uw. (5.10)

As a consequence of assumptions (1) - (4), there exist positive-definite symmetric

nxn
matrices P, Q ¢ R such that

PA + AP + Q = 0, C=BP; (5.11)

see Refs. (48, 49). Hence, assumptions Al, A2, A3(l), A4, and AS(1) hold (see
Remark 2.1(1)) and system description (5.7) belongs to Sl.

Taking u(t) to be given by a Cl controller for (5.7), one has (utilizing (3.1) -
(3.4), (2.18), (5.11), and (5.9))

u(t) = v(t) - 7,260, (5.12)
é(t) = —Lle(t),

where &, > 0 and %, > 0.

1
As a consequence of Theorem 4.1, the use of control given by (5.12) results in

(x(*), v(+)) being bounded and 1lim x(t) = 0. Hence z(+) 1is bounded and

lim y(t) = y*, tre

© ™ “For numerical simulation, we have taken a two-dimensional system described by

él(t) = z,(t) +d,,

éz(t) = —alzl(t) - azzz(t) + p(u(t) + da) + d2’

y(t) = bz, (t) + z,(t),

= = @ 3 = = =
a, = 6, a, = S, b1 =1, Y(w) w, d1 3, d2 da 1.

For y* = 1, three different controls were considered.
1) The constant control, u(t) = v, which assures the desired performance but which
requires knowledge of the system and disturbances. For this example v = 1.
2) Control given by (5.12) with L = 1, El = 0 and §(0) = 0.
3) Control given by (5.12) with El =1, 21 =1 and v(0) = 0.
The results of simulations with zl(O) = 22(0) = (0 are presented graphically in

Figures 5.1(1) - 5.1(3).
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B. A BIOLOGICAL EXAMPLE

Consider a species of animals whose population dynamics can be described by

y(e) = (r/)y(t) [k - y(£)] + u(t),
y(e) > 0

(5.13)

where y(t) is the biomass of the species and u(t) is a control on the biomass growth

or decay rate at time t, r 1s the intrinsic growth rate and k is the environmental

carrying capacity; see Ref. (50). Suppose that r and k are unknown positive constants

but the biomass is accessible.

The control problem considered here may be stated as follows. Given a 'desirable"
positive biomass y*, obtain a control policy the utilization of which assures that,
for any positive initial biomass, the resulting biomass evolution y(*) 1s bounded
and positively valued and y(t) > y* as t + =,
1f, for positive biomasses, we Introduce a new state varjiable x, defined by

x(t) = n(y(t)/y*), (5.14)

then

y(r) = yreX(®) (5.15)

and, utilizing (5.13) - (5.15), the system can be described by
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)(6) = (e/0y*[1 - 2] 4 @O i [u(e) + pyxeX(V], (5.16)
D=r(l - y*/k).

The control problem 1s now equivalent to that of obtalning a controller which assures
that all solutions of (5.16) are bounded and converge to zero.

Equation (5.16) has the form of (2.21) with

B(Z)(t:x) = e—x/y*, F=1,

£(e,x) = (e/K)y*[1 - *],

X
y*e”,

h(t,x) By = ue). (5.17)

Assumptions Al(l) and A3(2) are clearly satisfied. If one considers the function V
i

given by
V(t,x) = y*(eX¥ = x - 1) (5.18)

then Al(2) can be shown to hold; see Ref. (9). From (2.23), (5.17), and (5.18)
one has )

-X

P e, =1 -7, (5.19)

and A5(2) and C3 are satisfied.
Thus, system description (5.16) belongs to S2, and a class of 1its C2 controllers
are given by (utilizing (3.7) - (3.10), (5.15), (5.17) and (5.19))

u(®) = KOy (D) - LIy,
K(t)y = -rn(v),

(5.20)
n(t)

Y(t) = y*:

r>o, 2, >o0.

2
As a consequence of Theorem 4.1, the use of a control given by (5.20) assures the
desired system behavior.

For numerical simulations of this system we have taken k = 1.5, r = 0.25 and
y* = 0.75. We have considered the performance of the following three controllers
for y(0) = 2.039.
1) The controller depending on knowledge of system parameters which assures the

desired performance, 1i.e.,
u(t) = Ky(t), K =-D=-0.125.

2) The controller given by (5.20) with I' = 0.1, K(0) = 0 and EZ = 0.

3) The controller given by (5.20) with I' = 0.1, K(0) = 0 and EZ =1,

The results of the simulations are presented graphically in Figures 5.2(1) -
5.2(3).
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C. SIMPLE PENDULUM

Consider a simple pendulum of mass m and length 2 subjected to a control moment
M and an unknown bounded disturbance v(*), in the form of a horizontal acceleration
of 1ts point of support; see Figure 5.3. Letting u = M/mE2 and letting Xy denote

the angle between the arm of the pendulum and a vertical reference line, the equations

of motion are
x (£) = x,(t)
! 2 (5.21)
xz(c) = -a sin xl(c) + u(t) - (v(t)/2) cos xl(t).

X1

Fig. 5.3. A disturbed simple
pendulum,
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Assume that a is a known positive constant and the state (xl(t)xz(t)) is accessible.
No information is assumed about the bound on v(:). We shall consider the problem of
obtaining a controller which assures that all possible state trajectories of the
system are bounded and converge to the zero state.

Since the zero state of the uncontrolled disturbance-free system is not g.u.a,s.,

the following control is proposed.
u(e) = -bxy(£) - exy(6) + (o), (5.22)
c >0, b > -ad,

d = inf {sin xl/xl :x; eR, x; # 0},

1

(3

where u (t) will be specified later. The system can now be described by

il(t) = x,(1)

. (3) (5.23)
xz(t) = ~a sin xl(t) - bxl(t) - cxz(t) - (v(t)/2)cos xl(t) + u (t)
which is in the form of (2.25) with
X
f(t,x) = 2 »
-a sin X - bxl - X,
(5.24)
(3) - T =
B (t,x) = (0,1)7, g(t,x,u) = u - (v(t)/2) cos X).
Assumption Al(l) is satisfied. Considering the function V defined by
V(t,x) = (b + c2/2)x§ +exx, + x§ + 2a(l - cos xl), (5.25)

Al(2) can be shown to hold; see Ref. (9). Letting B = sup{|v(t)|/l it e R},
](v(t)/l) cos x1| < B|cos xll; hence A7 and A3(3) are satisfied (see Remarks 2.3(1)
and (2)) by taking

B, =1, o(t,x) = l(t,x,B) = B|cos x| (5.26)
Thus, system description (5.23) belongs to S3.

Letting u(B)(t) be given by a C3 controller, one has

WGy = -s(t)é(t)|cos x ()], (5.27)

B(t) = 24]a(t)cos x, (0], B(c ) > 0, (5.28)
where

13 >0,

a(t) = cxl(t) + 2x2(t), (5.29)

(1) = s(t,x(t),B(L),e(t)),

s being any strongly Caratheodory function which assures the satisfaction of
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s()|a)] = |s(o)]a(w),

.. . - (5.30)
la(e)B(t)eos x ()] > e(t) => s(t) = oe) |
a(t) |
and
e(t) = ~4e(t) L e(t)) >0, %, >0. (5.31)
If one lets
s(t) = sat[a(e)8(t) |cos x (0)|/e(e)]
then
[
u i (t) = -sat(n(r))B(t)cos x,(t),
(5.32)

a(E) = a(t)B(t) [cos x,(£)1/e(D)-

For numerical simulations of this system we have taken a = 1, & = 1 and
v(t) = cos t. We have considered the system behavior under control given by (5.22)
with b =1, ¢ =1 and u(3)
n WPy =o.

2) The controller which cancels the disturbance term in the system description, i.e.,

given by four different controllers.

u(3)(t) = (v(t)/L) cos xl(t).
This, of course, requires complete knowledge of the disturbance.
3) A non-adaptive controller which requires knowledge of the bound B8,

(3 -

u (t) = ~sat(n(t))B cos xl(t),

n(t) = a(t)Blcos x (t)1/e,

e=0.01, B=1;
see Ref. (39).
4) The adaptive controller given by (5.32), (5.31), and (5.28) with £3 =1, 14 = 0.1,
B(0) = 0.01 and €(0) = 0.01.

The results of simulations for xl(O) =1 and x2(0) = 0 are presented graphically
in Figures 5.4(1) - 5.4(4).

f/\/\/\ AN
VA U\ Y

-1 -1 L - L
0 5 10 15 20 0 5 10 1
time, t time, t > 20
Fig. 5.4(1). Pendulum position for linear Fig. 5.4(2). Pendulum position for
controller only. disturbance-cancelling

controller.
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VI. APPENDIX

Definition 6.1. A function y ‘R, >R, belongs to class K (KR) iff it is

contimuous, nondecreasing, and satisfies
y(0) =0, r >0 => y(x) >0,

(Im  y(r) = =),

oo
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FOREWORD

In order to control the bhehavior of a system in the "real" world, the system ana-
lyst seeks to capture the system's salient features in a mathematical model. This
ahstraction of the "real" system usually contains uncertain elements, for example,
uncertainties due to parameters, constant or varying, which are unknown or imper-
fectly known, or uncertainties due to unknown or imperfectly known inputs into the
system. Despite such imperfect knowledge about the chosen mathematical model, one
often seeks to devise controllers which will "steer" the system in some desired
fashion, for example, so that the system response will approach or track a desired
reference response; by suitable definition of the system (state} variables such a
problem can usually be cast into that of stabilizing a prescribed state.

Two main avenues are open to the analyst seeking to control an uncertain dynamical
system. He may choose a stochastic approach in which information about the uncer-
tain elements as well as about the system response is statistical in nature; for
example, see Refs, {1,?). Loosely speaking, when modelling via random variables,
one is content with desirahle behavior on the average. The other approach to the
control of uncertain systems, and the one for which we shall opt in the present
discussion, is deterministic. Available, or assumed, information about uncertain
elements is deterministic in nature. here one seeks controllers which assure the
desired response of the dynamical system.

I. INTRODUCTION

We consisder the problem of obtaining memoryless stabilizing feedback controllers
for uncertain dynamical systems described by ordinary differential equations,
Various classes of controllers are presented. The design of all of these
controllers is based on Lyapunov theory.

Before proceeding with the problem, we introduce some basic notions and results for

ordinary differential equations.
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II. BASIC NOTIONS

Let T= (t,») where t € [-»,=); Tet X be a non-empty open subset of R"; and let
f:7 x X + R". Consider the first order ordinary diffcvential equation (o.d.e.)

x(t) = f(t,x(t)) (2.1)

where x(t) denotes the derivative of the function x(+) at t. By a solution of
(2.1) we shall mean an absolutely continuous function x(-):[to,tl) + X, where toe'T
and t; € (t =1, which satisfies (2.1) almost everywherel on tyety).

When considering a system described by an equation of the form (2.1), we shall
refer to X as the state space, a member of X as a state, equation (2.1) as the state
equation, and a solution of (2.1) as a state evolution, state motion, Or state

history.

A. EXISTENCE AND CONTINUATION OF SOLUTIONS

Since, in this paper, we consider systems described by o.d.e.'s, the two properties
introduced in this section are of fundamental importance,

Definition 2.1. Equation (2.1) has (global) existence of solutions iff, given any
patr (to,xo) € Tx X, therc exists a solution x(-):[to,tz) + X of (2.1) with x(to):=x0.

The following theorem (see Ref. (3) or (4) for a proof) yields sufficient con-
ditions for existence of solutions,

Theorem 2.1. If f is a Carathgodomp function, equation (2.1) has global existence

of solutions.

Definition 2.2 Equation (2.1) has indefinite continuation of solutions iff, given
any solution x(-):[to,tz) + X of (2.1), there exists a solution xc(°):[to,w) + X
of (2.1) with 25(t) = x(t) for all ¢t € [t,.t,).

The following theorem, which may be deduced from the results presented in Ref. (4),
chapter 1, provides useful sufficient conditions for 1indefinite continuation of

solutions.,

Theorem 2.2 Suppose f is Caratheodory and for each solution x(-):[to,tz) + X of
(2.1) with t, < o, there exists a compact subset C of X such that z(t) € C for all

t € [to,tz). Then, equation (2.1) has indefinite continuation of solutions.

1That is, everywhere except possibly on a set of Lebesgue measure zero,

25ee Appendix, sec. A, or just note that if f is continuous, it is Caratheodory.
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B. BOUNDEDNESS AND STABILITY

In this section, we formalize the notion of a system described by (2.1) exhibiting
“desirable" behavior with respect to a state x*e X, where X is the closure of X.

Definition 2.3. The solutions of (2.1) are globally uniformly bounded (g.u.b.) iff,
given any compact subset C of X, there exists d(C) € .F+ such that, if
x('):[to,tl) + X 28 any solution of (2.1) with x(to) € C, then lx(t)I < d(C) for
all t € [t ,¢7).

Definition 2.4 z" is uniformly stable (u.s.) for (2.1) or (2.1) is uniformly
stable about x* iff, given any neighborhood3 B of x‘, there exists a neighborhood
Bo of x* such that, 1f x(-):[to,tl) + X 1s any solutions of (2,1) with x(to) € Bo’
then xz(t) € B for all t € [to,tl).

Definition 2.5. =z isa global uniform attractor (g.u.a.) for (2.1) iff, given
any neighborhood B of x‘ and any eompact subset C of X, there exists T(C,B) Sk,
such that, if x(-):[LO,W) + X ig any solution of (2.1) with x(to) € C, then

x(t) € B for all t 2 to + TIC,Bl.

Definition 2,6. x‘is globally uniformly asymptotically stable (g.u.a.s) for (2.1)
or (2.1) is globally uniformly asymptotically stable about x‘ iff:

1) The solutions of (2.1) are g.u.b.

2) x* is u.s. for (2.1).

3) x* is a g.u.a. for (2.1).

Remark 2.1. Frequently, in the definition of uniform stability of x* in the litera-
ture, x* 1s assumed to be an equilibrium state for (2.1), i.e., x* € X and
f(t,x*) = 0% for all t € T, or, equivalently, the function x(-):T » x, x(t) = x*,
is a solution of (2.1). However, one may readily show that, if a state x* € X is
uniformly stable and if x(-):[to,tl) + X is any solutfon of (2.1) with x(to) = x*,
it necessarily follows that x(t) = x* for all te [tyoty)-

C. LYAPUROV FUNCTIONS AND A SUFFICIENT CONDITION FOR G.U.A.S.
In this section, we restrict the discussion to differential equations of the form

3By a neighborhood of ¥, we mean a set containing on open set which contains x*.

4ye use "0" to denote a zero vector.
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(2.1) with X = R e,

x(t) = f(t,x(t)) (2.2)

where f:Tx x » R", x = R", and T = (z,») with £ €[-=,»), In particular, we

present a theorem (Theorem 2.3) which yields a sufficient condition assuring that
(2.2) is g.u.a.s. about the zero state. The condition utilizes the notion of a

Lyapunov function which we shall define presently.

Definition 2.7. A function V:T % R K, 1s a candidate Lyapunov function iff
it 1s continuously differentiable and there exist functions Yo Yot B, > R, of
class KR5 such that for all (t,x) € T x R

yl(uxu) < V(t,x) < yz(uxu) . (2.3)

Remark 2.2  Suppose V:T x R" 4 Ris given by
V(t,x) = H(x)

for all (t,x)e T x R", where W: R" + R 1is a continuously differentiable function

satisfying

W(o) = o,
x# 0= HW(x) >0,
1im H(X) =@,
i X+
for allx € R", Then, V is a candidate Lyapunov function. To see this, define

Y1s Yp:R, > R, by

inf  W(x) ,

Y, (r)
1 TRL

v,(r) = sw H(x),
Ixi < r

for a1l r € R,.
Definition 2.8. A function V:T x K’ v R, is a Lyapunov function for (2.2) <{ff

i1t tg a candidate Lyapunov function and there exists a function Y3:<E; -+ ,E+ of
class K6 such that for all (t,x) € T x R*

5see Appendix, sec. B,

6See Appendix, sec. B,
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9V 9
() + 2 (L) F(Lx) € -v,(ix). (2.4)
We may now introduce a sufficient condition for (2.2) to be g.u.a.s. about zero.

Theorem 2.3. If there exists a Lyapunov function for (2.2) then (2.2) is g.u.a.s.

about zero.

Proofs of various versions of Theorem 2.3 can be found in the literature; see, for
example, Refs, (6-10). Also, Theorem 2.3 is a corollary of Theorem 6.1 of which
there is a proof in Ref, (69).

The following corollary is readily deduced from Theorem 2.1, 2.2, and 2.3.

Corollary 2.1. If f:T x R*+ R" is Carathéodory and there exists a Lyapunov
funetion for (2.2), then, (2.2) has existence and indefinite continuation of

solutions and is g.u.a.s. about zero,

D, SYSTEMS WITH CONTROL

In this section, we present a notion which is basic in this paper. It is the

notion of a system with control, i.e., a system whose state evolution depends not
only on an initial state hut also on an externally applied control input. For some
non-empty set U C R™, the set of control values, and some function F:T x X x (| + r"
(T and X are as before) such a system is described by

x(t) = F(t,x(t),u(t)) (2.5)
where u(t) €U is the control value at t.

Thus, if, for any function c:T + U, one lets

u(t) = c(t) (2.6)

in (2.5), the resulting open-Loop controlled system is described by

X(t) = F(t,x(t),c(t)), (2.7)

i.e,, it is described by (2.1) with

f(t,x) = F(t,x,c(t)); (2.8)
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hence the state evolution depends on the choice of c. Such a function c {s often
called on open-loop control function,

In this paper we shall consider control to be given by a memoryless feedback
controller, i.e., we shall consider

u(t) = p(t,x,(t)) (2.9)

for some feedback control function p:T x x + (. Substituting (2.9) into (2.5), a
feedback controlled system can he described by

x(t) = F(t,x(t), p(t,x(t))), (2.10)

i.e., it can be described by (2.1) with
flt,x) = F(t,x,p(t,x)). (2.11)
Since we shall be considering the g.u.a.s. property as a criterion for desirable

system behavior we introduce the following definitions,

#

Definition 2.9. A feedback control function p:T x X+ U stabilizes (2.5) about =

iff (2.10) has existence and indefinite continuation of solutions and is g.u.a.s.
*

about x .

*
Definition 2.10. (2.5) is stabilizable about z <iff there exists a p:T x X + U

%
which stabilizes (2.5) about x .

ITI. UNCERTAIN SYSTEMS

In the previous chapter, we introduced the notion of a system with control, i.e., a
system described hy

%X(t) = F(t,x(t), u(t)) (3.1)

for some function F:T x X x U » RM, Clearly, such a control system is completely
specified by specifying F.

When modelling a "real" system, on usually does not have, or cannot obtain, an
"exact" model., The model usually contains uncertain elements, for example, uncer-
tainties due to parameters, constant or varying, which are unknown or imperfectly
known, or uncertainties due to unknown or imperfectly known inputs into the system,
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When saying that a system described by (3.1) is uncertain, we are really saying
that F is uncertain, i.e., we do not know exactly what the function F is.
Therefore, in our model of an uncertain system, we model the uncertainty with a
statement of the form

FerF (3.2)

where F is some known, non-empty, class of functions which map 7 x x xy into rR".
F reflects our knowledge of the system.

As a simple first example of an uncertain system, consider a scalar system subject
to an uncertain Lebesgue measurable input disturbance v:R + R

X(t) = -x(t) + v(t) + u(t). (3.3)
Tahle 3.1 lists three different possible assumptions on the knowledge of v.

In case 1, the disturbance is simply an unknown constant and the system model is

3

given by (3.1)-(3.2) where a member of F is any function F:R~ + R which satisfies

F(t,x,u) = -x+d+u  ¥(t,x,u) ep3 (3.4)
for some d € R.
In case 2, the disturbance is an unknown Lebesgue measurable function with known

upper and lower bounds, » and p, respectively. In this case, a member of F in

3

system description (3.1)-(3.2) is any function F:R” + R which satisfies

F(t,x,u) = -~ x+v(t)+u ¥(t,x,u) e R3 (3.5)
for some measurable function v:R + [p,p].

In case 3, which includes cases 1 and 2, the disturbance is modelled by a bounded
measurable function with no assumption on the knowledge of its bounds. In this
case, a member of F in (3,1)-(3.2) is any function F:]R3 + R which satisfies (3.5)
for some bounded measurable v, This case is treated in Refs. (69) and (70).

1. v(t) =d¥ teR ; deR unknown

2. Vv:R > [ppl; p, p known

3. v:R *» R, bounded

TABLE 3.1
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As a second example, consider a scalar system
X(t) = v(t)x(t)+u(t) (3.6)

where the Lebesgue measurable function v:R + R models an uncertain parameter,
Again, Table 3.1 lists some possible assumptions on the knowledge of v,

As a generalization of the previous two examples, consider a system described by

x(t) = glt,x(t), u(t), v(t)) (3.7)

where g:T7Tx X x {§ x | » R" is known Caratheodory function, v:7 + ¢ is an uncer-
tain Lebesgue measurable function, and ¥ ¢ RP. This can be considered the general
model for a system with uncertain parameters or inputs, the uncertainties being
modelled by v, Table 3.2 lists three different possible assumptions on the
knowledge of v,

1. v(t) =dv¥t €R ; de€V, dunknown
2. v:T» s v known

3, v:T+V, v bounded
TABLE 3.2

An uncertain system described by case 2 of the previous example is an example of the
type of uncertain system we shall be considering in this article. 8asically, the
uncertain systems considered here are specified by specifying for each

(t,x,u) € Tx X x U, the set of possible values which F(t,x,u) may assume. For
cases 1 and 3, see Refs. (69) and (70).

IV, INITIAL PRORLEM STATEMENT - STABILIZATION

A. PROBLEM STATEMENT

Basically, the type of problem we shall consider initially in this paper is as

follows.
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Given an uncertain system described by

X(t) = F(t,x(t), u(t)), (4.1)

FerF, (4.2)

where F is a known, non-empty class of function which map Tx X x U inte R", and a
"desirable" state x* € X, obtain a feedback control function p:T x X + U which sta-
bilizes (4.1) about x*.

Since the only information available on F is a class of functions F to which F
belongs, we attempt therefore to solve the above problem by looking for a feedback
control function which stabilizes (4,1) about x* for all F €F,

We now introduce:

Definition 4.1. A feedback control function p:T x X + U stabilizes (4.1)-(4.2)
* *
about x iff p stabilizes (4.1) about x for each F € F.

The problem we shall consider is that of obtaining a feedback control function
which stabilizes (4.1)-(4.2) for a given F .,

*
Definition 4.2 (8.1)-(4.2) is stabilizable about x iff there exists p:T x X + U
*
which stabilizes (4,1)-(4.2) about x .

Remark 4.1. Note that stahilizability of (4.1) for each F € F does not imply sta-
bilizability of (4.1)-(4.2). It might be the case that, for each FE€F , there
exists p (dependent on F) which stabilizes (4.1), but there does not exist p which
stabilizes (4.1) for all F €F,

For example, consider the pair of scalar systems

x(t) = u(t),

. (4.3)
x(t) = - u{t),

Although each system is stabilizable (e.g., let p(t,x) = -x and p(t,x) = x,

respectively), it is unlikely that there exists a feedback control function which

stabilizes both of them. However, there may exist a non-memoryless or dynamic
controller which stabilizes hoth; see Refs. (69) and (70).

B, A USEFUL THEOREM FOR THE SYNTHESIS OF STABILIZING CONTROLLERS

In this section, we present a theorem (Theorem 4,1) which is useful in the synthe-

sis of zero-state stabilizing feedback control functions for uncertain systems
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whose state space is R". For a given uncertain system, the theorem yields cri-
teria which, if satisfied by a feedback control function, ensure that the feedback
control function is a stabilizing controller,

n
Theorem 4.1. Consider an uncertain system described by (4.1)-(4.2) with X = R

and suppose that p:T x X + U is such that

x(t) = F(t,x(t), p(t,x(t))) (4.4)

has existence and indefinite continuation of solutions for all F € F, If, for each
F &€ F, there exists a Lyapunov function for (4.4), then p stabilizes (4.1)-(4.,2)

about zero.

Proof. The proof follows readily from Theorem 2.3,

In the next section, we consider a particular class of uncertain systems, For each
member of that class, we present a class of candidate stabilizing feedback control
functions whose design is based on meeting the Lyapunov criterion in Theorem 4.1,

V. L-G CONTROLLERS

In this chapter, we consider first a class of uncertain systems which have been
treated previously in the literature; see Refs. (33,36,42,60). For each member of
this class, we present a class of (previously obtained) candidate stabilizing
controllers. We then enlarge the class of systems for which the presented
controllers are candidate stabilizing controllers. Finally, we present a theorem
which yields some properties of systems subject to the controllers presented.

A. ORIGINAL CLASS OF UNCERTAIN SYSTEMS

A member of the class of uncertain systems under consideration here is described by
(3.1)'(3-2)7 1.8.,

x(t) = F(t,x(t), u(t)) (5.1)
Fef {5.2)
where X = ]2", u=R m, and F satisfies Assumptions Al and A2,

Assumption Al. (F(t,x,+)is affine) For each F € F, therc cxist functions
F:iTx X+R" and B:T x X+ B™™ such that for all (t,x,u) € T x X x U
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F(t,xu) = f(t,x) + B(t,x)u. (5.3)

If Al is satisfied, then each F€F has a unique representation in the form of
(5.3), i.e., for each F € F, there exists a unique pair (f,B) for which (5.3) is
satisfied for all (t,x,u) € T x X x U; this pair is given by

f(t,x) = F(t,x,n), (5.4)
B(t,x)u = F(t,x,u) - F(t,x,0) Yue y (5.5)

for all (t,x)e T x X,

We let S; denote the set of pairs (f,B) which, for some F e, satisfy (5.,4)-(5.5)
for altl (t,x)e Tx X,

Assumption A2, There exist Carathdodory functions fO:T x X » " and
0 nx
B:TxX»Rm ", a candldate Lyapunov function V:T x X YR, a strongly

7
Carathéodory’ function p T x X *_ﬂ? » and a constant ¢ € ZR such that:

1) V is a Lyapunov function for

X(t) = f2(t,x(t)). (5.6)

2) For each (*‘ B) € Sgs there exist Carathéodory functions e:T x X >R" and
E:T x X *E " each that

f = £ + g%, (5.7)

B = 8 + BOF, ' (5.8)
and ‘

e(t, ) < p°(t,x), (5.9)

PE(t,x)i < ¢ <1 (5.10)

for all (t,x) € T x X,

Thus, utilizing (5.1) (5.3), (5.7) and (5.8), any system under consideration here
is described by

%(t) = Ot x(t))+BO(t,x(t))[e(t,x(t))+E(t,x(t))u(t)+u(t)], (5.11)

7see Appendix, sec. A, or just note that if a function is continuous, it is strongly
Caratheodory.
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where f° has a Lyapunov function V, and e and E satisfy (5.9) and (5.10) for some

strongly fCarathéodory function p® and constant ¢ > 0,

Remarks 5.1, 1) For a certain or completely known system, i.e., for a system for
which e and E are known, it should be clear that, under condition (5.10), (5.11) is
stabilizable. If one lets

u(t) = p(t,x(t)),
(5.12)
p(t,x) = - [I+E(t, )1 Ye(t,x),

then (5.11) reduces to (5.6) which, as a consequence of fC being Carathéodory, part
1 of Assumption A2, and Corollary 2.1, has existence and indefinite continuation of

solutions and is g.u.a.s. about zero.

?) In the literature, conditions (5.7) and (5.8) are sometimes referred to as
matehing condi tions; see Refs, (36,42,46,59),

When Assumption Al is satisfied, the existence of f°, B satisfying (5.7) and
(5.8) are equivalent to either of the following two conditions:

Condition C1. There exist Carathéodory functions %7 x X » R" and B%:T x x » 7
such that for all FE€ F and (t,x,u)e T x X xU,

F(t,x,u) - f(t,x)€ R (B%(t,x)) 5.13)
where R (BO(t,x)) denotes the range space of BO(t,x).

Condition C2. There exist Caratheodory functions fO:7 x x + R" and RO:1 x x +R™M

such that for all F € F and (t,x,u)e T x X x U,

[1-8%(t,08%T(t,x)7 [F(t,x,u) = f(t,x)1 = 0 (5.14)
where B°+(t,x) denotes the pseudoinverse8 of B(t,x); see Refs. (13,14),

3. Suppose one has an uncertain system described by (5.1)-(5.2) which satisfies Al
and A2.? but for which A2.1 is relaxed to:

Assumption A3. There exists a strongly Carathdodory fumction p°:T x X + U such

that V is a Lyapunov function for

X(t) = FO>t,x(t)), (5.15)

where

81f B8 € R™™M and rank (R) = m, then 8T = (8781187,
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0= 04 %", (5.16)
Assumption A3 assures that
X(t) = FOre,x(t)) + BO(t,x(t))u(t) (5.17)

is stabilizable about zero,

Letting

T(t) = u(t) - pO(t.x(1)), (5.18)
one has

u(t) = plt,x(t)) + U(t) (5.19)

and, utilizing Assumptions Al and A2.2, one has? for each Fe F

X =F
= %+ B%Le+Eutu)
= 0 + 8%Ce+Ep®+ p%+ Euvu)
= % %% BOle+Ep® + EUFU]
= 7% B°[E4EU¥G]
where
T = erfp’, (5.20)
Thus,
x(t) = F(t,x(t), u(t)) (5.21)
where
Flt,x,u) = FO>t,x) + BO(t,x)[e(t,x) + E(t,x)u+ul , (5.22)
Ve(t,x) < po(t,x), (5.23)
Eo(t,x) = po(t,x) + cup°(t,x)n (5.24)

for all (t,x,u) € Tx X x U, Hence, one may obtain a new system description which

9Sometimes, for the sake of brevity, we shall omit arguments.
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satisfied Al and A2; f°, B®, v, 0%, and ¢ assure Al and AZ.

B, L-G CONTROLLERS

Consider any uncertain system described by (5.1)-(5.2) {with X =R") which satis-
fies Assumptions Al and A?. An L-G controller for such a system is any function
p:T x X + U which satisfies

plesx) = - et WSt i a(t,) ¢ 0, (5.25)
pC(t,x) > p(t,x), (5.26)
where
oT avT
a(t,x) = B (t,x) > (tx), (5.27)
p(t,x) = 0%t x)/(1-c) (5.28)

for all (t,x)e Tx x, and (f°,8°,v,0%,c) assure satisfaction of A2,

For previous literature on the above controllers, see Refs. (6,17-37).

C. EXTENSION OF ORIGINAL SYSTEM CLASS

In this section, we present a class of uncertain systems which is a generaliza-
tion of the class presented in sec. V.A. An uncertain system in this class is
described by (5.1)-(5.2) where X = R", U= R™, and f satisfies the following
assumption.

Assumption A4. There exist a Carathéodory function B%:T x X +.ﬁan, a candidate
Lyapunov function V:T x X >R, and a strongly Carathéodory funetion

p:T x X * R, such that each F € F can be expressed as

F(t,x,u) = £2(t,x) + B%(t,x)g(t,x,u) (5.29)

for all (t,z,u) € T x X x U, for some functions fS:T x X + R/ and g:Tx X x U +7
which satisfy:
1) £ is Carathéodory and V is a Lyapunov funetion for

X(t) = f2(t,x(t)). (5.30)

2) g is strongly Carathéodory and
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tut 2 p{t,x) = uTg(t,x,u) >0 (5.31)
for all (t,x,u) € T x X x U,

An L-G controller for a system in this class is any function p:T x X + U which
satisfies {5.25), {5.26), and {5.27), where (B®,v,») is any triple which assures
A4,

Remarks 5.2. 1) To demonstrate that a member of the class of systems considered in
sec. V.A is a member of the class treated here, let

PUE (5.32)
g(t,x,u) = e{t,x) + E{t,x)utu (5.33)

for all (t,x,u)€ T x X x U; hence {5.79) is satisfied. Now note that

uTg(t,x,u) = uTe(t,x) + uTE(t,x) + uTu
2 2
> ~ue{t,x)idur - BE{(t,x)ibun " + 1w

o0t x)iw - cuuu7 + lluu2

A4

(l-c)uuu2 - po(t,x)uuu 5

hence

wgt,x,u) > (1-c)rw? - pO(t,x)iu (5.34)
for all (t,x,u)€ Tx Xx U, and (5.31) is satisfied with
0
po=p /(l-c). (5.35)

2) The function S need not be the same for each F € F; however, each S must have

the same Lyapunov function V.,

D. PROPERTIES OF SYSTEMS WITH L-G CONTROLLERS

We have the following theorem.

Theorem 5.1. Consider any uncertain system described by (5.1)-(5.2) (with X =R")
which satisfies Asswmption A4, If p is any corresponding L-G controller (as given
by (5.25)-(5.27)) for which

X(t) = F(t,x(t), p(t,x(t))) (5.36)
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has existence and indefinite continuation of solutions for all F € F, then p

stabilizes (65.1)-(5.2) about zero.
Proof. See Ref. (69).

Looking at Theorem 5.1, it can be seen that we have not completely solved the ori-
ginal problem for an uncertain system presented in sec. V.C. To do so, we need to
exhibit an L-G controller p which assures existence and indefinite continuation of
solutions to (5.36) (as defined in Definitions 2.1 and 2.2) for all F € F. This,
however, is not pnssible in general. Except in special caseslO, it is not possible
to obtain a function p, satisfyng (5.25) and (5.26) for all {t,x) €T x X, which is

continuous in x. Thus, one cannot assure that fiT x X » R", given by

f(t,x) = F(t,x,p(t,x)) ¥V (t,x) €T xX

is continuous in x, Hence (5.36) does not satisfy the usual requirements for

existence of solutions; see Theorem 2.1

In view of the above, we need to relax the requirements of the original problem

statement, Here are two possible relaxations:

1) Relax the requirements which must be met by a function in order to be con-
sidered a solution of (5.36). This is the approach taken in Refs. (29-37) where
the notion of generalized solutions is introduced and the L-G controllers solve the

relaxed problem for the systems considered there.

2) Relax the requirement of g.u.a.s. of (5.36) about zero. This is what is done
in Refs. (39-46,60) and what we do in the next chapter by introducing the notion of
practical stabilization. In this approach, one may solve the relaxed problem with
controllers which are continuous in the state; hence they are more desirable from

the viewpoint of practical implementation as well.

VI. RELAXED PROBLEM STATEMENT - PRACTICAL STABILIZATION

Refore introducing a relaxed problem statement, we need some new notions. Consider

a system described by (2.1), i.e.,

X(t) = f(t,x(t)) (6.1)

10For example, p{t,x) = y(t,x)ua(t,x)i for all (t,x,u) € T x X x U, where
y:Tx X+ R, is Carathéodory.
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where f:Tx X > R" and suppose that x*€ X,
For any subset B of R™, we have the following definition.

Definition 6.1. The solutions of (6.1)are globally uniformly ultimately bounded
(g.u.b.) within B 1ff, given any compact subset C of X , there exists T(C) €R,
such that, if x(+): [to,w) + X s any solution of (6.1) with x(to) € C,

x(t) € B for all t > t, * T(C).,

1f B< R is a neighborhood of x*, we have the following definition,
Definition 6.2. System (6.1) B-tracks x* or tracks x* to within B iff:
1) The solutions of (6.1) are g.u.b.

*
2) There exists a neighborhood Bo of © such that, if x(-):[to,t ) > X 18 any
solution of (6.1) with x(t ) € B , then z(t) € B for all t € [tu,tj).

3) The solutions of (6.1) are g.u.u.b. within B,

Bemark 6.1. 1f (6.1) B- tracks x* for any neighborhood B of x*, it is g.u.a.s.
about x*.

The following theorem yields sufficient conditions for B-tracking of the zero state
when X = R",

Theorem 6.1. Consider any system described by (6.1) with X =" and suppose there
exist a candidate Lyapunov function V:T x X =R , a class K function

ys:‘m; +<E+, and a constant ez GA%;, which satisfy

1im 13(r) >Cy (6.2)
r\fm

such that for all (t,x) € T x X,

g-yt- (t,x) +g¥ (t,x)f(t,x) < - 13(nxn) t ey (6.3)
Then, (6.1) tracks the zero state to within any neighborhood]] B of B(d), where
B(A) = ix e Rlux < d, (6.4)

T =17, (6.5)12

111f v c R'", then a neighborhood of V is any subset of R" which contains an open
set containing v,

12For the definition of Y- and -1 and some of their properties see Appendix, sec. B.
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7 =7, ey, (6.6)12
and Ygs Y2:_m+ + m+ are any class KR functions for which

Yl(lxl) < V(t,x) < Yz(lxll) (6.7)
for all (t,z) € T x X,
Proof: See Ref. (63).
We now introduce:

Definition 6.3, A collection P of feedback control functions p:T x X » U

*
practically stabilizes (3.1)-(3.2) about = 1iff, given any neighborhood B of m‘
there exists p € P such that for all F € F,

3

X(t) = F(t,x(t),p(t,x(t)))
has existence and indefinite continuation of solutions and B-tracks m‘.

The relaxed problem we shall consider is that of obtaining a collection P of feed-

back control functions which practically stabilizes (3.1)-(3.2) about < for a
given F,

*

Definition 6.4, (3.1)-(3.2) is practically stabilizable about = iff there exists
there exists a collection P of feedback control functions which practically
stabilizes (3.1)-(3.2) about z .

We now present a theorem which is useful in the synthesis of zero-state practically
stabilizing sets of feedbhack controllers for uncertain systems whose state space is
R"., For a given uncertain system, the theorem yields criteria which, if satisfied
by a collection of feedback control functions, assure that the collection is a
practically stahilizing collection,

Theoren 6.2, Consider an uncertain system described by (3.1)-(3.2) with X = K’
and suppose that P is a collection of feedback control functions p:T x X+ U, If
there exists a candidate Lyapunov function V:T x X + R, and a class K funetion

Yzi R, > R, such that given any ¢z > 0 there exists p € P which assures that for
all FE€ F,

X(t) = F(t,x(t), p(t,x(t)))
has existence and indefinite continuation of solutions and

13For the definition of ;;] and ;;1 and some of their properties see Appendix,
sec. B.
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%% (t,x) + §¥'(t,x)F(t,X.P(t’*)) < - vglia) + o (68

Jor all (t,x) € T x X, then P practically stabilizes (3.1)-(3.2) about azcro.

Proof: This theorem follows from Theorem 6.1 and the fact that given any neigh-
borhood B of the origin in R"”, there exists ¢3 > 0 which satisfies (6.2) and
assures that B is a neighborhood of B(d) as given by (6.4)-(6.6).

In the next chapter, we present some practically stabilizing controller sets whose

design is based on meeting the criteria in the above theorem.

VII. MODIFIED L-G CONTROLLERS

Consider again a member of the class of uncertain systems presented in sec. V.A.,
i.e., consider an uncertain system described by (5.1)-(5.?) where F:T x X x 4 + R"
X, = R", u=R", and F satisfies Assumptions Al and A2.

In this chapter we present some zero-state practically stabilizing controller sets
for such a system. FEach controller presented is a continuous-in-state approxima-

tion to some L-G controller presented in sec. V.B.

Taking any quintuple (0, t%, v, p0, ¢) which assures satisfaction of Assumption
A2, a proposed set of modified L-G controllers for practical stabilizability is the

set P of strongly Carathfodory functions p.:T x X + U, e >0, which satisfy

hp (£ < p%(t,x), (7.1)
P (tax) = - B o) if w(e) o e, (7.2)
pC(t,x) > o(t,x), (7.3)
where
C oT 'dVT
w(t,x) =0 S(t,08% (t,x) g (t,x), (7.4)
o(t,x) = p°(t,x)/(1-c) (7.5)

for all (t,x)E€ T x X,

As a particular example of a function satisfying the above requirements on p., con-

sider P, given by
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) ﬁ%‘,_:;T eltyx) if  wul(t,x)t >e

P (t,x) = 06
- U(:;.X) D(t,x) if llu(t,x)l <e,
oT BVT

u(tax) = e (Ex)BTE ) g (Eox) (7.7)

for all (t,x) €T x X,

We now have the following theorem,

Theorem 7.1. Consider any uncertain system described by (5.1)-(5.2) (with X =R"
and U = i) which satisfies Assumptions Al and A2; let P be any corresponding set
of modified L-G controllers as defined above; and suppose that YysYg B, > R are
KR functions and YziF B, g a K function which assure that V is a Lyapunov
function for z(t) = jo(t,x(t)). Then, for ecach Pe € P for which

1im Yq(r) > 2%, (7.8)
reo "
and for each F € F,

x(t) = F(t,x(t), p_(t,x(t))) (7.9)

has existence and indefinite continuation of solutions and tracks the zero state
to within any neighborhood B of B(ag) where

B(FE) ={x € Ruxi < 71'6}, (7.10)
7 =70, ), (7.11)
- -1

ro =7, (%). (7.12)

Proof. See Ref, (69).
From Theorem 7.1, we may deduce the following corollary.

Corollary 7.1. Consider any uncertain system described by (5.1)~(5.2) (with X =R
and U = RB™) which satisfies Assumptions Al and A2 and let P be any corresponding

set of modified L-G controllers as defined above. The, P practically stabilizes
(6.1)-(5.2) about zero,
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Proof. This corollary follows from Theorem 7.1 and the fact that given any
neighborhood B of the origin in ]R", there exists € > 0 which satisfies (7.8) and
assures that B is a neighborhood of B(?fe) as given by (7.10)-(7.12).

VIIT. APPENDIX

A. CARATHEODORY FUNCTIONS

In sec. A, T is any non-empty lLebesgue measurahle subset of R and X is any non-
empty subset of R",

Definition 8.1. 1) A function f:T x X +1¥ is Carathéodory 77f: for each t € T,
(f(ty+) is continuous; for each x € X, f(s,x) is Lebesgue measurable; and, for
each compact subset C of T % X, there exists a Lebesgue integrable function MC(-]
such that, for all (t,x) € C,

LF(t,x)t < MC(t).
2) A funetion £:T x X+ s strongly Carathéodory 7ff it satisfies 1) with
Mo(+) replaced by a constant MC.
B. K, KR FUNCTIONS

Definition 8.2 1) A function Y'E *R, belongs to class K 1ff it is continuous

and satisfies
rhery =,~;(r1) < y(rz) ¥ risf Ry
Y(0) =0, r>0=v(r) >0,
2) A function y:R +R_ belongs to class KR iff it belongs to K and

lim y(r) = =,
Mo

Lemma 8.1. If vy belongs to K, then there exist functions

Y-l, ;‘1:[0,2) +R , where & = lim y(r), such that

- + oo
17H(s) = Wnfif € Roov(r) = 5) ¥ s€ [0,0), (6.1)
Y7Hs) = suptr € R,iv(r) = 5 ¥ s € [0,4), (6.2)
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and these functions are strictly inereasing and satisfy

virls)) = s = v(l(s)) ¥ se [0.2), (6.3)

v < re M) v e R, (6.4)

Proof. See Ref. (69)
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INTRODUCTION

During the past twenty years, differential geometry and functional
expansions have offered powerful means for getting many remarkable results
on controllability, realization and static state feedback synthesis of
nonlinear systems (see, e.g., the books [2,12,15,19,32] and the survey
papers [13,36]). It was therefore believed that the aforementioned
mathematical tools were able to give, at least locally, the right nonlinear
analogues of most parts of the algebraic and geometric theories of constant
linear systems. However, some basic problems remained unsolved, certainly

the most important being the input-output inversion,

This note outlines a new framework for nonlinear systems which can
be regarded as a sequel to our recent solution [8,10] of the inversion
problem by differential algebra. Quite surprisingly, it turns out that many
control theoretic concepts, which were taken for granted in the literature,
should be reexamined in the 1light of our approach. The input-output
behaviour of a large class of engineering systems like nonlinear circuits,
swing dynamics or interconnected power systems is not given by the usual
state-space equations, but by a finite number of possible implicit
differential equations, some of which are algebraic, i.e., differential
equations of order zero. This i3 interpreted as the differential analogue
of the notion of algebraic field extension [25,28]. A new definition of
state is given which employs non-differential transcendence basis and local
differential algebra [31]. This gives a clear-cut answer to questions
raised in circuit theory [4,17] when the impossibility of a global

state-space description of many realistic examples is noticed.

Several other topics, such as inversion, series connection, exact
model matching, and controller and observability canonical forms, are also
treated. Feedback synthesis problems can also be studied by our methods
{9]. Moreover, the parallelism with discrete-time systems can be restored
when using difference algebra [11]. Finally, let us cite an earlier paper
[14] on the connection between bilinear systems and the Picard-Vessiot

theory, and a recent research announcement [29] employing differential
Galois theory.

Acknowledgements. The author would like to thank Dr. T. Roska for some

helpful comments.
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I. A SHORT OVERVIEW OF DIFFERENTIAL ALGEBRA())

I.1. pifferential algebra was originated more than fifty years ago by the
American mathematician J.F. Ritt [30] at a time when commutative algebra
began to arrive at its present shape [1]. Ritt's aim was to create a tool
which would play the same role in respect to differential equatlons as
commutative algebra to algebraic equations either in number theory or in

algebraic geometry.

I.2. An (ordinary) differential ring is a commutative ring R, with 1 = 0,
equipped with one derivation R =+ R, a ~» da | é, such that

dt
Vv a, bER, -2 (avb) = a + b
’ 'dt »
E% (ab) = ab + ab.
Usual words from commutative algebra, like ideal, fileld,..., to which

"differential™ is added, have obvious meanings.

I.3. Let K and L be two differential fields such that KC L. As in usual

algebra, tWwo situatlions are possible:

- Each element of L satisfies an algebraic differentlal equation with
coefficients in K, i.e., each element of L is differentially algebraic over
K. Then L is sald to be a differentially algebraic extension of K.

- There exists at least one element of L which does not satisfy any
differential algebraic equation with coefficients in K, i.e., which is
differentially transcendental over K. Then L 1s said to be a differentially
transcendental extension of K. The maximum number of such elements, which
are differentially algebraically independent, is called the differential
transcendence degree of L over K. This lmportant integer will be written
diff.tr.d°L/K.

I.4. Take three differential fields K L C M. The identity
diff.tr.d°M/K = diff.tr.d°M/L + diff.tr.d°L/K
will be used several times.

I1.5. Remark. The most important feature of this communication is to show
that many natural control problems have simple answers when employing the
language of field theory.

(l)See [25,28]
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II. WHAT IS AN INPUT-OUTPUT SYSTEM?

II.1. In algebraic geometry it is customary to work with a huge fleld,
called the universal domain, which contains all the elements [41]. We will
do the same here by considering an ordinary differential field 2 which is a

universal extension [25] of the field Q of rational numbers.

11.2. Take m + p elements u = (u1....,um). y = (y1....,yp) in Q. Assume
moreover that u],...,um are differential indeterminates, i.e., that they
are algebraically differentially independent over Q [25]. Let Q<u> C Q be

the smallest differential field containing Q,u1,...,u . A typical element

m
of QCu> is a rational expression of the form

u,(|3)1'12 -
- {(2),5
7(u2 )

II.3. Definition. To define a system with input u and output y amounts to

saying that the components of y are differentially algebraic over Q<ud.

I1.4. The preceding definition means that the components of u and y are
related by a finite number of Iimplicit differential equations., Let us
emphasize once again that this fact 1is encountered in many physical and

(2)

engineering case studies .

It should not be believed that such a definition of an 1/0 system is
restricted to algebraic differential equations [25], i.e., to equations
which are polynomial in the components of u,i,...,y,¥,... . One can also
tackle differentially algebraic coefficients and therefore all realistic
case studies. In order to make this statement more concrete, let us

consider the Josephson junction circuit described by [4]
y = E - RI siny (m=Q, p=1),

where E, R, 1 are device constants. It is easy to verify that the
non-differential transcendence degree of Q<y, sin y> over Q is finite, and

therefore that y is differentially algebraic over Q.

I1.5. Many times in engineering, I/0 behaviours are defined via functional
expansions, like Volterra series or generating series (see [13,32] and the
references therein), Contrarily to our approach, such a viewpoint seems to
our opinion quite unrealistic since it implies the knowledge of an infinfte
number of coefficients. Moreover, due to convergence properties, the

(Z)See [3,4,17,27,33] for various examples.
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adequation between physical systems and functional expansions is in general

only local.

III. SOME BASIC PROPERTIES
(2)

1. Inversion

II1.1.1. For constant 1linear systems, the inversion problem is quite
trivial when using the frequency domain approach. In the nonlinear
situation, it 1s simple to understand only in the case of a one-dimensional

control [18,37]. Everything becomes clear with differential algebra.

I11I.1.2. Definition. The differential output rank is the differential
transcendence degree of the differential field Ky> over Q.

IIT.1.3. The following is not difficult:
Proposition. For a constant linear system, the differential output rank

turns out to be equal to the rank of the transfer matrix.

I11.1.4. The next definition is consistent with linear systems.
Definition. A system 1s sald to be (differentially) left invertible (resp.
right invertible) if, and only if, its differential output rank is equal to

the number of controls (resp. outputs).

IIT.1.5. Proposition. (i) If a system is right invertible, then there are
no relations between the components of the output, which are independent of
the control and of the state.

(ii) If a system is left invertible, it is possible
to recover the control from the output by a finite set of equations.
Proof. (1) The first statement is Jjust a rephrasing of the fact that the
differential transcendence degree of Q(y) over Q is p. It 13 the nonlinear
analogue of the linear independence of the rows of the transfer matrix.

(11) By 1.4, we may write

diff.tr.d°Qu,y>/Q = diff.tr.d°Qu,y>/Ky> + diff.tr.d°Qy>/Q ,
where

- diff.tr.d°Q<y>/Q = m by assumption,

= diff.tr.d°Qu,y>/Q = m, since we are assuming m Iindependent
controls.

(s)

See [10] for detalls and references.
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Therefore
diff.tr.d°Q<u,y>/Xy>= 0.

This means that u1,....um are differentially algebraic over Qy>.

I11.1.6. Remark. It has been recently noticed [20,21] that the geometric
approach for extending various important invariant integers in 1linear
system theory to a nonlinear setting exhibits severe pathologies. Our
differential output rank should be a good candidate for the right nonlinear

analogue of the sum of the zeros at infinity.

2. Series connection

I11.2.1.

In the above block diagram representing a series connection, the output of
a system is the input of the next one., This is equivalent to a tower, i.e.,

an increasing sequence of differentially algebraic fields extensions:
1 1.2 1 3
HKu> CQ®u, WO XU, vy, vC ..o C XU, ¥Yyueuu, ¥

The notion of tower of fields is quite important in number theory.

III.2.2. Remark. This analysis shows that the problem of decomposing a
given system into a series connection, the elements of which should be as
"simple" as possible, is strongly related to a Galois theory for
differential fields [25,28]. See [7] for another approach.

3. Exact model matching(“)

I11.3.1. We are given two systems with the same input u and outputs y and z
= (z1.. ...zr). The exact model matching problem consists of finding a

system with input z and output y such that the diagram

>,

commutes.

T oailt roc

Result recently obtained by Conte, Moog and Perdon [5].
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I1II.3.2. Proposition. The exact model matching problem is soluble if, and
only if, the differential transcendence degrees of Q<y,z> and QKz> over Q

are equal.

Proof. From

diff.tr.d°Qy,z>/Q = diff.tr.d°®y,z>/®z> + diff.tr.d°®Kz>/Q,
we se¢e that

diff.tr.d°Qy,z>/Q = diff.tr.d°Q®z>/Q
is equivalent to

diff.tr.d°®y,z>/Kz> = 0.
I1I1.3.3. Remarks. (i) As an exercise we invite the reader to verify that
for constant linear systems the preceding criterion reduces to the usual
rank condition for transfer matrices.

(ii) For another approach Lo the same problem, see [6].

IV. STATE AND REALIZATION

IV.1. Discussions on the concept of state can be found in the literature
[23,40] at the beginning of the state space area, which has become the
mainstay of control theory since the sixties. These considerations, which
are quite satisfactory for 1linear systems(s). have not been further
examined for nonlinear ones. This fact caused several difficulties when
systems could not be described by the usual state space form., Methods such
as singular perturbations had to be employed in order to apply results and

techniques from state space theory(s).

IV.2. Here ls a first non rigourous attempt to describe what a state should
be. A state x = (xl,...,xn) is a set of n elements in @ such that
. (2)

xl,1-1,....n, and y,J=1,...,p, depend on x,u,i,u Yoo s

IV.3. In differential algebra, a constant is an element with derivative
zero. All the constants in a given differential field form a subfield. Call

C, QCC, the field of constants of Q<u,y>. Clearly, a non-differential

(S)See nevertheless Willems' criticism [39].

(e
)For a most interesting example, see [27].
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transcendence basis of QKu,y> over C<ud> satisfies the preceding properties
if the dependence is algebraic. Such a choice, however, could bring some
trouble like the one described in the next example. Take the "memoryless"
system y = sin u, m=p=1. A sound minimal realization should have dimension
zero., But the non-differential transcendence degree of Q<u,sin u> over QKu>
1s one and would therefore imply a state space realization of dimension

one.,

IV.4. The solution is given by local differential algebra [31], where
differential algebra 1s supplemented so as to take into account initial
conditions. We will just sketch some of the ideas here by using plain
words, Take analytic control ul = Z a1 tv, i=1,...,m, and initial

conditions such that the outpufz%d - Z bJ tv, J=1,...,p, is also

v20
analytic. To take into account the analytic dependence [41] between the

ufa)'s. y;e)'s. {=1,...,m, j=1,...,p,a,820, we look at the Krull dimension

(161 of R[[uiu)—aiu, yj(e)—bje | @,88v1], where R is the field of real
numbers. It can be shown that this dimension remains constant and equal to
d when vao. This Iinteger d is called the minimal dimension of the system.
When 1t 1is equal to the non-differential transcendence degree of QKu,y>

over C<u>, the system is said to be algebraic.

Iv.5. Consider now, for simplicity's sake, an algebraic system of minimal
dimension d. The minimal state will be a non-differential transcendence
basis q = (q1,....qd) of Qu,y> over C. The derivatives dk,kal....,d, and

the outputs yj,j=1,...,p, are algebraically dependent on q,u,u,...

Fk(qk.q.U,U....,u

- (s)
¢J(yj.q.u,u....,u ) = 0.

This means that the usual state space form
. (s)
q - fk(q,u,....u )

(S))

= ¢,(q,u,...,u

YJ ¢J q
might only be locally valid. Another major change with realization theory
in the differential geomettric setting (20,22,36] concerns the
transformation between two minimal states, which here depends on the

control and its derivatives.
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IV.6. To the best of our knowledge, the local validity of nonlinear state
space equations has been completely overlooked in the control literature.
It shows Lhe difficulty of obtaining a global differential geometric
realization with reasonably weak assumptions (see [22] and the references
therein). Among circuit theorists [4,17], however, such problems are
well-known, and we believe to have offered here for the first time a clear

mathematical explanation.

IV.7. The intimate connection between control and state has already been
noticed in the literature [34,38] and was dealt with by employing the

language of fibered manifolds.

V. CONTROLLER AND OBSERVABILITY CANONICAL FORMS

V.1. There have been several attempts to generalize linear canonical forms
to a nonlinear setting (see, e.g., [43] and the references therein), and
also some applications to control problems (see, e.g., [24]). We will show
here that two of these canonical forms can be obtained very easily thanks
to our methods.

V.2. Take the usual state space form

. (s)

X = AL(X1""'Xn' U,...,u ), i=1,...,n,

such that Xyveo Xy are differentially algebraic over Q<u>. By applying the

differential algebraic generlization of the theorem of the primitive

element [25,28], there exists an element £ such that Qu,§> =

Q<u,x1,...,xn>. As in IV.4, let d be the first integer such that 5(d+1) is
analytically dependent on 5,5,...,§(d),u,ﬁ,...
0(£(d+1),g(d),...,g,u,...,u(s)) = 0.

It can be solved locally as

(d) (s)

5(d+1) = alE,...,E WU eas,U ).

Set q1 = 5(1),1=0,...,d. We obtain the following local state space form,

which can be regarded as a generalization of the 1linear controller

canonical form:



143

(s)

4q = 3 ,.vuhqqu, e, u™’)

See [35] for another approach.

V.3. For the sake of simplicity, take a system with a one-dimensional

output y, i.e., p=1. As before, let d be the least integer such that y(d+1)

(d)

is analytically dependent on y,¥,...,y ,u,id, ...

y(d+1)'y(d) (s)

¥l yeeesY Upeea,t ) = 0.

It can be solved locally as

(d) (s)

y(d+1) = b(y,...,y WMy ee.,U ).

(1)

Set qi-y , l=0,...,d. We obtain the following local state space form
which can be regarded as a generalization of the linear observability
canonical form (compare with [26,42]):

(s)

qd"b(qov'--quIUIO--yu )

Y'qo-
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ON THE NONLINEAR EQUIVALENT OF THE NOTION OF
TRANSMISSION ZEROS
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Abstract. The purpose of tlus paper is to show that three possible characterizations of the
notion of "transmission zero”, namely "pole” of the inverse system, zero-output-constrained
dynamics and unobservable zlynanucs under certain state-feedback, which are equivalent for
any invertible linear system, may have different analogues for nonlinear input-affine systems.
It is also shown that some nonlinear versions of the so-called structure algorithm, proposed by
Hirschorn and Singh, may be successfully used in this framework.

1. Introduction,

The study of the nonlinear analogue of the notion of "transmission zero" has
received little attention in the literature, despite of the relatively large amount of contributions
in other areas, like disturbance-decoupling, noninteracting control, inversion, model
matching, high-gain output feedback, in which at least for linear systems the notion of zero
(more specifically, the latter being "left-half-plane” or not) plays an important role. In view of
their contributions to the geometric understanding of disturbance decoupling in nonlinear
systems, Krener and Isidori proposed in [1] a nonlinear equivalent of the notion of zero based
upon the consideration of the "dynamics” associated with that part of the system which
becomes unobservable after a disturbance-decoupling state-feedback is set up. This notion is
worth being considered in such a setting (i.e. in order to examine the internal behavior of a
disturbance-decoupled system, for instance in order to find whether or not this is stable), but
as we shall see later on this is not the only aspect one has to deal with. For single-input single-
output nonlinear systems, Byrnes and Isidori [2], and Marino (3], showed that the nonlinear
analogue of the notion of zero proposed in [1] turns out to be equivalent to the idea of a
"dynamics" of an inverse system as well as to that of "dynamics” under high-gain (stabilizing)
output feedback. This equivalence is quite appealing because is exactly the one found in any
(invertible, even multivariable) linear system. However, recent progresses in the study of
multivariable nonlinear systems have shown that the approach to the notion of zero based
exclusively, as in [1], on the analysis of a dynamics which is made unobservable under certain
state-feedback is not complete, in the sense that some pathologies may occurr. For instance,
Isidori has shown in [4] that this dynamics may be affected by addition of integrators on some
input channel, fact that looks quite strange if viewed with a linear system background.

In this paper we show that the two other important aspects behind the notion of zero,
namely that of a dynamics of the inverse system and that of a dynamics yielding zero output,
in a multivariable nonlincar system may have non-equivalent analogues (and even both
differing from the former, namely a dynamics which is made unobservable under a certain
state-feedback). This shows that there are really three independent ways to approach the
nonlinear analogue of the notion of zero and each one has, as we shall remark, its own good
reasons to be considered.
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In the second half of the paper, we show that the nonlinear versions of the so-called
structure algorithm, developed by Hirschorn and later by Singh, under appropriate regularity
assumptions lend themselves to very interesting applications in the present framework. More
specifically, they provide means to compute the "dynamics” in question as well as to prove
several related results.

The system we consider are described by equations of the form:

(1.1a) x = f(x) + g(x)u
(1.1b) y = h(x)

where xeR™, ueR™M, yeRP. f and the m columns of g are analytic vector fields, h is an analytic
mapping. Throughout most of the paper we shall assume p=m. In the first part of the
following section we suppose the reader having some familiarity with the basic principles of
controlled invariance for systems of the form (1.1): the appropriate background material can
be found e.g. in [5].

2.Three different notions in one.

The purpose of this scction is to point out that three important phenomena associated
with the notion of "transmission zera”, which are equivalent for any invertible linear system,
may have in fact different meanings in a more general setting.

The first of these is related to the loss of observability under static state feedback.
Let A* denote the largest controlled invariant distribution contained in the kernel of (dh) and
suppose A* has constant dimension around x¢. Then, if a and B are such that f+ga and g
make A* invariant, then, it is well-known that the feedback u=a(x)+p(x)v makes the system
maximally unobservable and, in fact, in a neighborhood of x€, sets of indistinguishable states
are integral submanifolds of A*. If, in particular, x€ is an equilibrium point for f (i.e. f(x€)=0),
one can always find an o such that a(x€)=0 and this makes f+ga tangent to the integral
submanifold of A* passing through x¢. This motivates the following definition.

Definition 2.1. Let x€ be an equilibrium point of f and suppose A* has constant
dimension in a neighborhood U of xe, Let « be such that a(x€)=0 and such that f+go makes A*
invariant. Let N'xe denote the maximal (on U) integral submanifold of A* through x¢. The
vector field on N'ye defined as (f+ga) restricted to N'ce is said to be a local dynamics
associated with maximal loss of observability (under feedback). ¢

Remark 2.1. In a linear system (x€=0) N'xe is exactly V¥, the largest controlled
invariant subspace contained in the kernel of C. If F is such that A+BF makes V* invariant,
then the dynamics associated with the maximal loss of observability is that of the linear
mapping defined as A+BF restricted to V*. It is well-known that if the system is square (i.e.
same number of inputs and outputs) and invertible, the eigenvalues of this mapping coincide
with the transmission zeros.0
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The second aspect we wish to consider consists in the analysis of the dynamics of
(1.1) under the constraint that the output y=h(x) be zero for all times. In more precise words,
the idea of a dynamics constrained in such a way that h(x)=0 can be formulated as follows

Definition 2.2. Let x¢ be an equilibrium point of f, let h(x€)=0, suppose there
exists a neighborhood U of x€ and a smooth submanifold N"yxe of U containing x¢ with the
following properties:

(i) N",e is contained in h-1(0);

(ii) there exists a feedback u=a(x), defined on U, such that f¥=f+go is tangent to N"ye;

(iii) N"ye is maximal (i.e. any submanifold of U through x¢ such that (i) and (ii) are true is
contained in N",e).

The vector field of N",e defined as the restriction of f* to N",e is said to be a local zero-
output-constrained dynamics.0

Remark 2.2. In a linear system (x¢=0) such an N"e exists and coincides with V*,

Thus, the notions of zero-output-constrained dynamics and that of dynamics associated with
maximal loss of observability coincide.¢

The third phenomenon we consider is related to the existence of inverse systems.
Suppose the system (1.1) has the same number of inputs and outputs and is invertible (in the
sense of [6]). Then an inverse system exists and can be described by equations of the form:

(2.1a) z= F(z,y,y(D,..,y®)
(2.1b) u = G(z,y,y(D,...,y&)

where k is a suitable integer. An inverse system should be "generically” able to reproduce the
input u of (1.1) on the basis of the knowledge of the output y and of the initial state x°
("generically" here is to be understood as "for almost all inital states x© and outputs y of
(1.1)"). An inverse system of the form (2.1) is said to be reduced if the dimension of its
dynamics (i.e. the dimension of z) is minimal over all inverse systems of the form (2.1).

Existence, uniqueness and construction of reduced inverse systems (for systems of
the form (1.1)) are not yet fully understood. However, loosely speaking, it seems quite natural
to regard the dynamics (2.1a) of a reduced inverse, as a minimal set of differential equations
required to recover the input function u of (1.1) starting from the knowledge of its output
function y and of its initial state x°.

In a linear system, the dynamics of a reduced inverse has the form:

z2=Fz +Ggy + G1y(D + ... Gyy®

and F is a linear mapping whose eigenvalues coincides with the transmission zeros. Thus,
again, to look at the spectrum of the dynamics of a reduced inverse is nothing else but an
equivalent way to look at the transmission zeros.

The three concepts illustrated so far are no longer equivalent when the system is
nonlinear, as we shall see in two simple examples. However, each one has its own interest in
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control theory. The dynamics associated with maximal loss of observability if found, for
instance, as "internal” dynamics of a closed loop system in which a disturbance decoupling
problem via static state feedback has been solved. The zero-output-constrained dynamics is
found, again as "internal" dynamics of a closed loop system, when high-gain output feedback
(or variable structure control) is used to force the output to stay close to zero (see |7]). Finally,
the dynamics of a reduced inverse has clearly interest in the construction of inverses.

Intuitively, the difference between dynamics associated with maximal loss of
observability and zero-output-constrained dynamics depends on the fact that in the former one
looks at invariance (of a distribution) under the vector field f+ga and all the vector fields of
gB, whereas in the latter one looks at invariance (of a submanifold) under the vector field f+ga
alone. This is sometimes referred to as the difference between invariance under full control
and invariance under singular control. On the other hand, the difference between zero-output-
constrained dynamics and the dynamics of a reduced inverse is related to the fact that the
output function y(t)=0 may be a singular value in the inversion problem. Both these
differences appear in the examples that follow.

Example 2.1. Consider the system:

X]=uj
X7 = X4 + X34
X3=AX3 + X4
X4 =1U
Y1=X|
y2=X2

An easy computation shows that A* = 0 (for all x). Nevertheless, the zero-output-
constrained dynamics exists and is given by:

X3 = AX3

It may be worth seeing that if A < 0, i.e. if the zero-output-constrained dynamics is
asymptotically stable, the whole system can be asymptotically stabilized via high-gain output
feedback. A compensator doing this job is the one characterized by a transfer function of the
form:

[ (s+z)/s 0 1
Kts) =K | ]
[ O (s+z)/(1+Ts) ]

where K>0 is large, z>0 and T>0 are small.¢

Example 2.2. Consider the system:
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X1 =Xp +Ug

).(2 = X2X3 + X4 + X3Uq
)'(3=U2

).(4=X3

yi=Xx

y2=Xx2

In this case also we have A* = 0 (for all x); however, the constraint y=0 implies
now x=0. In other words, no nontrivial zero-output-constrained dynamics exists. A reduced
inverse is the one given by:

x3 = (- x3 - x3y1® + y @)y ()

up=y1th-y;
uz = (- X3 - x3y1@ + y, @)y (1

This reduced inverse has a 1-dimensional dynamics. Note also that the value y {(D=0
is a singular value of this dynamics. ¢

3. The zero-output-constrained dynamics.

In this section we shall see that, under appropriate regularity assumptions, the so-
called structure algorithm, ideated by Silverman [8] and then generalized by Hirschorn |9] in
order to analyze system invertibility comes out in a most natural way when dealing with the
zero-output constrained dynamics. The first stage of our study shall consists in the exploitation
of some interesting features of the structure algorithm that perhaps are known but, as far as we
know, haven't yet been explicitly formulated. To this end we shall revisit the algorithm in
question from a slightly different perspective.

Let x¢ be an isolated equilibrium state of (1.1) and let h(x®)=0. Suppose the mapping
h has constant rank, say sg, around x€. Then, locally the set Lg=h-1(0) is a smooth (n-sg)-

dimensional submanifold. Choose a coordinate chart (U,$) around x¢ in such a way that locally
Lg coincides with a slice of U. More precisely, let x=(xg,x{) denote new coordinates around
x€, with dim(xg)=sg, chosen in such a way that locally:

LO = {XEU : X0=0}
Let f and g be partitioned accordingly:
[ fo(xo,x1) ] [ go(xo:x1) ]

fx)= | ] gx)= [ ]
[ filxpxp) ] [ g1(xpx1) ]
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The constraint y(t)=0 for all t clearly implies x(t)eLg and this, in turn, implies
(f(x)+g(x)u)eTyLg. Since, at all xel.g, TxLg = span{d/dx}, in the new coordinates this
constraint becomes:

(3.1 fo(0,x1) + go(0,xJu =0

for all x| and all u. If this equation can be solved for u=u(x1), then Ly (around x®) is clearly
the set we were looking for. The feedback control u=u(xy) is such as to keep in Ly the
trajectory starting from any point of L. The vector field f*(x1) = f1(0,x1) + g1(0,x1)u(x{)
characterizes the zero-output-constrained dynamics.

Consider the case where (3.1) cannot be solved for u and suppose the rank of
g20(0,x) is constant, say rg, around x¢ (on Lg).Let Ro(x1) denote an (sg-rg)xsg matrix of
analytic functions, of full rank at all xy, such that:

Ro(x1)go(0,x1) =0
Then (3.1) clearly implies:
Ar(x1)= Ro(x1)fo(0,x1) = 0

along any trajectory that produces zero output. Note that A (x{) is not identically zero
(because otherwise (3.1) would be solvable for u). Suppose the mapping A; has constant rank,
say s, around x€ (note that A;(x€)=0 because f(x¢)=0). Then, locally around x€, the set
L=x;-1(0) is a smooth (n-sg-s;)-dimensional submanifold. Choose local coordinates on Lo,
X1 = (x1,x2) with dim(x;")=sy, in such a way that, locally around x¢, L1={xeU: xp=0,x1'=0}
and set:

[ fo(xp,x1ux2) ] [ go(xp:x1%x2) ]
fx)= [ fi'(xg.x1,%x2) | g(x)= [ gi'(xgx1ox2) |
[ falxpx1nx2) | [ ga(xp.x1ux2) ]

The constraint y(t)=0 now implies x(t)eL; and this, in turn implies:

[ f0(0,0,x2) ] [ 280(0,0,x2) ]
0= | |+ | u
l fl.(010yx2) ] [ gll(o’O’XZ) ]

This equation is quite similar to (3.1) and from it one can pursue similar
iterations. The reader familiar with Silverman-Hirschorn's structure algorithm will easily
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realize that the iterations in question are essentially the same as those considered in that
algorithm. At the k-th stage one considers the equation:

(3.2 0 = F.1(x) + Gk-1(x)u
where:
[ fo(0,...,0,x) ] [ 2000,....0,xg) ]
(3.3) Fealx)= [ ... I Gyalxp)= [ ... ]
[ fk-100,..,0,xg) 1] [ 8'%-100,...,0,xg) ]

Fi_1 and Gy_1 have oy = sg+...+Sk.1 rows and xy denotes coordinates on Ly_1, an (n-og.1)-
dimensional submanifold. If the matrix Gy_; has constant rank ry_; around x¢, one finds an
(ok-1-Tk-1)X0k-1 matrix Ry_1(xy) such that:

Ry 1(xk)G-1(xg) = 0
and considers the mapping
Ag(xi) = Ry 1(xg)F-1(x) = 0

If the set Ly =xy -1(0) is a smooth (n-oy_1-sg)-dimensional submanifold of Ly, one chooses

new local coordinates and continues.
It is important to remark that the sets Lg,Ly,..., the ranks rq,ry,..., and even the

regularity assumptions made at each iteration (constancy of the ranks of Gy_(xy) around x€ on
Ly 1 and the fact that Ly is a smooth submanifold) depend intrinsically on the system and not
on the particular choice of coordinates performed at each stage nor on that of  Ry_{(xy). To
clarify this point, note first that Gy_;(xy) is simply a submatrix of g(0,...,0,xg). Moreover,
note that the rows of Ry_(xy) are a basis of the space of row vectors y solving the linear
equation ¥Gy.1(xx) = 0. Thus any other matrix R'y_i(xy) such that R'y.(xg)Gy_1(xg) = 0 is
related to Ry_1(xx) by an expression of the form:

Ry 1(xg) = T(xx)Rk-1(xg)

where T(xy) is a nonsingular matrix. From this we see immediately that the set Ly=2;-1(0) is
always the same no matter what Ry_)(xy) is chosen.

If the said regularity assumptions are satisfied, the procedure terminates in at most n
iterations. For, if at a certain stage Ay is not identically zero on Ly_; and Ly=1y-1(0) isa
smooth submanifold, then dim(Ly) < dim(Ly_;). If Ay is identically zero on Ly_; we may still
set, formally, Ly=Ly_;. Thus, the procedure terminates after at most k*<n iterations, where
k* is the least integer such that either one of the following cases occurs:
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(1) Lygx =Lyxg (with dim(Ly*)#0), or
(i) Lyx = {x¢€}.

In either cases, the equation (3.2) can be solved for u=u(xy) in the neighborhood of
x€ on Ly« ; such a solution may not be unique (unless Gy*_q has rank m). However, in case (ii),
only those u which annihilate Gy_{(x€)u solve the equation in question.

We synthesize the discussion up to this point in two formal statements.

Definition 3.1. An isolated equilibrium x€, such that h(x®)=0, is said to be a
regular point for the structure algorithm if, for each k>0, the set Ly_ is a smooth submanifold

of the state space and the matrix Gy_1(xy) has constant rank around x¢ for all xyel.y 1.0

Proposition 3.1. Let x¢ be a regular point for the structure algorithm. Then
locally (around x€) the set Ly« is the largest submanifold of h-1(0) on which the state of system

(1.1) may evolve under suitable control. Any feedback u=u(xy*) solving the equation (3.2)
(for k=k*) is such as to keep the state of system (1.1) evolving on Lyx.Q

From what we have seen, it is clear that the zero-output-constrained dynamics of
(1.1) locally around x¢ is described by the vector field of Lyx:

¥ (xg#) = fi*(0,...,0,x%) + g*(0,...,0, X3 Ju(xy*)
where u(x*) is a solution of (3.2) (for k=k*).

In the previous discussion, we haven't made any specific assumption on the value of
the rank r«. However, if the system is such that re«=m, then more properties hold, as

specified in the following Lemmas.

Lemma 3.1. Let x© be a regular point for the structure algorithm. Then the
following inequalities hold:

(1) sp<m

(i1) S1<sp-TIg

and, for all k such that 2<k<k*:

(iif) Sk S 8k-1 - (k-1 - Ik-2)

(iv) Tk STk.1 + Sk

Thus, rg< m for all k<k*. If rg» = m then necessarily in all previous inequalities the equality
sign holds.

Proof. The vector h(x) has m rows and this implies (i). The vector Rg(x1)f1(0,xy)
has sg - rg rows and this implies (ii). At any k>2, one can choose Ry_j(xy) in such a way that its
first ok.p-rx.2 rows have the form [ Ry.2((0,xx)) 0].  Thus, the first ox_p-ri 7 rows of
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Ry.1(x)Fx.1(xy) vanish identically on Ly_;. The other rows of this vector are exactly sy_| -
(ry.1 - rx-2) and this implies (iii). Finally, Gy has s, more rows than Gy_| and this implies (iv).
The last statements are trivial consequences of (i)-(iv).0

Lemma 3.2. Let x¢ be a regular point for the structure algorithm. Suppose rg» =
m. Then at each stage of the structure algorithm one can choose Ry_{(xy) and a partition:

[ R'r(xg) )
Rg.i(xx) = | ]
[ R"1(xg) ]

where Ry 1(xgk) has oy_p-ry_7 rows and R"y_;(xx) has exactly sy rows. Moreover:
(1) Rx-1(x)Fy-1(x) = 0 for all xyely.y;
(i) the mapping c(xy) = R"x 1(xi)Fy-1(x) has full rank sy at xe. ¢

4. The dynamics of a reduced inverse.

In this section we shortly outline how the inversion procedure developed by Singh
[L0],which consist of a modification of the structure algorithm, can be used in order to
construct also a reduced inverse. The procedure in question is defined in the following way.
Consider the mapping;:

SO()’yX) = h(X) -y
and set:

So(y,y(D,x,u) = (3S¢/AN(x) + (3Sp/Ax)g(x)u + (3S¢/Ay)y()

Note that Sg(y,y(D,x,u) is linear in u and it is possible to express it in the form:

So(y,yM,x,u) = foly,y(D,x) + goly,x)u

Let pg denote the rank of gg and set pg=m, p1= pg-po- L.et Kg(y,x) be a pxpg matrix
of rank pj such that:

Ko(y,x) go(y,x) =0
and set:
S1(y,y,x) = Ko(y,x) foly,y(1,x).

At the (k+1)-th stage, consider the mapping Si(y,...,y),x) and set:
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Sk (¥see,y®),yk+ 1) x 1) = (3S,/0x)f(x) + (dS/Ix)g(X)u + @S/Iy)y(D) + ...
+ (@SgAy)yk+1)

Note that §k(y,...,y(k),y(k+‘),x,u) is linear in u and it is possible to express it in the form:

Sk(y,...,y(k),y(k+‘),x,u) = (YooY & D) + gie(y,...,y0,x)u

Set also:
[ Fea | [ Gk |
Fe = | | Gy = ( I
[ fx ] [ e 1

Let py denote the rank of Gy and set px, 1 = px - (Pk - Pk-1)- Let:
[ T(¥ery®,x)  Ki(yeny®x) ]

be a matrix in which Ty(y,...,y®),x) is pg,1X(pg + - + Pk-1) and Kg(y,....y®¥),x) is py, 1Xpk
and has rank py, |, such that:

Te(¥sesY®),X)G 1 (Y5, Y K, X) + Ky, YK, X) g (v, YK, X) = 0O
and set:
Sk 1(YseeoYEHDX) = Ty (y,, YO, ) Fi 1 (Y00, YE, X)) + Ki (¥, YK, X (Y., y K+ 1), x)

If at some k* the matrix Gy has rank rx = m, then it is easy to conclude that the
equation:

4.1 Fiex(¥,e00 Y &%),x) + Ggx(y, o, y&* D, x)u = 0

is solvable in u (see [10]). Moreover, using arguments which are more or less similar to those
used in order to prove Lemma 3.1, it is also possible to show that the jacobian matrix:

[ Soly.x) |
@9x) [ ... ]
[ Sk*_l(y,...,y(k*'l),x) 1

has rank p = (pg + ... + px*.1) (namely, equal to the number of its rows). Thus form the
equation:
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[ Soly.x) |
0=1.. ]
[ Sk*_l(y,...,y(k*'l),x) ]
one can recover p components of x, expressed as functions of Yooy K* 1) and of the
remaining n-p components, noted z. From that and (4.1) one obtains a reduced inverse system,
in the form:

z = Fz,y,yO),...yk*-1)
u= G(Z,)’,)’(l),---,)’(k*))

Remark 4.1. The previous construction, essentially suggested by the work of
Singh, shows how it is possible to construct a "reduced” inverse system. This inverse is defined
for almost all output functions. If  y=y(1)=...=y(x*)=0 and x=x¢ is a point of regularity for
Gy, then the dynamics of this inverse, when driven by y=0, reduces to the zero-output-
constrained dynamics discussed before. It is important to stress that this is no longer true when
the said regularity assumption fails to hold, has shown by Example 2.2. ¢

5. Further remarks.

In the previous two sections we have shown how it is possible - under suitable regularity
assumptions - to calculate zero-output constrained dynamics and inverse system dynamics.
This, together with known methods of computing the distribution A* (and a feedback making
the latter invariant) completes in some sense the range of procedures needed to evaluate the
three different types of dynamics described at the beginning. Moreover, the constructions
outlined so far enable us to draw some interesting conclusions.The first of these is expressed in
the following statement.

Lemma 5.1. Suppose x¢ is a regular point for the structure algorithm and rgx=m.
Then, at each xel.», A¥(x) is a subspace of TyLy* . As a consequence, the dimension of the
zero-output-constrained dynamics is always larger than or equal to that of the dynamics
associated to the maximal loss of observability.

Proof (sketch of). Recall that the annihilator Q2+ of A* can be computed (via the so-
called maximal controlled invariant distribution algorithm [11]), by means of a sequence Qy
of codistributions approaching Qx in a finite (< n) number of stages. Then, show, by
induction, that the differentials of the entries of A belong to €y . 0

In the previous section we have seen that, under suitable regularity and invertibility
assumptions, the dynamics associated with the inversion problem reduces - when y is
identically zero - to the zero-output-constrained dynamics. However, if y=0 is a singular value
for the inversion problem, then the latter has a dimension which is possibly smaller than that
found in a reduced inverse. This appears clearly from the comparison of Hrischorn's and
Singh's algorithms (see also Example 2.2).
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One may wish to examine whether or not in some cases the three types of dynamics
coincides. One of these is described in the following statement.

Lemma 5.2. Suppose the decoupling matrix A(x) (see [11] for the notations) is
nonsingular at x¢. Then dynamics associated with maximal loss of observability, zero-output-
constrained dynamics and dynamics of reduced inverse (the latter being driven by y=0)
coincide.

Proof (sketch of). If A(x€) is nonsingular, the noninteracting control problem is
solvable around x¢. In this case the three type of constructions yielding the dynamics in
question clearly coincide. 0
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1. Reciprocal Processes. Suppose x(t) is an n vector valued

stochastic process where t ranges over a subset of the reals or
the integers. The process x(t) is called reciprocal (or quasi-
Markov) if given any 7, ¢ 7, the values of the process within
[T,,7;] are independent of the values of the process outside of
[To,,7;] conditioned on x(7,) and x(7,).

In particular a Gaussian process x(t) is reciprocal if
for any ty,..., £y S T, £ 8;,..4,8, £ Ty S ty4,y,,...,t; we have

for i =1,...,!

E(x(t;) [x(74),x(7,))
(1.1a)

E(x(ti) |x(To):x(T1)lx(s1)l"-lx(sm))

i

and for i l1,...,m
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E(x(s;) |%(74),%(7,))
(1.1b)

= E(X(85;)[X(7,),x(7,),%(ty),...x(t;).

This definition was formulated by Serge Bernstein [1] as
a generalization of the concept of a Markov process. Recall that
a process x(t) is Markov if for any 7, the values of the process
to the left of 7, are independent of the values to the right
conditioned on x(7,). A Gaussian process x(t) is Markov if for

any t;,...,ty s 7, $ 8;,...,8, we have for i = 1,...,k

(1.2a) E(x(t;)]|x(7,))

E(x(tl) |x(To)lx(s1)l°'°x(sm))

and for j =1,...n

(1.2D)  E(x(s;) [x(75)) = E(x(5,) [X(74) ,%(ty),-er,X(E)) .

It is easy to see that Markov processes are reciprocal
but the converse is not true. Throughout this paper we will
restrict our attention to zero-mean Gaussian processes, and often
we shall further restrict our attention to stationary zero mean
Gaussian processes. Because of the zero-mean Gaussian
assumption, all the probablistic information about the process

x(t) is contained in its covariance
(1.3)  Ry(t,s) = E(x(t)x*(s))

where * denotes transpose. This is a nxn matrix valued function.

A process x(t) is nonsingular of order one if R, (7,,7,)

is nonsingular for every 7,. Such a process is Markov iff its

covariance satisfies
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(1.4)  R,(t,8) = R, (t,7,)Ry (Tor74)Ry(T4s8)

for any t < 17, < s.

Let 7 denote the ordered k-tuple (7,,...,7T,_;) Where
T¢ £ Ty $...5 17,. Define an k'n dimensional random vector X(r)
by
x(7,)

(1.5)  X(71) = .

X(Tp-q)
A process x(t) is nonsingular of order k if for any
Tg < Ty <...< 7,_, the covariance of the random vector X(7) is
positive definite.
Suppose x(t) is nonsingular of order 2, then x(t) is

reciprocal iff its covariance satisfies

(1.6) R,(t,s) =

1
RX(TO’TO) RX(TO’TI)}

Ry(71,75) Ry (7y,7y)

[Re(t,75) Ry(t,74)]

Rx(ro,s)w
Ry(1y,8)

for all t ¢« 7, < 8 < 7, and for all 7, < s < 7, < t.

If 1 = (1,,7,) and ¢ = (o,,0,) then we can define a
partial ordering by 7 2 ¢ if 7, € ¢, € ¢, £ 7;. Let X(71) be
defined by (1.5). The process x(t) is reciprocal if the process
X(1) is Markov relative to this partial ordering.

Mehr and McFadden [2] noted that reciprocal processes are

conditionally Markov. If we condition an x(7,) then the
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conditional process is Markov to the left of 7, and if we
condition on x(7,) the conditional process is Markov to the right

of 7,.

2. Examples. We review the classification of all one
dimensional, stationary, Gaussian, reciprocal processes where
te R. This is due to Jamison [3], Chay [4] and Carmichael-Masse-
Theodorescu [5]. Essentially there are only six families of such
processes,

la. oOrnstein Uhlenbeck Processes

1b. Cosh Processes

lc. Sinh Processes

2. Slepian Processes

3a. Cosine Processes

3b. Shifted Cosine Processes

The Ornstein Uhlenbeck processes are the only ones that
are Markov. They have covariance R, (t,s) = R,(t-s) given by

-|at]

(2.1a) R, (t) = e R, (0)
Such processes have an infinite lifetime, i.e. they can be
defined for all tefR. Of course one can restrict t to lie in
some proper subset of R, If A = 0 then the process is constant
with respect to t and hence singular of order two. If R,(0) = 0O
then the process is identically zero and singular of order one.
Otherwise the process is nonsingular of every order k 2 0.

The remaining one dimensional stationary Gaussian

reciprocal processes are not Markov. A Cosh process has

covariance
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cosh A(T/2-t)
(2.1b) R, (t) = —————— R, (0)
cosh AT/2
where A, T > 0. A Cosh process has a finite lifetime because any
covariance must satisfy the Cauchy-~Schwartz inequality,
[R,(t)| < R,(0). But R,(t) given by (2.1b) violates this for

t > T. Since R,(T) = R,(0), it is a gyclic process, x(0) = x(T)

a.s.
A Sinh process has covariance
sinh A(T/2-t)
(2.1c) Ry(t) = —————————  R,(0)

sinh AT/2

where A, T > 0. It also has a finite lifetime of length at most

T. Since R,(T) = -R,(0), it is an anticyclic process

x(0) = -x(T) a.s.

A Slepian process has covariance of the form

(2.2) Ry(t) = (1-2t/T) R,(0)

where T > 0. Again it has a finite lifetime of length at most T.

It also is anticyclic, x(0) = -x(T) a.s.

A Cosine process has covariance

(2.3a) Ry (t) = (cos At) R, (0).

It has an infinite lifetime.
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Since R, (t) is periodic with period 2T = 2n/A, the process is
also periodic x(t) = x(t+2T) a.s. Furthermore, it is
antiperiodic x(t) = -x(t+T) a.s.

A Shifted Cosine process has covariance of the form

cos A(t+t,)
(2.3b)  Ry(t) = ————— R,(0)
cos At,
where 0 < t, < n/2A. It has a finite maximum lifetime
T = n/A-2t, and it is anticyeclic, x(0) = x(-T) a.s.

The Cosh, Sinh, Slepian, Cosine and Shifted Cosine
processes are all nonsingular of order two on any interval of
length less than T. Since in each case, x(t) = * x(t+T), they
are singular of order two on intervals of length T. All of the
above processes except for the Cosine processes are nonsingular
of arbitrary order on any interval of length less than T. A
Cosine process is singular of order 3. This means that the
behavior of such a process is completely determined by its values
x(7,) and x(71,) at two times where 7,-7, is not an integer

multiple of T.

3. Realization Theory. It is well known [6] that if R(t) is a
continuous covariance of stationary Gauss Markov process then
R(t) is ¢® and it satisfies a first order linear differential

equation

(3.1) R(t) = AR(t)



165

for t 2 0. Furthermore if B is an nxn matrix such that
BB* = -(R(0)+R*(0)) then the process x(t) defined for t 2 0 by

the stochastic differential equation
(3.2a) dx = A x dt + Bdw
(3.2b)  x(0) = N(0O,R(0)),

where w is standard m dimensional Wiener process independent of
x(0), has covariance R(t). Note R(0) = R(0%).

In this section we shall show that certain continuous
stationary Gaussian reciprocal covariances can be realized by
second order linear stochastic differential equations driven by
white Gaussian noise with independent initial conditions. This
partially confirms a conjecture of ours made in [7].

The first step is to show that a continuous stationary
Gaussian covariance R(t,s) = R(t-s) must be C®. We did this
in [7] but we shall repeat the proof here. We assume R(t) is
defined for |t| < T and is nonsingular of order two for |t| < T.

For a stationary reciprocal covariance, (l.6) becomes

(3.3) R(t-s) =

R(0) R(TD-Ti)] '
R(71,-7,) R(O)

[R(t~7,) R(t-7,)1

R(TD—S)}
R(1,-8)
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and this holds for 7, ¢ s < 7, and either t < 7, or t 2z 7,.

Assume that 7, - 7, < T, If we integrate with respect to t over

(t, - &, 7,] where 0 < 8 < T - 7, + 7,, we obtain
T, T,—S
I R(t-s)dt = I R(t)dt = [3I + o(3) o(3)] [R(To-s)
T,=3 To~8-8 R(1,-s)

where o(3)/% > 0 as & » 0. If we integrate (3.1) with respect to

t over [1,,7,+3] we obtain

T,+3 T,+8-s
I R(t-s)dt = I R(t)ydt = [e&(8) I + o(3) R(To—s)]
T, T,-8 R(1,-5s)
Putting these together we have
T,—S W 1
R(t)dt 31 + o(3) () R(7,-s)
T,-3-s
(3.4)
T,+8-s
I R(t)dt Jg(8) 3I + o(3) R(7,-s)
| 0 1L 1L |

Since R(t) is €°, the left side of (3.4) in ¢! in s for

s€[7,,7,]. By this we mean the left (right) derivative exists
and is continuous at 7,(7;). For sufficiently small % > 0 the
first matrix on the right is invertible hence we conclude that

R(7,-s) and R(r,-s) are Cc! in se¢[7,,7,]. Since 7, and 7, are
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arbitrary except that 0 < 7, - 7, < T we conclude R(t) is ¢! on
[0,T]. By repeating the argument we conclude R(t) is C® on
[0,T). Since R(-t) = R¥(t) it follows that R(t) is also C*® on
(-T,0]. By continuity R(0%') = R(0"). The left and right

derivatives need not agree at 0, instead -R(0”) = R*(0%), R(0")

R*(0%), etc. Henceforth we shall take R(0) as R(0'), R(0) as
R(0'), etc.

The next step is to show that R(t) satisfies two second
order matrix differential equations. Let 7, = s - ¢ and

T, =8 + ¢ for ¢ > 0 then (3.3) becomes

(3.5a) R(t-s) = [R(t-s+¢) R(t-s-¢)] [Hl(d)}

Hz(“)

where H, (¢) and H,(¢) are determined for « > 0 by

R*(d)]
R(a)

since R(t) is assumed to be the covariance of a process which is

(3.5b) [R(O) R*(Zd)] H,(a)]
R(2¢) R(O) H, (0)

nonsingular of order two. For convenience, we make a change of
coordinates, x,.,(t) = R"’z(o)xold(t) and thereby normalize
R(0) = I. We would like to study the 1limit of H,(¢) and H,(¢)
and their derivatives as ¢ » 0. From (3.5b) we obtain for ¢ > 0

(3.6a) H,(¢) = G !(a) F(o)

(3.6b) H, (o)

R(¢) = R(2¢) H,y(o0)
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where F(¢) and G(¢) are C® for ¢ 2 0 and given by

(3.6b) F(o) R*(¢) = R*¥(2¢) R(o)

(3.6c) G(a)

I - R*¥(2¢) R(2¢).

Since F(0) = G(0) = 0, (3.6a) is indeterminate at ¢ = 0. We

define

_ F(o)/¢c ¢ >0
F(o) = )

F(0) =0
_ G(o)/c ¢ >0
G(o) = .

é(0) s =0 .

By repeated application of L'Hopital's rule it is easy to verify
that F(¢) and G(s¢) are C® for ¢ > O.
Henceforth we shall invoke the assumption that

(3.7) G(0) G(0) = =2(R(0) + R*(0))

is invertible. Rewriting (3.6a) we have for ¢ > 0

Hy(e) = (G(s)/a) ' (F(a)/e) = G(a)/F(0)
and hence H,;(¢) has a C® extension to ¢ 2 0. Equation (3.6b)
defines a C® extension of H,(¢) to ¢ 2 0. By straightforward

differentiation of (3.6) we obtain
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(3.8a) H,(0)

H, (0) =

N e
H

1 " a
-H,(0) = " (R(0)+R*(0)) " (R(0)=R*(0))

(3.8b)  H,(0)

(3.8¢c) H,(0) + H,(0) = -R(0) -4R(0)H, (0).

We return to (3.5a) at s = 0 and differentiate twice with respect
to ¢ at ¢ = 0 to obtain
0 = R(t) (H, (0)+H,(0))

+ 2R(t) (H, (0)-H,(0))

+ R(t) (H, (0)+H, (0))

By utilizing (3.8) we obtain

(3.9a) R(t) = -2R(t)M* + 2R(t) N*
where
(3.10a) -2M* = (R(0) + R¥(0))-! (R(0) - R*(0))

(3.10b) 2N* = R(0) + 2R(0)M*

Equation (3.5a) is valid both for t 2 s + ¢ and for
t < s+ ¢. Since s = ¢ = 0 this implies that (3.9a) is valid for
te[0,T) and for te(-T,0]. The covariance R(t) = R*(-t) so

R(t) = -R*(-t) and R(t) = Rx(-t).
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We transpose (3.9a) and substitute to obtain

(3.9b)  R(t) = 2MR(t) + 2NR(t).

By adding and subtracting (3.9a,b) we obtain the
following.
Theorem 1 Suppose R(t) is the continuous covariance of a
stationary Gaussian reciprocal process defined on [0,T] and
(WLOG) R(0) = I. Suppose that R(0) + R*(0) is invertible. Then

R(t) is C® on [0,T) and satisfies the differential equation

(3.11a) R(t) = MR(t) - R(t)M* + NR(t) + R(t)N+*

and the side constraint

(3.11b) 0 = MR(t) + R(t)M* + NR(t) - R(t)N*

where M,N are defined by (3.10).

We now construct a process y(t) which realizes the
stationary Gaussian reciprocal covariance R(t), under the
assumption that R(0) + R*(0) is invertible. By the Cauchy-
Schwartz inequality R(0) - R*(¢)R(¢) is monotone increasing for
small ¢ > 0 hence R(0) + R*(0) is nonpositive definite. Since it
is assumed to be invertible, it is negative definite and there

exists an invertible nxn matrix B, such that
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(3.12) B,B,* = —(R(0) + R*(0))

Let N and M be as above (3.10). Define a nxn symmetric
matrix m(t) as the solution of the matrix Riccati differential

equation

dn
(3.13a) — = 2NR*(0) + 2R(O)N*
dt
+ 2Mn(t) + 2n(t)M*

+ (R(0) + m(t))(ByB,*) '(R*(0) + m(t))

(3.13b) T(0) = R(O)R*(0)

Let B,(t) be an nxn matrix defined by

(3.14) B, (t) = -(R(0) + m(t))B,*"!

Finally we define a 2n dimensional process x(t) =

(x,(t),x,(t)) by the stochastic differential equation

[dx1 0 I X, B,

(3.15a) = [ ] dt + ] dw

dx, 2N 2M) \x, B, (t)
[xl(O)] R(0)

(3.15b) = |, v v = N(0,I)
X, (0) R(0)
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where w is an n dimensional standard Wiener process independent
of v.
Let
P,,(t,s) P,,(t,s)

P(t,s) =
P,,(t,s) P,,(t,s)

then P(t,s) satisfies for T > t 2 58 2 0

aP
(3.16b) — (t,s8) = AP(t,s)
at

d
(3.16Db) — P(t,t) = AP(t,t) + P(t,t)A*
dt
+ B(t)B*(t)
and
R(0) R*(0)
(3.16c) P(0,0) = |, o ]
R(0) R(O0)R*(0)
where
N
A= B(t) =
2N 2M B, (t)
It is straightforward to verify that
R(0) ﬁ*(O)J
(3.17a) P(t,t) = _
R(0) w(t)
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satisfies (3.16b,c). From (3.16a) we obtain for T > t 2 s 2 0,

ap,,
(3.18b) (t,s) = P,, (t,s)
at
aP,,
(3.18¢c) (t,s) = 2MP,,(t,s) + 2NP,,(t,s)
at

hence P,,(t,s) = R(t-s) and P,,(t,s) = ﬁ(t—s). We have proved
the following.

Theorem 2 Suppose R(t) is the nxn continuous covariance of a
stationary Gaussian reciprocal process defined on [0O,T] and
(WLOG)R(0) = I. Suppose R(0) + R*(0) is invertible. Then R(t)
can be realized by a first order 2n dimensional linear stochastic
differential equation (3.15a) driven by n dimensional white

Gaussian noise with an independent initial condition (3.15b).

4, Conclusion In Sections One and Two we defined and gave
examples of reciprocal processes. In Section Three we showed how
certain stationary Gaussian reciprocal processes can be realized
via stochastic differential equations. The condition that we
required was that R(0) + R*(0) be invertible, but we believe that
this technical condition can be dropped. We hope to prove this

in the near future.
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Modelling And Analysis of Distributed Systems :
A Net Theoretic Approach
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Department of Electronic Engineering
Osaka University, suita
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0. Introduction

Industries today are confronted with an urgent need to deal with
reduced life cycles of engineering products, which bring about trends
toward total factory automation (FA) which includes CAD and production
control. This implies greater necessity for flexible and maintainable
control software tools for systems categorized as discrete event
systems.

Methods for describing sequential control systems such as relay
ladder diagram or procedural languages can not adequately adress all
aspects of such systems. Especially, concurrent evolutions in finite
resource sharing systems and resulting problems such as
synchronization, starvation, and deadlock can not properly analized by
these ad hoc techniques used to date, Drastic changes in system
archtecture towards distributed configurations composed of separate
sequential processing systems as seen in wide range of applications of
computer embedded control systems exacerbate the difficulties. To
resolve these difficulties, a formal approach based on solid theories
is inevitable, and this should start with a sound mathematical model
which can be used from specifications to analysis of the real time
control. Of course there are previously a variety of theories of
concurrent systems. Algebraic, Net-theoretic, and Temporal logic or
Axiomatic approaches are fundamental ones among others and they
reflect different perspectives of the phenomena of concurrent systems.
The relations among them are examined in [1].

In this paper, we introduce Petri nets as a modelling tool of
distributed concurrent systems in general and show some analytical
properties obtained by a net-theoretic approach. The advantages of a
net-theoretic approach exist in its structure preserving modelling
ability and in theoretic accomplishments accumlated in the past two
decades. A brief introduction of Petri nets and their properties
related to control problems are presented in the next section. In
contrast to Algebraic approach where recurrent substitutions and
products of operators are naturally introduced , net theory lacks in
operator viewpoint of input-output notion : The composition of nets
has not been investigated in terms of the concatenation of the
operations of their subnets. In Section 2, we propose a way of
composition of nets which can be used effectively for modelling
distributed systems in a hierarchial fashion. In Section 3, conditions
for consistency and deadlock-free property of a composite net are



176

investigated in terms of subnets and their interconnections. Net
theory is by no means matured yet but there already exist several
attempts to apply the formal net-specification methodology in real
time systems. Some notable industrial applications of net theory are
introduced in Section 4.

1. Petri nets:Definitions and Properties

The structure of a Petri net can be defined as a directed
bipertite graph with two disjoint sets of nodes P and T, called a set
of places (symbol:o) and a set of transitions (symbol:l),respectivelw
A Petri net is simply denoted by (P,T). Let U and Q are subsets of P
and Q, respectively. A subnet denoted by (U,Q) is a net such that the
connections between U and Q are defined as those in the original net
(P,T). Places can be seen as conditions and transitions can be seen as
events in various activity level of discrete event systems. Marked
graphs are a subclass of Petri nets, where each place has exactly one
incoming edge and exactly one outgoing edge. Marked graphs can express
the concurrent evolution but cannot express the conflict of system
being modelled. On the other hand, State machines are a subclass of
Petri nets, where each transition has exactly one incoming edge and
exactly one outgoing edge. State machines can express the conflict but
not the concurrency. lLet m and n denote the number of places and
transitions in a Petri net, respectively. To each place p, we
associate an nonnegative integer M(p), called a number of tokens on p.
Marking MENM™ is defined as an nonnegative integer vector whose
component M(p) equals to the number of tokens of place p. For a subnet
U of P, M(U) denotes a submarking vector defined on U.°U denotes the
set of all transitions t such that there exists an edge e:t->p, p6U.

U is called the set of input transitions of U. Similarly, U® denotes

the set of all transitions t such that there exists an edge e:p->t, p6E
U®and is called the set of output transitions of U. For a subset Q of
T, the set of input places °®°Q and the set of output places Q* of Q are
similarly defined. Now the dynamic behavior of Petri nets is
stipulated by the following simple firing axiom. For a transition t,
t is said to be firable at M if M(p)>0 for each p6 t. A firing of
firable transition t at M is said to be legal and consists of the
transformation of M to M' such that

M'(p)=M(p)+1 : p6t and pé t (1)
M'(p)=M(p)-1 : p6 t and pgt (2)
M'(p)=M(p) : otherwise, (3)

If there exists a legal sequence of firings that transform M, to M, M
is said to be reachable from M,. R(My) denotes a set of all markings
reachable from M, and is called the reachability set of My. For a
transition t, t is said to be live at My if for any MGR(M,), there
exists M'6R(M) such that t is firable at M'. If there exists MER(M,)
such that t is not firable at any M'6R(M) then t is said to be dead at
M. If each t of T is live at M, the Petri net is said to be live at
M. Conflicts between transitions are expressed such that firing one of
them brings others ceased to be firable. The incidence matrix of a
Petri net, A = [aij]. is an nxm matrix of integers, and its typical
entry is given by



177

ajj = ajj*t - ajj”

where ai-+ is equal to one if there exists an edge from transition i
to the output place j, and is equal to zero otherwise. aji” is equal
to one if there exists an edge to transition i from the input place j,
and is equal to zero otherwise.

The major advantage for using a net model comes from that it can
afford a mathematical analysis and so a formal validation and
verification for systems being modelled., The control and verification
for such systems are basically reduced to solving reachability and
liveness on the nets, respectively. For a given initial marking Mg, to
decide whether N is live or not is called a liveness program and for
given two marking My and M, to decide whether M is reachable from M,
or not is called a reachablity problem. Reachability problem has been
proved decidable by Mayr[2]. On the other hand, liveness problem was
proved to be equivalent to reachablity problem [3]. However, these two
problems require at least exponential order of space and time [4]. For
restrictive classes of Petri net such as marked graphs or state
machines, we can obtain more amenable conditions for the verification
Let A be an incidence matrix of a Petri net N with initial marking Mg,.
The evolution of system modelled by N can be expressed by a marking
transformation which obeys the following state equations.

M = Mg + ATz (4)

where £ is an integer vector, called a firing count vector, composed
of numbers of appearance of corresponding transition in a legal firing
sequence which transforms M, to M. AT is the transpose of A.

An nonnegative integer vector Ip which satisfies

AlI,=290 (5)

is called a P-invariant. Multiplying P-invariant to both sides of
equation (4), we obtain

T M= 1T g, - (6)

that is, weighted sum of tokens on places correponding to non-zero
elements of I is invariant through the transformation. Thus if

1p Mg = 0 for some P-invariant I, any output transition of a place
corresponding to a non-zero element of I, can not be made firable,
i.e., the net N is not live. For marked graphs, a P-invariant I

corresponds to a set of places which form a directed circuit. In[5],
it was shown that T "M, # 0 is also a sufficient condition for a
marked graph to be live at M,. In other words, a marked graph is live
if and only if there exists no token-free directed circuit,

If there exists a positive P-invariant, then number of tokens on
each place cannot exceed some integer through any firings for any
initial marking, and such net is said to be structually bounded. On
the other hand, a net is said to be bounded, if , for a given initial
marking Mg, number of tokens on each place cannot exceed some integer
k. Especially, if k=1, then a net is said to be safe. Live and
safeness are commonly required for the well-behavedness of systems
For a marked graph, the safeness is guaranteed if and only if, for



178

each place p, there exists a directed circuit containing p with token
sum equal to one. For a state machine N, it is also known that N is
live and safe if and only if N is strongly connected and the token sum
of all places is exactly one. .

Considering equation (4), I M = 1 TMO is known to be a necessary
condition for M to be reachable from M,. For given My and M which
satisfy equation (6), there might exist infinite integer solutions

of AT = M - Mgy such that £ = £, + IT where IT is an nonnegative
integer solutjon of ATIT = 0 and I, is a minimal nonnegative
solution of ATE =M - Mo. The difficulty in reachablity probrem is

to verify the executability of these solutions, i.e., the existence of
a legal firing sequence having this solution as the firing count
vector. For marked graphs, it is known that it suffices to examine the
executability of the unique minimum solution for the reachability.
Specifically, for marked graphs, M is reachable from M, if and only if
Ip'M = I, M, for any P-invariant I, and each element of the minimun
firing count vector corresponding to a transition on a token free
directed circuit is equal to zero [6]

An nonnegative integer solution 1T of ATIT =0 1is called a T-
invariant. If there exists a positive T-invariant, then the net is
said to be consistent. If ther exists a T-invariant IT =[1,1,-++,1]T,
then the net is said to be l-consistent. l-consistency guarantees the
existence of an initial marking M, and a firing sequence which
transforms M, back to My and each transition appears just once in
the sequence. This property is also required for a well-behaved system
with cyclic evolution. A state machine is structually dual of a marked
graph. There exist, however, no dual concepts on the dynamic
properties between them. For a state machine we have no counter part
of the conditions obtained for the reachablity of a marked graph. For
a bounded net, the reachability problem can be solved fy finding a
path in the finite reachability tree.

Several extensions of Petri nets have been proposed, e.g.,
coloured Petri nets, stochastic Petri nets, or timed Petri nets. These
models naturally have a stronger modelling power for real time
systems. The analysis, however, is much more difficult and requires
further sophistication in net theory-.

2. Modelling of distributed systems

Distributed configurations of systems are architectures
extensively used for improving efficiency, flexibility ,
maintainability, and falt-tolerant ability in general large scale
systems such as production systems, computer systems, and many other
socio-economic managing systems. Design of these systems, however,
requires much more attention on avoiding deadlock, conflict, or
starvation. Petri nets as introduced in the preceeding section can be
used for analysing these problems. On the other hand, when we adopt a
net theoretic approach for designing such systems, it is necessary to
structurize a net as a composition of components: It is necessary to
devise a way of construction of total system with desired properties
from well-examined components just as commonly done in electrical
network synthesis. The discussions below might hopefully be a starting
point for such investigations,

We define a component as a safe Petri net with prescribed



179

input and output places as shown in Fig. 1.

O
O

Fig.l a component net

Tokens on input and output places represent the activating
signals and the completion signals of events in the subnet,
respectively., Fig. 2 models a inverter with input glace Sin and output
place Syyt [7]. An edge - denotes a self-loop %2. At this marking,
the state {p2,p3) can change to the state [pl,p4). The completion of
the firings signal out a token on Sy, and make the net to be dead.
Formally, we can define a component of composite net as follows.

Definition 1. A component of a composite net is defined as a net Ny
such that

Ng:=(Py, T, P {(IN),P(OUT)), k=1,2,...,n
where

Py: a set of internal places,

Tk: a set of transitions,

PL(IN): a set of input places,

P (OUT): a set of output places.

The incidence matrix Ay of Ny can be written as

Py Pk(IN) Pk(OUT)
A = Ty (A0 2 A 2 At ] (7)

Non-zero elements in Ap~(Axt) are all negative (positive)
respectively.

The well-behavedness of a component with an initial marking on
internal places is defined as follows.

Definition 2. Ny is called a well-behaved component if it satisfies
the following properties.

(1) Net Nko obtained from Ny by removing all input and output places
(and the corresponding edges) is live and safe for a given initial
marking Mqo(Pg).
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(2) NkO is l-consistent, i.e., for ekT=[l,.”,1]T,
(A Tey=0 (8)

where Ako is an incidence matrix of Nko.

(3) With internal marking My(Py), the substraction of a token from a
input place can only happen simultaneously for all input places after
they all have positive tokens. Moreover, this is the only events that
can happen at M (Py).

(4) Before a token has been added to all output places PR{(OUT), no
subtraction of a token from PR(IN) can occur.

(5) Unless all of P (IN) become marked again after finishing the
addition of a token to all of P, (OUT), net Ny comes to be dead at,
say, M(Pg). If all of P, (IN) become marked again, then Ny has a
property (3) at M(Py) instead of M, (Py).

Remark Well-behavedness of a component depends on the net structure
and the initial marking., Property (2) gurantees the cyclic internal
evolution. For general nets, it is difficult to verify properties (3),
(4), and (5). We would assume that the structure of a component is
simple enough that the well-behavednes can easily be verified. A net
as shown in Fig. 2 is a simple example of a well-behaved component.

P

Sin

Fig.2 an inveter

Now the composition of components can be seen as the fusion of
corresponding nets by identifying each input and output places.

Definition 3. For components N; and Nj, the composition is defined by
identifying a subset of output places of Nj as a subset of input
places of N; and vice vasa,

Let Fij be defined as

Fij(p,q)= 1:pGP;(0UT) and qGPj(IN) are identified.
O:otherwise

Then the connection matrix F of N; and Nj can be written as
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P.(0UT) Pi(OUT)  P*0UD

Pi(IM) 0 Fiy Fu
F = PN Fiy 0
P*(IN) Fix Fun 0

where P*(IN) and P*(OUT) are the set of cutput places and input places
of a composite net, respectively, which in turn can be seen as input
places and output places of outside world ( environment ),
respectively.

The incidence matrix A of a composite net formed by n number of
components can be calculated from each incidence matrix Ay and their
connection matrices as defined in (9), i.e.,

Step 1. Let % be

P1(QUT) P2(0UT) - Pa(0UT) P*(0UT)

T A0 POAr Ay Fag e« Ay Fami A17Fal
T2 Al0 i A2rFre Azt «- A2°Fnz A2 Fx
~e H
A =
Tn Ant AnFin Ant An Fan
Step 2. If

Fij(k,1)=1, i¢j, ~
then add [O,.”,O,[Ag]l ,0,...,01T to the column [P;(OUT)]y of X and

delete the column | j(OUT)]l. The resulting matrix is the incidence
matrix.

t2

Fig. 3 an example of composite net
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Example 1. Let Nj; and Ny be components as shown in Fig. 3, By
identifying P1=Pj, P2=P3, and P4=p3, the connection matrix F is
expressed as

P(0um P2(0UT) P #(0UT)

1 2 4’ 5°
Pa(IN) 3 o 0 1 0 0
1 1 0 o 0 0
F = Pa(IN) 2° 0
3 o 1 o 0 0
P10 o 0 o 1

The incidence matrices of Nj and Ny are, respectively,

Ay = [ At Al At 1
P1 P2 P3 PN P(ouT)
t] 1 -1 - i 0 o
= -1 1 i o o1
ta 11 i o P10
A = | Al A" Azt |
= t |1 -1{ -1-10; 1 0
tz2 /-1 1 i 0 0 -1f{ o0 1

Thus the incidence matrix of the composite net can be written as

P, P2 Pa(outm) P2(0UT) P#(00T)
b | |
t2 A0 At Ai1"Fa A1"Fa
A = t3 :
t i i ; :
tz A2l :iAz‘Fn Az* A2-Fa2
1 0 -1 ‘ o o { -1 0 ; [o]
-1 1 0 o] [o] 0 0 [o]
= o -1 1 i . 1 0 0o o 0
1 -1 -1 0 o] -1
i
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3. Analysis of distributed systems

A composite net as described in the preceeding section can be
seen itself as another component with more detailed internal
specifications if it also satlsfles the propertles 1 through 5 of
Definition 2 with respect to P (IN) and P (OUT) According to the
design stage, we can choose appropriate level of refinement by
resolving a component into more precise subcomponents. For continuing
this process in a hierarchical fashion, it is important to verify
which property can be preserve through the composition. Let N be a
composite net of n wel]—behaved components and let N be a net
obtained from N by removing atll p* (IN) and p* (OUT). Then the incidence
matrix AY of NY can be written as

Pec

where P. is a subset of I/0 places of components used for
interconnections. Since each component is l-consistent,

(4;0)Te; = 0, i=1,...,n

for eiT = [1,...,11T. For T = [elT,egT,”.,enT]
(49)Te = 0

if and only if (Ac)Te = 0. Thus we obtain

Theorem_1!. A composite net is l-consistent if and only if, for each
place of P., the number of incoming edges is equal to the number of
outgoing edges.

Next we consider the preservation of liveness and safeness in NO,
Properties (3), (4), and (5) imply that each live and safe subnet Nj 0
can equivalently be contracted to a single transition with respect to
the I/0 behavior. Let NO be a contracted net of NO with P. as a set of
places and each component N;j“ as a transition. It is obvious that N
is live and safe if and only if NY is live and safe. The preservation
of these properties in NO thus depends on the way of interconnection
and the initial token distribution on P.. Here we consider two
restrictive structures of connection: we assume NO to be a class of
marked graph decomposable nets (MGD-net) or state machine decomposable
nets (SMD-net) defined as follows. Let N = (P,T) be a Petri net.

Definition 4. For a subset Tp of T, a subnet composed (°T UT T,) is
called a T-closed subnet of N and denoted as <Tp> Slmllarfy, or a
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subset Py of P, a subnet composed of (Py, P UP{ ) is called a P-closed
subnet of N and denoted as <P>.

Definition 5., If there exists a mutually disjoint subdivision Tp,
Ty,..., Ty of T such that N = <T >U<T>U...UCTy> and each <T;> is a
strongly connected marked graph , then N is called MGD-net.

Similarly, if there exists a mutually disjoint subdivision Pgp,
Py,..., Py of P such that N = <P;>U<P>U...U<PK> and each <P;> 1is
a strongly connected state machine, then N is a SMD-net.

SMD-net is a structually dual of MGD-net, i.e., SMD-net is
obtained by replacing each place and transition of MGD-net as =a
transition and place, respectively, and inverting the direction of altl
edges of MGD-net.

Fig.4 a MGD-net

A net as shown in Fig.4 is an example of MGD-net with marked
graph components N)=<{ ty; , t3, tg , t7 ]> and No=<{ ty , tg4 , tg ,
tg }>.

Putting a token on P}, it can be seen that both N; and Ny
are live and safe marked graphs. However, by firing t7 -> t3 -> tg ,
the net becomes dead. .

The convenient way of verifying the liveness and safeness of NO
which is assumed to be a MGD-net or SMG-net is to find out the
conditions that guarantee the same properties from that of marked
graph or state machine components because the liveness and safeness
can be verified very easily for these classes of Petri net as stated
in Section 3.
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Definition 6. A MGD-net (P,T) is said to be complete if the following
condition is satisfied, i.e., for any mapping A : P -> P* |, there
exists at least one T-closed strongly connected marked graph <Tp>
such that A(p) € Tp for any place p 6 <tp>.

Definition 7. A SMD-net (P,T) is said to be complete if the following
condition is satisfied, i.e., for any mapping B : T -> °®T, there
exists at least one P-closed strongly connected state machine <P;>
such that B(t) 6 Py for any transition t & <Pg>.

The following result was originally prooved by Hack [8] for SMD-
net. For the dual case the proof can be done similarly.

Theorem 2. A complete MGD-net and a complete SMD-net are live and
safe if there exists a decomposition such that each component
(strongly connected marked graph or strongly connected state machine,
respectively) is live and safe.

Note that MGD-net as shown in Fig.4 is not complete. Examples of
complete MGD- and SMD-net are shown in Fig.5. It can easily be
verified that they are both live and safe.

(a) MGD-net (b) SMD-net
Fig.5 complete MGD- and SMD-net
By this theorem, if the connection of components is restricted so
that Ng to be a MGD- or SMD~net, the live and safeness of composite

net can be assured by easy inspection.

4. Applications of Net-specification Methodology

Industrial applications of Petri nets have increased in numbers
and scale from the beginning of 1980's. In Europe, a group in LAAS-



186

CNRS, Toulouse, France, has been conducting a project called SECOIA [9
]. The aim of SECOIA is integrating different levels of Flexible
Manufacturing Systems (FMS) such as local machine control,
coordination of subsets, monitoring and real-time shop scheduling, and
planning/product mix evaluation and management. The integration of
these levels by LAN is not sufficient because if the programmation of
each level is done by different tools, the global interlevel
communication will suffer from a side effect and it will be difficult
to verify, maintain and modify it.

SECOIA consistently adopts a net-based methodology as a formal
mathematical tool for the global specification , design, and
structural verification. They use the concept of common place for
describing handshake procedure in distributed applications and also
use a concept of module with I1/0 places which can equivalently be
substituted by other module. 1n France, another group in SYSECA,
Saint-Cloud Cedex, has been developing ESPRIT Project "For-Me-Too"
[10]. In this project, the way of fusion and substitution of component
nets are inplemented so that it can afford a global validation of
large real time systems. In England, a group in Plessey Electronic
Systems Research Ltd., Ramsey, is developing and implementing CAD and
control systems of databases for query in military communication
system called Project PTARMIGAN [11]. By using Petri net for
hierarchically describing each database structure and the control
sequence flow, the flexibility and maintainability in change
assessments are greatly improved. The validation of processes can be
done through reachability analysis.

In Japan, a Petri net-based station controller named SCR for
flexible and maintainable sequence control has been developed for a
factory automation system by Hitachi Ltd., Kawasaki, [12]. As far as
we know, this is the first commercial product based on Petri net. In
SCR, safe Petri net, called C-net, which augments the control
functions by adding Predicates onto each transition, is installed and
is used for specification, simulation, and real time control of
coordinating robots or parts assembly station, e.g.. A group in
Mitsubishi Electric Co., Itami, [13] has adopted a Petri net as a
language for describing specifications to cope with frequent changes
in design stage of large scale systems such as power plants. A Petri
net-based concurrent system simulator, called PCSS, has been developed
in Osaka University [14]., In PCSS, controllers and controlled objects
are both modelled by Petri nets. By prescribing a time delay at a
transition, PCSS can simulate the concurrent behavior of a real
system. Fig. 6(a) shows a Petri net model in PCSS of a relay ladder
diagram. PCSS simulates the swiching sequence and outputs the time
chart as shown in Fig. 6(b) . Note that a delay T is prescribed at the
switch fs,
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Fig. 6 an example of simulation by PCSS

5. Conclusion

Net theory provides a formal approach to analysis and description
of concurrent systems. Specifically, flexiblity and maintainability of
control softwares for such systems are improved by Petri net-based
descriptions. A clear seperation of events and conditions due to Petri
net modelling improves system comprehension in various activity levels
and opens up a new system viewpoint.

The hierarchical nature of Petri net-description reflects on a
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set of top-down design methodology as seen in industrial applications.
Verification and validation can be done in mathematical way by
examining,e.g., the liveness, safeness, and reachability on the nets.
Invariants play a central role in structural analysis such as
boundedness or consistency which in turn can validate the mutual
exclusion in critical section or c¢yclic stational motion,
respectively.

Synthesis aspect of a net theoretic approach is, however,
presently far from satisfactory stage. Fusion and substitution of
component nets should be based on more concrete equivalence notion of
nets., Also, a formal way of global analysis via properties of
components and their interconnections as briefly introduced here
should be established to this end.
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SET-VALUED CALCULUS IN PROBLEMS OF
ADAPTIVE CONTROL

A. B. Kurzhansk:
I1IASA

Introduction

This paper deals with feedback control for a linear nonstationary system whose objective is
to reach a preassigned set in the state space while satisfying a certain state constraint. The state
constraint to be fulfilled cannot be predicted in advance being governed by a second "uncertain”
system, with its state space variable unknown and available only on the basis of observations. It
is assurned that there is no statistical data for the uncertain parameters of the second system the
only information on these being the knowledge of some constraints on their admissible values.
Therefore the state constraint to be satisfied by the basic system may be specified only through
an adaptive procedure of "guaranteed estimation” and the objective of the basic process is to
adapt to this constraint.

The problems considered in the paper are motivated by some typical applied processes in
environmental, technological, economical studies and related topics.

The techniques used for the solution are based on nonlinear analysis for set-valued maps.
They also serve to illustrate the relevance of set-valued calculus to

e problems of control in devising solutions for the “guaranteed filtering and extrapolation”
problems

e  constructing set-valued [eedback control strategies,
e  duality theory for systems with set-valued state space variables,
e  approximation techniques for control problems with set-valued solutions, etc.

The research in the field of control and estimation for uncertain systems (in a deterministic
setting), in differential games and also in set-valued calculus, that motivated this paper, is mostly
due to the publications of [1-10].

1. The Uncertain System

Consider a system modelled by a linear-convex differential inclusion
dge A(t)g + P(1) (1.1)
teT={t:tg<t<ty},
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where ¢ € R™, A(t) is a continuous matrix function (A : T — R"*™) P(l) is a continuous
multivalued map from 7" into the set conv R™ of convex compact subsets of R". (Here R™ will
stand for the n-dimensional vector space and R™ * ™ for the space of m x n - matrices.)

The function P(t) rellects the uncertarnly in the specification of the system inputs. The ini-
tial state ¢(¢tg) = ¢9 is also taken to be unknown in advance. Namely,

¢ e @ (1.2)

with the set Q) € conv R" being given.

An isolated trajectory of (1.1) generated by point g0 = qlr| will be further denoted as
qit = q(t, 7, q(’)), while the set of all solutions to (1.1) that start at 4" will be denoted as

Q(t, 7, q).

We also assuine
QU,r, @) =ufel,r, ") | ¢ e @}
The sets Q¢ , ¢, q“))] @, tg, Q(())] are thercfore the attainability domains for (1.1)
(from q(ty) = ¢(®) and Q) respectively).

It is known that the tnultivalued function
Qltl = Q(t, £y, Q)
satisfies the "funnel equation”, [11]

limo o1 h(Q[t + 0], (E + A(t)o) Q{t] + P(t) o) =0 (1.3)

-
where
h(Q, @) = max{h*(Q", Q"), 47 (Q", Q)},
h*(Q’,Q")zm:xm;"{II p-alllPeEQR ,qeQ"},
W(Q, Q) =h(Q", Q)
is the Hausdorff distance between @ € conv R , Q" € conv R" [12].

Let us now assume that there is some additional information on the system (1.1), (1.2).
Namely, this information arrives through an equation of observations

y € G(t) q{t) + R(t) (1.4)

where y € R™, G(t) is continuous (G : R®™ — R™) and the set-valued function R(¢) from T
into conv R™ reflects the presence of “noise” in the observations. The realization
y(0) = y(r+ o), tg — 7 <0 <0, of the observation y being given, it is possible to construct an
“informational domain® @ (s, ¢;, QO | y,(e)) of all trajectories consistent with (1.1)-(1.3) and
with the given realization y,s). The cross-section Q (7, ¢, , Q(O)) of this set is the “generalized
state” of the "total” system (1.1), (1.2), (1.4), (for convenience we further omit an explicit indica-
tion of y.(e) taking it to be fixed).

Clearly, for 7 < 7"* we have Q(7"", ;) , Q[o)) =Q(r,7,Q(r, 4, Q(o)]]
The map Q(r"", ¢, Q(D)] = Q7] thus satisfies a semigroup properly and defines a generalized

dynamic system. The function Q [r] also satislies a more complicated version of the [unnel equa-
tion (1.3), [3].
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Iimo o7 h(Q|r b o, (k) A(D0) Ql7) + P(De)) N YT + o)) =0

o
Q|| = Q© (1.5)
where
Yir| = {¢: G(7) ¢ € y(r) — R(7)}
is taken to be such that its support function
p(L | Y |r]) = sup{(l, y) | y € Y[r]} .

is continuously differentiable in { and 7. The latter property is true if p({ | ¥ [1]) and y(r) are
continuously differentiable in the respective variables. This in turn is ensured if the measure-
ment y(t) is generated due to equation

y(t) = G(1) =(t) + £(t) , £(t) € R(Y)

by continuously diflerentiable functions ¢(t) and G(t).

Consider the inclusion
g, € (A(t) - L(1) G()) g, + L(1) (v(8) - R(1)) + P() (1.7)
a(t) = af” , of” € Q©)
whose attainability domain is
QL tg, Q) = Q1]
Lemma 1.1 [13,14] The following relation is true
NQLlt,tg, QM =Q(t, 4, =Qql, (1.8)
where the intersection is laken al all continuous matriz-valued functions L(t) with values

LeR®X™,

The last Lemma allows to decouple the calculation of Q|¢| into the calculation of sets @ [¢|
governed by “ordinary” differential inclusions of type (1.7).
According to |11] each of the multivalued functions Q |¢| satisfies a respective [unnel equa-

tion

Iimoo_lh(QL[r+ ol (E+o(A(7)~ L(7) G(1)) Q] (1.9)

+L(1)(y(1) — R(1)) o+ P(1)0) =0
Qy ltol = Q1.

Hence from (1.8) it follows that the solution to (2.5) may be decoupled into the solutions of
equations (1.9). The latter relations allow for a respective difference scheme.
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2. An Inverse Problem

Assume that a square-integrable function y, (o | 7) = y(¢; + 0), 7T—t; <0<0 and a set
N € conv R™ are given. Denote W(r,t,, N} to be the variety of all points w € R" for each of
which there exists a solution ¢(t,7,w) that satisfies (1.1), (1.4) for t€ |r, |, and
q(ty .7, w) € N.

We observe that W(r, t, , N) is of the same nature as Q(t , {; , Q©)) except that it should
be treated in backward time.

llence, we will have to deal with the solutions to the inclusions

ge A(t)g + P(), t<¢,, (2.1)

te T, q([l) = q(l) , q(l) €N
with isolated trajectories (¢, ¢, q(l)) that satisfy the restriction
q)eY()VtLe T (2.2)

Following Lemma 1.1, we have a similar

Lemma 2.1. The following equality is true

Wt b, M) =0 W (1, N) (2.3)
L

the interseclion being taken over all conlinuous matriz-valued functions L(t) with L € R™*"

and W, (t,t;, N) is the assembly of all solutions lo the inclusion
g, € (A(t) - L(t) G())wy, + L{)(y(t) — R(Y)) + P(1) , (2.4)
w(t)) EN

’

Lemma 2.2 Each of the realizations Wy, (t , t; , N) = W|t| may be achieved as a solution to
the funnel equation

Jim oHR(W( =), (£~ o(A(1) - L(1) G()) W) -

~ L)1) ~R() 0 — P(t)o) = 0
W(t,) =N

The uncertain system and inverse problem of the above will play an essential part in the for-
mulation and the solution of the adaptive control problem discussed in this paper.

3. The Adaptive Control Problem

Consider a control process governed by the equation

%:C(t)p+u,t€T (3.1)

where p € ™, C(t) is a continuous matrix funclion (C : R® — R") and u is restricted by the
inclusion

u € V(t]
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where V(t) is a continuous multivalued map from T into conv R.

The basic problem considered in this paper is to devise a [eedback control law that would
allow the systein to adapt Lo an uncertain state constraint.

Assume that an uncertain system (i.1), (1.2), (1.4) is given and a stale constraint is defined
by a continuous multivalued map

K(t) (K: T — conv R")
The objective of the control process for system (3.1) will be to satisly the constraint
p(t) +q(t) eK(t), Ve T, (3.2)
and also a terminal inclusion

p(t))eEM,Mc conv R (3.3)

The principal difficnlty is here caused by the fact that vector ¢(t) of (3.2) is unknown and that
the information on its values is conlined to the inclusion

() €Q L1, Q)
Therefore the total state constraint on p at instant ¢t will actually be
p(t) + Q(t, ty, Q) € K(1) (3.4)
where the realization
Q| = Q(t, o, Q)
cannot be predicted in advance, being governed by the uncertainty
wi (o) = {alto) s & (o) 5 ve (o)}
lere the notation f; (*) stands for
L@ =ft+0),tg—-t<o<t.

In order to pose the adaptive control problem it is necessary to introduce the notion of the
state (the position) of the overall system (3.1)-(3.3).

The position of the system (3.1)-(3.3) will be defined as the triplet
{t.,p,u(*)}
Hence the solution to the problem will be sought for in the class of multivalued strategies

V = U(t » Py yt(.])

with U € conv R" and with the dependence of U upon ¢, p , y,(¢) being such that the joint sys-
tem

PECPp+ UL, p,yl) (3.5)
§ € A(t)g +P(t) (3.6)
y — Gge R(1) (3.7)
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The specific triplet w?*(e) should satisfy the inclusions
¢" € Q] , v;(e) € PY(e) , £7(e) € R7(e)
A triplet of this kind will be further referred to as an admissible triplet, i.e.
wy(e) € N (o) (4.1)
where
12(e) = Q|7] x P2(e) x R2(e)

and as indicated above

IN

Poe) = {02(e)  v(t) € P(1) , < L < 1))
RE(e) = {€2() : () € R(1) 7 < L < 1))

A

Now obviously it will be possible to devise a related prolongation for the set-valued function
Q*[t| from |ty , 7| onto the interval (r, ¢, in the form of a realization

Qltl=Q(t,7,Qt, ty, @V | y;() | ¥2 (o))

According to |7| and to the statements of § 1 of this paper, the multivalued map Q*[e] may
be specified through the system

§ € (A(t) - LIOGW)g + P() + L()(* - R(V)
i = A ¢+ o)
V=G0 e+ £,
() = ¢7 (1) = ¢,
or, in equivalent form, through the system
2 € (A1) - LG 2 + (P(e) — v*(1) - LIY(R(Y - £(1)) (4.2)
(1) =q,- e
where
2(t) = q(t) - ¢*(1) <<t
Denote Zj(e , 7, Z*|7]) to be the set of all solutions to (4.2) that start from Z*[7] at instant

What follows from |13,14] is

ox
T

Q= [¢e 7 )+ Zi0e 7, @ - 00 )

Lemma 4.1. The prolongation Q;"[o] generated by w?*(e) may be given by the relation

over all constant matrices L € R™ * ",
It is not difficult to observe that the following relation is true

Lemma §.2. The union of all possible cross sections Q* |t,| of the prolongation Qf*|e| of
Q*(7} (over all triplets w}(e) that satisfy (4.1)), is a convez compact set - the attainability domain
Q(ty .7, Q*7|) at time t, for the inclusion (1.1}, starting from {1, Q*|7|}. Namely
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has a solution for any
p(to) = p® € R", g(tg) = " € R™

For the solution to (3.5)-(3.7) to exist, in the sense that (3.5) - (3.7) are satisfied for almost
allt €[t,,t,|, it suflices that U(t, p, y,(e)) is a convex compact valued map, ineasurable in ¢
and upper semicontinuous in {p , y,(¢)} € R" x L, (¢, t), and that P(t), R{t) are of convex
compact values and measurable in t, [8]. A strategy U({, p, y,(e)) that ensures the existence of
a solution to (3.5) - (3.7) will be further referred to as an admissible strategy.

The Basic Problem
With mapping K (t) and set M being given, specify a feedback control strategy
U = U(t s Py y[(.))
that would ensure the inclusions (8.2), (3.3) whatever 1s the realization q(t) of the system ($.6),
with g(t,) € Q) and set QO given.

Thus the control problem is to adapt the process p(t) to the uncertain state constraint:
p(t) € K(t) = Q(t, t, , Q")

where Q(t, ¢y, Q(O)) is achieved through a guaranteed estimation process for the systern (3.6),
(3.7) and K -+ Q stands for the geoinetrical (Minkowski) difference of sets K , @
(K=Q={p:p+ QCK}

The snformation on the basic system (3.1) is complete since the exact value of the vector p is
assumed to be available.

We shall now proceed with the formal solution schemes for constructing the desired strategy

U=U(t,p,ul)-

4. The Extrapolation Problem

Assume thal at inslant 7 a realizalion y (s) is given and therefore, a set
Q'] = Q(t, ty, Q9 | y(e)) is available. (From now on we will start to vary y,(s) and will
therefore include y,(e) into the respective notations, substituting Q(r, ¢, Q(O)) for
Qt, 15, QO | y,(e)) .

Suppose that the realization y‘(o] may be prolongated onto the interval (r, t,| in the form
of a possible future measurement y_(s) generated by a triplet

w? (o) = {g", v7°(s), €7°(*)}

where our further notation will be taken in the form $2(0) = ¥(t + 0) ,0 <o <, — t, so that
the upper zero index would assign the respective element ¥/(e) to the interval (t,t,]. For a
multivalued map ¥(t) the notation is similar ¥P(0) = ¥(t t 0) ,0 <o <t ~ t.

For ¢ + At the element y‘(o) to be compared with y; | Al(.) should be modified to y‘A(O) which will be defined for
ItO s+ All and such that

y(t1o) h-t<e<0
A (o) =
Y v (1), 0<o< Al
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UL Q] [w??(e) € 02(e)} = @4y, 7, Q7)) ,

The schemes of the above allow to construct a solution procedure for the basic problem.

5. The Solution Scheme

Suppose that the position {the “state”) of the overall system is given as
{r.p,yle)}
or in equivalent form as
{r.p,Qlr}
where
Qlrl = Q(r, to, Q% | y,(0)

A possible prolongation for Q[7] onto (7, t,| is the multivalued function Qf*|e| generated
due to a possible "future” measurement y2*(e) (which is uniquely defined by a triplet

wr'(e) = {a*, v7*(e) , €77 ()}, wP*(e) € N177(e))

Returning to an inverse problem of the type described in § 2, (except that system (2.1) is
changed to (4.1) and sets N, Y(¢t) to M and K(¢t) = Q*|7], respectively), we observe that the set

Wir,t, M, Qlr | w?*(e)) = W(r, {; M, o |w?*(e))
consists of states {r, p} such that for each of these there exists and “open-loop” control u(t) that
steers {r, p} into M under the constraints
u(t) € V(). p(t) -+ Q[t] € K(¢)
r<t<t,
In view of Lemma 2.1 we cotne to
Lemma 5.1. The set W(r, t; M, Q[r| | w?*(e)) may be described as
W(Tv tl 1M ’ QIT| | w‘?‘(.)) =
= WLty M, Qlrl [ WP (o)) | Ly(e)} (6.1)
the intersection being taken over all continuous (n xn)- matriz-valued functions L(t) defined for
[, ¢yl
Here Wyr] = W(r, ¢, , M, Qr] | wP*(e)) = W(r, ¢, , M, e | wP*(e))
1s the solution set to the system
wy, € (C(t) - L(t)) wy, + L(K(t) = Q°|7]) + V(¢) (5.2)
or to the funnel equation

im o=l A (W]t — o] — LQ|tlo, (E — o(C(t) - L(t)) W[t] — LK(t)o — V(t)o) =0 (5.3)

o—0
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WL[‘1| =M

The next step is to construct a set W(r, t; , M, o) of such states {r, p} that for every pos-
sible prolongation Q*|¢| (generated by w?*(e)) there exists an “open-loop” control u(t) that steers
{7, p} into M under the constraints (5.1).

Lemma 5.2. The set W(r,t, , M o) may be described as
Wir, ¢y M,e)=N{ W(r,t;,M,e|w?*(e)) | w* e}

over all admissible triplets w?*(e) € (12(e)

The graph of each of the multivalued maps W2 *[e] over the interval [r,t,] is closed, with
convex cross-sections W*|¢] = W(t,t, , M ,e | w?*(e)), |7]. Therefore we come to

Lemma 5.3. The graph of the multivalued map W o] is a closed set with convezr cross-
sections W[t] = W(t,t; , M ,e) te]r, ¢t

With W|7| given, the regular extremal strategy that follows the scheme of [1,3] is constructed
through the relation

V(r) if p e Wi

Ulrsp s vile) =1 ap | V() , 1€ ad(p, W), i p & W] (5-4)

where
d(p, W|r) = min{|| p — w|| | weW|r]}

is the Fuclidean distance from p to W|r|, and 9f(l) is the subdifferential of the function f at
point [.

For the function (p) = d(p , W), the subdifferential
a ¥(p) =ad(p, W)

consists of a single point w* = arg min {||p — w || |w € W]},

The regular ertremal strategy of (5.4) yields the solution to the basic problem under some
additional assumptions.

Consider the support function
p(L] W(r,t;, M, e [ w2*(e)))
and further on, the function
JU 7,6, . M, Q[)=s|7,t;,M,e¢) =
<inf {p(1 | W(r,t,, M, o | 02°(s)) | w2*(s) € NZ(o)}
Lemma 5.4. The function f(I | 7,t; , M, o) is a closed positively homogeneous function.
Assumption 5.1. Whatever the realization Q|7], the following relation is true
fUr, ey, M, e)=/*]|7,{;,,M, e) > -0 (5.5)

where f**(I | 7,¢t,, M, @) is the second conjugate to f(I | 7,¢; , M, o) in the variable I.

The sccond conjugate ([15]) to a [unction f(I) is defined as (f*)*({) where
f(p) =sup{(p, ) - f(I) | L€ R"}
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In other words, Assumption 5.1 requires that f({ | 7,¢, , M, ) would be convex and lower
semi-continuous in [.

This yields
f(lIT,tl,M,.):ﬂ(ll W(T1t11M1.))

Hence, under Assumption 5.1, the support function p(I | W(r, t; , M, e)) of the intersec-
tion of sets W(r, 1, , M, o) | w?*(e)) {over w?*(e) € 112(e) ) should coincide with

inf{p(l | W(r,t;, M, e [w?*(e)) | w*(e) € 1}

This is a requirement which does not hold in the general case where the support function of
the intersection of sets requires an infimal convolution of the respective supports rather than
their infimmum, |15].

Lemma 5.5. Under Assumplion 5.1., the multivalued map W?|e| has a closed graph with con-
vez compact cross-sections W|t| = W(t,t, , M o).
Lemma 5.6. Under Assumption 5.1., the strategy U(r, p, y, (o)) of (5.4) is an admissible
strategy.
Theorem 5.2. Suppose the vector p® = p(ty) and the set QL) = Q(O) are such that Assump-
tion 5.1 1s true and that
pPe Wty t, , M, QW)

Then the respective strategy U(t , p , y,(e)) of (5.4) will ensure the restrictions (3.2), (3.8)
whatever are the solulions Lo the inclusions (3.5)-(8.7).

The regular case described here does not cover all the possible situations that may arise in
the basic problem. We will therefore give a short description of two other “extremal” cases for
the solution.

6. The "Blunt” Solution

Consider the attainability domain Q(¢, ¢y, Q(O)) for system (1.1) in the absence of any
state constraints.

Assumption 6.1. The set S(t) = K(t) = Q(t , ty, Q) # o for anyt € |ty , t,].

Denote Wy|t] = Wy(r,t; , M) to be the solution of an inverse problem of the type given in §
2 - the set of all states p, = p(7) of system (3.1) such that for each of these there exists an open-
loop control u(t) (ul(e) € V2(e)) that ensures the inclusions

p{ty,7,p) EM (6.1)
p(t,T,pf)EQ(t,T,Q(T,lO,Q(O))), TS‘S‘]
Denote the “blunt” strategy to be

V(t) ifpe Wy(t,t,, M)

Val s PY =1 a1 | Vi), 1€ 0 d(p, Wylr) it p € Wyt , 1y, M) 2
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Lemma 6.1. The stralegy Uy(t , p) ensures the solution to the inclusion
pEC()p+ Uy(t,p),tg<t <ty (6.3)
for any initial state p(t,) = p°.
The solution is here understood in the sense of Caratheodory [9].

Theorem 6.1. Under Assumplion 6.1 suppose p(lg) € W(ty,t,, M). Then the strategy
Uyt , p) of (6.2) ensures that any solution p(L , L, , p°) to the differential inelusion (6.8) would
satisfy the restrictions (6.1).

The “blunt” solution does not require any on-line measurements for the uncertain system
(1.1). It imnplements an “open-loop” feedback solution under a given state constraint and it may

work only if the sets S(¢) are nonvoid, which is a rather strong restriction on the parameters of
the problem.

7. The General Approach

The general approach leads to a complicated scheme that follows the constructions of [2], |3]
and |7|.

Suppose a set Q(7) is given and
| Qe 1o, QI w?* (+)) , w? “(e)e2(e)
are the possible realizations of the informational sets (due to possible “future” measurements).
The sequence of operations is as follows. Divide the interval |7, ¢,] into 5 subintervals
=100 =y,
max | ¢! | =¢,
For the interval (¢° , t,] find the set
Wyt e, ML, QI | witi(e) .
Take
W g M) =0 {0 WL ML QIE T wita(e)) |
[wata(e)) € Qa(o)} 1 QU™ = Qe tg, QO [ i (0))  wiva(e) € Ry ia(e))

Repeat this procedure for (¢272, l"'ll, taking W‘,(.t"‘l 4, M) instead of M.

In a similar way continne to repeat this procedure for (£*°3, t"2| taking
W‘(t"2 , et W,(t"‘ s 4y, M) instead of M and so on, finally arriving at

W, (r, 0, M) =W,(r, t', W, (1,2, . W,(*!, ¢, M))..)

Under rather conventional conditions with s — oo, ¢, — 0, the set W,(r,¢, , M) will
converge

W,(r,¢t,, M) — W(r, ¢, M)

§ —o00,¢ — 0
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in the Hausdoril metric, and the set-valued function W = W(r, ¢; , M) may then serve as a
basis for a strategy similar to U(t, p, y,(e)). The detailed treatment of this situation will be the
subject of another paper.

A final remark is that the numerical implementation of this scheme requires an appropriate

approzimation theory for set-valued maps. Therefore an approximative scheme that traces the
basic solutions in terms of ellipsoidal valued functions seems to be a relevant subject for investi-

gation.
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Abstract

Typically, modern stochastic control thcory uscs idecal white noisc driven systems
(1:8 cquations), and il thc observed data is corrupted by noisc, that noisc is usually
assumcd to be 'white Gaussian’. 1 thc models arc lincar, a Kalman-Bucy [ilter is then
uscd to cstimate the state, and a control bascd on this cstimatc is compuicd. Actually,
the noisc processcs arc rarcly ’white’, and the system is only approximated in somc scrsc
by a diffusion. But, owing to lack of ’computablc’ altcrnatives, onc still uscs the above
procedurc, Then the ‘filter” cstimates and associated control might be quite lar from
being optimal. We cxamine the sense in which such cstimates and/or control arc usclul,
in ordcr to justify the the usc of the commonly used proccdurc. For the filtering problem
where the signal is a ’ncar’ Gauss-Markov process and the observation noise is wide band,
it is shown that thc uvsual [ilter is °ncarly optimal’ with respeet to a very natural class
of altcrnative data processors. The asymptotic (in time and bandwidth) problem is treated,
as is thc conditional Gaussian casc. Similar rcsults arc obtained for the combined
filtering and contro! problem, where it is shown that good controls for the ‘ideal’ modcl
arc also good lor the actual physical modcl, with respeet to a natural class of alternative
controls, for control over a finite time interval and the average cost per unit time
problem.

The paper is an outline ol some¢ of the work reported in [9]

1. Introduction

Typical modcls in modcrn control and filtcring thecory arc of the following type,
where  W(-) arc standard Wicner processes, u(-) is a control, and b,. o, ctc, arc

appropriatc Cunctions. We¢ let z(.) dcnote a rclference signal, x(-) the control system,

¥(-) thc noisc corrupted obscrvation and r(u) and 7(u) the cost functions.
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dz = b (2)dt + o (2)dV, (1.1)
dx = b (xu)dt + o (x)dW, (1.2)
dy = h(x,z)dt + dWy (1.3)
tx(0) = [} E K(x(s) 2(s), u(s)ds (14)
ru) = @ ro(u)/T . (1.5)

The actual physical system, which we denote by  z9(-), x¢(-), ¥€(-) is not of the
form (1.1) - (1.3). Thec reference signal z€(-) might be only approximatecly rcpresentable
by (lI.1), and thc noisc in thc control and obscrvation systcm would rarcly be 'white’.
But, via somc approximation or identification proccdure, onc choosecs a model of the form
(1.1) - (1.3), then computes a good control for that model, and then applics this control to
the actual physical system. Onc must question the value of the filter output and the
determined control when applied to the ’physical” problem.

The filter output might not be cven ncarly optimal for usc in making cstimatcs of
z€(.), and thc control (based on the filter outputs) will rarcly be 'nearly optimal’.  Such
questions arc Dbasic to the rclevence of much theorctical work. We will deal with these
qucstions here, when the approximating system (1.1), (1.2) is lincar - for which a fairly
complcte theory can be obtained.

Owing to the usual lack of ’ncar optimality’ (when applicd to the physical system)
of the filter and control which is obtained Ly using (1.1) - (1.3), onc should ask the
question: with respect to which alternative filters (called ’data proccssors’ below) or
controls for the physical system arc the chosen oncs ncarly optimal? It turns out that
this altcrnative class controls is quite large and quite rcasonable. The basic mathematical
tcchniques used here arc those of the theory of weak convergence of probability mcasures
[1], [3), [4], a tcchnique which is quite useful for problems in the approximation of
random processes 1], [S] - {8], {!2], [!13]

When the ideal model is lincar - onc would usually usc the Kalman-Bucy filter
appropriate for the idcal model, but whose input is thc physical obscrvation. Obviously,
the filter docs not usually yicld the conditional distribution of the zf(t) given the data
y&(s), s € t. In Scction 2, wec discuss some counter cxamples to illustratc the sort of
difficultics which arisc in such approximations, and in Scction 3 thc approximation
thecorem is given, together with the class of alternative data processors.  Scction 4
concerns the average filter crror per unit time - or the crrors for large time. The
combined filtering and control problem is dealt with in Scctions 5§ and 6. The optimal

control for (1.1) - (1.3) will bc ncarly optimal for th¢ physical system - in comparison



203

with a large class of alternative controls. The symbo!  dcnotes weak convergence. A
fuller devclopment appears in [9], together with the conditional Gaussian casc and a
trecatment of ccrtain non-lincar observations. For the wcak convergence, we work with the
space D¥[0,%), thc space of RK.valucd functions which arc right continuous and have
left-hand limits, and cndowed with the Skorohod topology.  (Scc [1], [3], [4]) Reference
[2] deals with similar approximations for the non-lincar filtering problem, and rcference
[10] comccrns the approximation problem for the non-lincar control problem. Here, owing
to the lincarity, we can do both ’approximate’ control and filtering simultancously. The
modcls and rcsults arc formulated so that the paper is not burdencd with a large amount
of wcak convergenee thcory. There arc cxtensions in many directions: discrcte paramcter

problems, impulsive control, ctc.

2. Lincar Filtcring: Prcliminarics

Consider the following filtering problem: For cach € > 0, z§(.) is a signal
proccss, {;(~) is a ‘'widc-bandwidth’ obscrvation noisc, and thc two arc mutually

independent. The actual obscrvation process is:

Y = Hoz€() + §5(1), y&(0) = 0 . @0

All ’noisc’ processes are assumed to be right continuous and have left-hand limits. Definc
yé(t) = .[3 y€(s)ds and W:(t) = L‘) §§(s)ds. Let  z(-) satisly (for matrices A, , cte)

dz = A_zdt + B, dW_, (2.2)

Since {f(-) is to be 'ncarly’ white noise, and z€(.) ‘'ncarly’ a Gauss-Markov

diffusion, lct
(@6, WE) % (2() W, () as € =0, (2.3)

where \Vy(-) is a non-dcgencrate Wicner process.  The W.(-) and \Vy(-) must be
indcpendent. Also  y€(-) 2 y(.), where

dy = I zdt + d\Vy , y(0) = 0. (2.9)

The actual physical system is, of course, 'fixcd’ and corrcsponds to somc small € > 0.
The usc of weak convergence here is just a way of cmbedding the actual data in a
scquence - so that an approximation mcthod can be used. The approximation of the
valucs of cxpectations of functions of z€(.), conditioned on the data y€(-) is not casy
in general. Furthermore, we cannot restrict oursclves to Gaussian noisc, since it itsclf is
only an approximation to thc physical processcs.

For (2.2), (2.4), the filter cquations arc
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dz=A, zdt+Qt) [dy- H_zdt] (2.5)
Q) = I(tM1) R;!

L=AL+IA +BB -IH'RJHL, (2.6)

0
mcntioned otherwise. In practice, with signal z€(-) and noisc l;(-), onc normally uscs

(2.6) and (2.5wn):

where R, = covariance matrix ol observation ’noisc’ Wy(l), which wc sct to 1, unless

2€ = A z¢ +Q (D [¥¢ - H_z€]. (25wp)
This system is not nccessarily cven a ncarly optimal filter for thc physical observation.
But, as will be scen, it makes a great deal of scnse and is quite appropriate in a specific
but important way.

Somc illustrations will illustratc the problems that wc must contend with,
particularly conccrning the possible lack of continuity in the optimal estimators as the noisc
bandwidth goes to = Lect (X,Y,) be bounded real-valued random variables which
converge in distribution to  (X,Y). Generally E(Xn Yn) —— E(X|Y). For cxample, lct
X, =X, Y, = X/n Next, let 2 = Z“(Y), where Y is a random varible and (Z,,Y)

n

2 (Z,Y) . Then Z is not nccessarily a lunction of Y, and might ¢ven be independent

of Y, as illustrated by the [ollowing:

Let 'Y Dbe uniformly distributed on (0,1} Definc Z_ = nY for 0 €Y < I/n and,
in general, decline zZ = (nY - k) on k/n €Y < (k+l)/n, k = 0,1,..,n-1. Then
(Z,Y) = (Z,Y) where Z is independent of Y, and both Z and Y arc uniformly
distributed on {0,1]. Clearly l;'(anY) —— E(Z[Y) in any scnsc.

Even though \V;(~) # W,(-), a non-degencrate Wiener process, y&(-) might
contain a great deal morc information about z€(-) than y(.) docs about z(-). Sce
[9] Tor an cxample where as € = 0, we can calculate z‘(t) ncarly cxactly [rom the data

y€(-). In general we have

Let (X,,Y,) ? (X.)Y) (X -real valued, Y, with values in RE). Then

lim E[X, - E(X,|Y 1P € EIX - EX|Y)]P . e%))

In the above cxamples, the incquality is strict. The cxamples do caution us to take
considerable carc in dcaling with information processing with wide bandwidth noise

disturbanccs.
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3. The "Approximatcly Optimal’ Lincar Filtering Problem

For the idcal [liltering problem (2.2), (2.4), the optimal dccisions are functions of
2(-), Y(-) , since thesc completely determine the conditional distribution. There arc no
functions of the data which give better estimates. This is not so with estimates based on
T(-), 2€(.) for the system z€(.), yé(-). We now dcfinc a class of functions of the
observed data  y€(:) with respect to which functions of 25(-), I(:) are ’ncarly
optimal’ for small € > 0. We¢ nced to specify both a criterion of comparison; ic., a cost
function. Although wc usc onc particular cost function, thc gencral idca and possible
cxtensions should be clcar .

Let D denote the class of mcasurable functions on  C[0,«], thc space of rcal
valued continuous functions on [0,%) (with the topology of uniform convergence on
bounded intcrvals), which arc continuous w.p.l rclative to Wicncr mcasurc (hence, with
rcpect to the mcasure of  y(-)). Lect D, dcnote the subclass which dcpends only on the
function values up to timc t.  For arbitrary F(-) € D or in D, wec will usec
F(y€(-)) as an alternative estimator of a functional of 2€(-). The class is quite largec.

First, notc that D contains all continuous functions and that thc 2(~) of (2.5) can
be written as a continuous function of thc intcgral of the driving force y(:). Thus,
continuous functions of 2‘(-) arc admissiblc estimators. Many important functionals arc
only continuous w.p.l (rclative to Wicner measurc). Let  T(x(-)) dcnote the first time
that a closed sct A with a piccewise diffcrential boundary is rcachcd by x(:). Then
the function with values T N 7(x(:)) is in Dy for any T < = Thus, our alternative
estimators can involvc stopping times. This is cssential in scquential dccision problems,
since there the cost function involves first cntrance times of a function of y(-) into a
dccision sct.

D and D, do not contain 'wild’ functions such as thosc involving diffcrentiation,
We consider D and D, as a class of data processors. It sccms to comtain a large
cnough class [or practical applications when the corrupting noise is ’white’,

Wc now statc the ’model” ‘robustness’ or ’approximation’ result. For a function
q(z), we write (Pf,q) for the integral of q(z) with rcspect to the Gaussian distribution
with mean ’z\e(t) and covariance X(1) - thc ersatz conditional measure of z€(-).

The thcorem states that (for a small €) the crsatz conditional distribution is ’ncarly
optimal’ with respect to a specific (but broad) class of altcrnative estimators. The
alternative class includes thosc that make scnsc to usc when the corrupting noisc is white.
If the noisc is wide band, then it might not make scnse to cxploit its detailed structurc
and usc other ’better’ cstimators. Doing so might, in practical cascs, causc processing

errors and othcr (unmodelled) noise cffccts.

Theorem 3.1, Assume the conditions on  z€(-), \V;(~) of Section 2. Then (26(-), z¢(.),
W:(-)) > (2(-), z(-), \Vy(~)). Let F(-) € D‘ be bounded, and q(-) bounded continuwous and

real valued. Then (the limits all exist)
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lim E[a(zé(t) - F(y¢(-)1° (3.1)

» lim Efa(zé(V) - (PEQ))
€

Rcmark. The assertion concerning the weak convergence is nccessary, since we nced to
know that thc limit of the cited e-triple represents a true f[iltering problem. The result

would not make scnsc if only 2 out of the 3 components converged.

Proof. By the weak convergence and the w.p.l continuity of F( -),
(a@E ), Fyé(n, (PEm)] * (a(n), Fy(-), (PLa).

where  (P,q) = Iq(z)dN(’z\(t), I(t);dz), and N(Q,Zy) is thc normal distribution with mcan

z and covariance I Thus, the left and right sides of (3.1) converge to, respectively,
Ela(z(1)) - F(y(- )%, E[Q(Z(l)) - E[Q(Z(l))|)'(5), s € l]]z . (3.2)

Sincc the conditional cxpectation is the optimal cstimator, the sccond cxpression is no
greater than the first. This yiclds the thcorem.
Q.ED.

4. Filtering the Large Timc Problem (Large t, small €)

The filtering system often operates over a very long time interval. For the model
(2.2), (2.4), or with (2.6), (2.5yg), onc would then usc the stationary filter. But with the
system  y€(.), z€(-), two limits are imvolved since bLoth t - « and € = 0, and it is
important that the rcsults not depend on how t = @ and e - 0, and that the usc of the

stationary limit filter is justilicd. We¢ make somc additional assumptions.
CA4.1. A, s stable, (An'”:) is observable and (AI,BI) controllable.

C4.2. {:(t) takes the form {:(t) = {y(t/ez)/e, where {y(~) is a sccond order stationary

process will integrable covariance function R(.). Also, if t, - = as € = 0, then
€ €

WEte+) - WE(t) 3 W, ().

Rcemark. The model (C4.2) is a common way of modclling wide bandwidth noise, and is
uscd to simplify a calculation below, and to avoid the details involved with othcr modcls.
It can Dbe cxtended in many ways. We also makce the rather unrestrictive assumption that

the initial time is not important and that the z€(.) proccsses do not cxplode:

C4.3. If (z‘(le)) converges weakly to a random variable 2(0) as € = 0,
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then z8(tg + -) » z(-) with initial condition 2(0). Also

sup Elz‘(t)l"’ < @
€.t

Consistency. In order that 2(-), I(-), be a filter for z(-), y(-), it is meccessary that
the initial conditions be consistent.  Lect N(Q,Z;A) denote the probability that the normal
random variable (with mecan 2, and covariance I) takes values in the set A, By
consistency, we mcan that P{z(0) € A|2(0), £(0)) = N(Q(O). Z(0);A). Onc cannot choosc the
initial (random) conditions arbitrarily. It should be obvious that if ZI(0) = £ and
(z(0), 2(0)) arc the stationary random variables for (stable) (2.2) and (2.5), then the
initial conditions arc consistent.

The question of consistency arises because when we study the asymptotics as t ~ «
and € — 0, wc will start the filter at somc large te and do not know a-priori what the
limits of (Qe(t), z€(t)) arc. The initial condition of the limit cquations must be

consistent for the problem to makc scnse. Fortunatcly, they will be consistent.

Theorem 4.0, Assunmie the conditions of Section 2 and (C4.1) - (C4.3). Let q(-) be bounded
and continuous and let F(-) € D, Define y(s) = 0, for s €0 and define y*(-=t,-) to
be the 'reversed’ function - with values (0 € T < «) y&(-=t;7) = y€(t-T). Then, if te = =
as € =~ 0,
(26t + ) 28t + ), Wity + ) - WE(L) # (.1
() 2(), W,(4))

satisfying (2.3), (2.5), and z(-), 2(-) are stationary. Also (3.1) holds in the form

lim E [az&(t) - F(y¢(-=tN? 4.2)

W

Lim Efa(z(1)) - (PEa))® .

The linmit of (Pf,q) is the expectation with respect to the stationary (2(-), f) system.

Proof. Supposc that (Qe(t), € >0, t <= is tight. Then, by thc hypothesis,
(Z€(t), z€(t), € > O, t < @} is tight and cach subscquence of
{z¢(1.+4), 2‘(t£+-), \V:(t£+~) - \V;(te), tg <= € >0) has a weakly convergent

subsequence with limit satisfying (2.2), (2.5). Choosc a wcakly convergent subscquence
(with te = @ also indexed by € aad with limit dcnoted by  z(-), £(~), \Vy(«). Suppose,
for the moment, that z(.), 2(») is stationary. (Clearly, I(t) ~ T ast = ) If all limits
arc stationary, then the subscquence is irrclevant sincc the stationary solution is unique.
Also, sincc the initial conditions of £(~) and z(-) arc consistcnt (owing to the

stationarity), (2(-), f) is the optimal filter for y(-), z(-). Incquality (42) is a
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conscqucnce of this and the wecak convergence.
Wec next prove tightness of (2‘((), € > 0, t < =), and then the stationarity will be

proved. Wec have

7€ = (A, - QUH_1z€ + Q) &(t/e})/e + QUH, 2€(1) . (4.3)

Let  &(t,T) dcnote the fundamental matrix for [A, - Q()H, . Therc arc K < =, x> 0
such that |¢(t,T)| ¢ K cxp - Mt-T). We have

t
Z€(1) = ¢(t,0)z€(t)+I O(4,T) QT) T/ (D)dT/e
4]

t
+J S(t, T)QT)zE(T)dT .
4]

A straightforward calculation using (C4.2 - C4.3) and thc change of variable 7/¢2 - 7 in
the [irst intcgral yiclds
E |28 ¢ constant (1 + E|2€(0)|) ,

giving thc desired tightness.
To prove the stationarity of the limit of any weakly convergent subscqucnce, we
nced only show stationarity of the limit values (z(0), 2(0)) of the (2€(t,), Qe(te)). For

this, we usc a ’shifting’ argument. Fix T > 0 and takc a weakly convergent subscquence

of (indexed also by €, and with t < *)
(26t ) 28(ere) WEte+) - WE(LY), 28(t-T+), 28(t -T+-),
WE(te-T+:) - Wit -T))
with limit denoted by (2(-), 2(-), W (), 2q(-), 24(-), W, (). We have Z(T) = 2(0)
and  z(T) = 2z(0). Wc¢ do not yet know what QT(O) or zp(0) arc - but, uniformly in

T, thcy bcelong to a tight sct, owing to thc tightness of (ie(t). € >0, t < =) Write
(where WIT(-) *drives’ the cquation for dz,)

T
2(0) = z(T) = (exp A,T)zy(0) + [ cxp A(T-T)-B,dW, ()
0

2(0) = Z(T) = (cxp [A, - Q(*)H,]T)z 1(0)

T
+ [ oxp (A, - QU T-T) (AW, (T) + H,zy(1)dT)
0
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Since T is arbitrary and the sct of all possible (z(0)) is tight, the stability of
A, and (A - Q(=)H) implics that 2z(0) is the stationary random variable, hence
z(+) is stationary. Similarly, the pair (z(-), 2(~)) is stationary.

Q.E.D.

5. The Filtering and Control Problem: Finite Timc Casc.

As scen in the previous scctions, the use of the Kalman-Bucy f[ilter for the wide
bandwidth obscrvation noisc and ‘ncar Gauss-Markov' signal might be far from optimal,
but it is 'ncarly optimal’ with respect to a large and rcasonable class of alternative data
processors.  For the combined [iltering and control case, the control system will be driven
by widc bandwidth noisc as well. Supposc that onc obtains a control bascd on the usual
idcal white noisc driven limit model. This control will be a function of the outputs of
the filters, and onc must question the valuc of applying this to the actual ’wide

bandwidth nois¢’ system.

dz = Az dt + BdW, . (5.1

Dcfinc the control system (for constant matrices A, D, B, H,) by

€ = AxxE + Do+ th:’ (5.2)

and lct the obscrvations be  y€(-), where

Ve Hz
=y¢ = +18, yE eRE,y50) =0, (5.3)
N 1 x

where the three processes J':) t€(s)ds = WE(t), I:) t(s)ds = WE() and  z%(-) are mutually
indcpendent, and  WE(-) 3 W(.), WE(-) ® W (), standard Wicner processes. Thus L)
and ¢€(-) arc wide bandwidth noisc Processcs.

Dcfine the filters and limit system:

x€ A X D . b x¢
x X
R + QW [ye S ] (5.4)
z¢ Azt 0 Hz€ |4
Hx X
dy = dt + dW = II + dw (5.5)

Ilzz z
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3 A x D u H_x

dl =] . fdt+ @) + Q) [dy -1 dt]. .6)
z Az Hz
13 E

dx = A xdt + Dyudt + B dW,_, (5.7)

with the obvious associatcd Ricatti cquation for the conditional covariance X(-) of
(x(+), z(-)). Here Q1) = Z(t)H'[cov W', Equation (5.4) will be the filter for
(x€(-), z8(-)) with data  y€(-), and (5.6) is thc filter for (5.5), (5.7). The cost

functions for the control problem arc

RE(u) = I:E r(x (1), 2€(1), u()dt, (5.8)
R(u) = J'OTE r(x(1), (1), u(t)dt, (59)

for bounded and continuous r(-,-,-), and somc T < =

The controls take values in a compact set U, and we let (scc related definition of
D and D, in Scction 3) ¥ dcnotc the sct of U-valued measurable (wt) functions on
C&0,2) x [0,%) which arc continuous w.p.l. relative to Wicner mcasure. Let ¥, denote
the subclass which dcpends only on the function values up to time t.  We view
functions in ¥ as thc data dependent controls with value u(y(-),t) at timec t and
data  y(-). Lct ¥ dcnote the subclass of functions u(-,-) € ¥ such that u(-t) € ¥,
for all t and with the usc of control u(y€(-),-) (resp., u(y(-),-)), (5.2) and (5.4) (resp.,
(5.6), (5.7) has a uniquc solution in thc scnsc of distibutions. These u(y€(-),-) and

u(y(-),-) are thc admissible controls.

Commonly, onc uscs the modcl (5.5) to (5.7) to gct a (ncarly) optimal control for
cost (5.9). This control would, in practice, actually be applicd to the ’physical’ system
(5.2), (5.4), with actual cost function (5.9). Although such controls would normally not be
‘ncarly’ optimal in any strict scnsc [or the physical system, they arc ‘necarly optimal with
respect to a usclul class of comparison controls.

Straightforward wcak convergence arguments (using only thc assumed weak
convergence of the ‘driving  WE(.), \V:(-) processes’, and the uniquencss of the limit)
can bc used to prove Thecorcm 5.1. Let M denote the class of U-valued continuous
functions u(-,-,-) such that with usc of control with valuc u(ﬁ(l), Q(t),t) at time t,
(5.6), (5.7), has a uniquc (wecak scnsc) solution. Let My dcnote the subclass of controls
(stationary controls) which do not depend on t  (for usc in thc ncxt scction), Let
u(y€,.), USXx€2€,.) and ©POXZ-) decnotc the controls with wvalues  u(y$(-)t)
T8(xE(D,2€1),t) and WHX(1),Z(1),) at time t.
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Thcorem 5.1.  Assume the conditions above in this section. For © > 0, let there exist a
control US(~,-) in M which is s-optimal for (5.6), (5.7), (5.9), with respect to controls in

x. Then, for any u(-,-) € X

“E—m Ré(u(y€,-) » lim RE@S(x€, 2¢, ) - & (5.10)
€

= R@US(x, 2, 1)) - 5.

6. Filtering and Control: The Large Time Casc.

For the combined filtering and control analog of thc large time and bandwidth

problem of Scction 4, we usc the assumptions:

A 0 B,

X

C6.1. = A is stable, [A;Hx,H] is observable and A,
0 A Y B

controllable.
C6.2. t€(.) satisfies (C4.2).

The cost functions arc

YW = lim £ [ TE rz€m.xEn.un)dt (6.1)
T 0
) = T@ i I:E r(z(8),x (D), u()dt (6.2)

We adapt thc point of view of [10, Scction 6] and assumec that thce system can be
Markovianized. This is incorporated in the following assumption. This greatly lacilitates
dealing with the weak convergence on the infinite interval. The Skorohod topology gives
*decrcasing’ importance to the values of the processes as t incrcases - but it is the values
at ’large’ t that dcterminc the cost ¢ or 7. The problem is avoided by working with

the invariant mecasurces lor the {(£€(-), x€(.),..} processcs.

C6.3. For each € > 0, there is a random process $6(-)  such thar {($8(1), t < =} s
tight and Jor each u(-) € M, (M, de fined abore Theorem 5.1)
XE(-) = (x‘(-),ze(-).ﬁe(-)ﬁ‘(').¢J€(~),£€(-),E:(')) is a right  comtinnons  homogencous

Markov-Feller process (with left hand limits).

Remark. If  z8(-) satisfies 2€ = A,;z® + {f, then the assumption (C6.3) holds if the
driving noises ((£(-)EE(-),46(+) satisly (C6.3) and (C6.1), (C6.2) hold; ic., if the noiscs

88(-) and  t%(:) can be written as functions of a suitable Markov process. Let
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u(x€,2€) and u(x,2) (and similarly for u® denote controls with values u(k€(t),2€(1))

and u(?(t),i(()) at time t.

Thecorem 6.1.  Assume the conditions of Theorem 5.1 and (C6.1) - (C6.3). Let t€(-) and
Kf((-) satisfy (C4.2) and let z€(-) satisfy (C4.3). For ® > 0, let there be a %-optimal
control UB(-,-) € My for the system (5.1}, (5.6), (5.7), and cost (6.2), and for which (5.1},

(5.6), (5.7) has a unique invariant measure. Then, for u(-,') € M,

L . n A
S Y u(RE2E) 2 limy S(TBRE2€) - B (6.3)
€

= y@%x2) - 6 .

Rcmark. Various cxtensions of the class of admissible controls for which the same proof

works arc discussed in [9].

Proof. Fix wu(-,-) € M, Declinc the ’averaged transition measurc’

PE() = %EIQ P(XE(t) € -|X5(0))de,

where the cxpectation E  is over the possibly random initial conditions, and X€(-) is
the process corrcsponding to the use of  u(x€(-), z€(+)). By the hypothesis, {PE(-),T 2 0)

is tight. Also (writing X = (x,2,%,2))
YEERSZ) = Tim [riczua) PHEX) (6.4)

Lct Tf, - = D¢ a scquence such that it attains the limit li]rn, and for which
Pie(-) converges weakly to a measure, which we denote by P(.). The
n

P¢(-) is an invariant mcasurc for X€(-). Also, by construction of P¢(.),

YEWGEZE) = [Hxzu(x,2)PEAX) .

Lct (xé(-),zg(-),?(g(-)ﬁg(-)) denote the first four componcnts of the stationary
Markov-Feller X&(-)-process associated with the invariant mcasurc P€(-). By our hypotheses
(scc the argument in Scction 4) (xé(-),zg(-),ig(-), 23(~)) converges weakly to a limit
(xo(~),zo(-),;(0(~).20(-)) satisfying (5.7), (5.1), (5.6). Also, thc limit must be stationary,
since the (xg(-),...,fg(-)) is for cach e Lect %) dcnotc the invariant mcasure

associated with this stationary limit. Then

YEGEZY) ~ YuRD) = [r(xzuRD) u'(dxdzdid2) .
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By a similar argumecnt, it can be shown that

Y@ R2) = [r(nzi®R.2) W50 (dxdzdrda)

= lim 75(35(26,25)) .
€

. . . -5 . .
(The uniquencess of the invariant mcasure p* (-) is used here). Incquality (6.3) now

follows from the S-optimality of TS(-). Q.E.D.
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CONVERGENCE ,CYCLING OR STRANGE MOTION IN THE ADAPTIVE SYNTHESIS OF NEURONS

E.Labos
Semmelweis Medical School,lst Dept.of Anatomy,Budapest,Hungary

1.INTRODUCTION

Among the various learning procedures (see in Nilsson, 1965; Mendel and Fu;
Kohonen, 1978; Minsky and Papert, 1969; Fukushima, 1981) perceptrons (Rosenblatt,
1958, 1962; Widrow, 1963) represent a class of machine, where machine efficiency is
based on so called perceptron convergence theorems (PCDTs; Novikoff, 1962; Minsky and
Papert, 1969). These kinds of theorems predict that the initially naive machine
(laymachine) will metamorphose via a finite number of steps into a trained machine.
The training itself can be made completely automatic.

The only important prerequisite for perceptron learning is that of linear
separability, since the theory is applied mainly to formal neurons, threshold gates
or linearly separable truth functions (McCulloch and Pitts, 1943; Winder, 1968, 1969;
Lewis and Coates, 1967; Muroga, 1971).

In the actual formulations of PCOTs the initial state, the sequence of inputs, as
well as the actual form of linear separation are regarded as indifferent with respect
of successful learning because of the special formulations of the theorems.

This paper attempts to extend the PCOT to an optional formal neuron, i.e. an
arbitrary kind of linear separability. At the same time conditions of cycling in the
separable case also will be given. Such an example was published by Labos (1984).
Until now a perceptron cycling theorem (PCYT; see in Minsky and Papert, 1965) was
formulated for the nonseparable case only. The nontrivial aspect is here the lack of
divergence when a non-teachable object is tried to be trained. At last conditions of
bounded, aperiodic, non-convergent behaviour will be formulated.

2.PROPERTIES OF FORMAL NELRDNS RELEVANT TO ADAPTIVE SYNTHESIS.

DEFINITION:A truth-function is a formal neuron (synonymous with linearly separable
truth or switching function, threshold gate, McCulloch-Pitts neuron; McCulloch and
Pitts, 1943; Dertouzos, 1965; Muroga, 1971; Lewis and Coates, 1967; Hu-Sze-Tsu, 1965;
Sheng, 1969; Labos, 1984; Loe and Goto, 1986) if (1) it is defined on g" set of
binary vectors of n components; (2) the values are of the gl set; (3) if there
exists a h€R" Fuclidean vector and T real number - called threshold - so that for
each péEBn the f(p)é&ﬂl values are computable as follows:
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f(p)=u(ph-T) (D
n . ;
where ph= 3~ p.h; and u(r)=1 if r20 and u(r)=0 otherwise.

iz
CODING CONVENTIONS:Vectors of B and functions of B"—»B
decimal codes: e.g. (1,0,1)~101~5, Concerning the functions at first the arguments

1 aré identified by

are listed by increasing code numbers. The corresponding list of £(0), f(1),... is a
0/1 tape. Its decimal equivalent is the code of the function. E.g. f186~10111010 with
3 input lines means that £((0,0,0))=£(0)=1 or £(5)=0, £(7)=0 etc..

The hER" vector is called a separating vector, its coordinates are called synaptic
weights. The U set of p vectors for which f(p)=1 holds is called support or true
vector set, while the complementary part W is the set of false vectors.QObviously:UN
W=g and UUW=B".

The realization of an f truth-function is rarely possible since a system of linear
inequalities of 2" relations have to be solved of the following forms:

ph-T>0 or ph-T<£0 ©))

The number of (h,T) realizations is infinite.It is always possible with integer
hi—s and with non-zero i.e. T>0 or T€0 thresholds.

The value of ph (where p€Bn and h€R™) is called the effect of p input or answer
to the p question. The T threshold separates these effects into the Wh and Uh sets.
For any particular realization there exists a maximal effect-number of false input

vectors, M and also a minimum value of possible effects for true vectors:

M = max Wh = max{ph} and m = min Uh = min{bh} (3
pEW pE U

These numbers will be called lower(M) and upper(m) gateposts or margines. The
positive value, g=m-M is called the gap of the neuron at realization <:h,T)x The
threshold T can be chosen freely in [M,@) if h is fixed. The interval (M,HD is either
completely negative or completely positive. Otherwise the answer to 0€ g" input would
be ambigous.

The Chow-parameters (Chow, 1961; Elgot, 1961; Winder, 1969) are computable as
follows. Take all true vectors and sum these as real and not as logical vectors to
get a new vector. Its components are the Chow-parameters, which together with the
number of true vectors exactly identify the neuron. For example for f186 U:(U,2,3,4,é}
186“(5;2,3,1). If the Chow-vector is doubled and the

number of true vectors is subtracted from each coordinate, a vector is obtained which

. Thus the parameter array is f

very often can be used as anh separating vector. In the example
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2.(2,3,1)-(5,5,5)=(-1,+1,-3). The ordering and sign of these 25—si numbers
represents the order and sign of synaptic weigths (hi—s).

3.THE LINEAR SEPARATION AS A LEARNING AUTOMATON

The input space of the learning machine applied to an optional formal neuron is B"
. The state space Sc:Rr]is determined only after the initial state of the student
neuron was fixed. It is an unnecessary complication to say that the state space is a
set of p"—p! neurons and that the training modifies this functions. However, it is
emphasized that the states represent functions.

The law of state transitions is as follows:

s,.+mp,  if tlp) *2,(p)
Sk+1:F(Sk,pk)= (4)
Sy if t(pk) = Zk(pk)

At the first condition errors emerge while in the 2nd case the transitions are
mute.The correction factor is r>-0,5k is the actual state vector and Py is the actual
input vector or question.

1t t€8"— !
teaching machine or adaptive synthesis procedure, and zkE'Bn—+ B

is the fixed teacher-function, which represents a reference in the
1 is the threshold
gate determined by the Sic R" vector at a previously fixed T thtreshold, then:

sk*l=sk+r(t(pk)-zk(pk))pk=sk+rdpk where d=-1,1 or 0 (5)

Thus errors and the corresponding corrections occur if the pattern of the two
responses are either (0,1) or (1,0). However, the 'student' remains unchanged if the
patterns are either (0,0) or (1,1).
4.THE STOP CONDITIDN

Generate a complete sequence of inputs without repetitions in some lexicographic
order. If 2" consecutive no error conditions emerge then this indicates the arrival
at the desired learned state which is a not necessarily unique fixed point of the
learning machine.

5.1IS THE STATE-SPACE FINITE DR NOT?

The {sk} R" space is not necessarily finite. However, the Mn function space which
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they represent (Mnc: 8" Bl) is finite.E.g.at n=3 104 threshold gates occur among
the 256 switching functions. Each 1is represented by a nonempty and most often

unbounded convex set of states.
6.HOW TO CHANGE THE THRESHOLD?

This problem is related to the case of =zero input. In numerous perceptron
algorithms no specification is given for this case, since the threshold is
arbitrarily made equal to zero.

If pkﬁjﬂn ,pk=0 and any of the previous error conditions appears, then the

correction used for non-zero inputs is ineffective:
St ]Sk TPy Sy 1. 0=5, (6)

Therefore if pk=0 and error occurs, then a threshold modification 1is necessary.
Otherwise this pk=0 input will block the convergence.

At the same time such an additional part to the machine is sufficient to avoid this
kind of error, because the sign of the threshold is dependent solely on the response
to zero-vector. If t(0)=1 then T<0 must hold and if t(0)=0 then T >0 should be
satisfied. Furthermore, if a threshold gate can be designed with a zero threshold,
then it can be realized by a positive T as well. The inverse is not true. For
example, the 'and-gates' need positive definite thresholds.

Consequently, the algorithm may be supplemented by an examination of the input:
whether it is zero or not. Thus starting with an arbitrary non-zero T threshold, it
is sufficient to examine the incorrectness of zk(O) compared to t(0) and if it is
erronous, simply change sign. It is the easiest to do this at the beginning. This
then would eliminate the threshold-problem.

If this part is left out and zero-vectors occur in the Pk question-sequence, then

cycling may occur.
7.THE ERROR CONDITIONS.

Suppose that the teacher and student neurons have the same n number of input lirnes.
Teacher here means that the table of a truth-function values is given as a reference
for comparison or a (h,T) separating vector and threshold pair specifies the
reference if it is separable. The first case is more probable since this adaptive
algorithm is just a test of separability. The student state is sq initially(e.g. SO=0
€R" is suitable).

A training sequence is generated now iteratively as follows:
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Sie15K if t(uk)=l and uksk:>T
Se175K if t(wk):U and wksksT )
Sies 175K Ty if t(uk)=l and uksksT

)o1K W if t(w )=0 and w5, >T

Here U and W, are true and false input (i.e. Pk question) vectors; U, Sy and WS,
are inner products of the guestions and the actual state S, -

If a threshold correction is not built into the algorithm, then choose T freely. If
it was built, then investigate the t(0) reference value and choose T=+1 if t(0)=0 or
T=-1 if t(0)=1.

8.THE REQUCED TRAINING SEQUENCE.

The (pi,si) state-input pairs form the complete training sequences. However, if the
pairs are omitted for which no real transition has occured (i.e when si_lzsi) then a
shorter sequence is created including solely the real corrections. In the following
the subscripts of (pi,si) will refer only to this sequence of non-mute iterations. If

5, denotes the state after the k-th correction, then
K k-a
5 = E ruy - z tWy | +Sg (8)
3=1 371

9.THE SEPARABILTY CONDITION.

This requirement means, fhat the teacher or reference-function, i.e.the t € Bn-—.Bl
truth-function is linearly separable. In this case t is representable as t~ (h,T),
where h R" and T is the threshold number: TEDW,m) .

10.THE WAY OF CONVERGENCE PROOFS.
10.1.LOWER BOUND FOR THE LENGTH OF STATE VECTOR.AN OBSTACLE.

Since the separabilty condition includes lower estimations of ujrland —wjr1 scalar
products, the following relations hold:

a k-a
sh = Zl ush - ijh >ral+r(a-k)T = £T(2a-k) (9)
J= J=1

An obstacle to the succesful continuation of the proof appears here. If the h

Sk
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absolute value can be estimated with invariant direction of inequality then the

following step may come:

Isk|2|h|22:|skh|2;; r212(2a-k)? (1o
where the Cauchy-Schwartz relation was applied. This is a usual, inherent part of the
proofs of PCOTs (Minsky, Papert, 1969; Lewis and Coates, 1968).

The sign of Skh and also the sign of lower bounds might be negative and a priori
very little can be said concerning the ralation of a and k-a. The threshold cannot
always be taken zero. Three cases have to be distinguished: (1) MLT<m<0 ; (2) 0:M<
T<m ; and (3) 0<M<T<m. In the proofs of similar theorems the case (2) occurs.
However the turning to absolute values is blocked by the ambiguity of signs.

10.2.UPPER BOUND FOR THE LENGTH OF STATE VECTDR.

This is a problem-free part of convergence-proofs since the separability condition
is not utilized. The estimation exploits the change of state vector in a single
correcting step and by summing the relations obtained an upper bound for the square

of the length of the student vector can be derived. At first:
2 2 2 2
|Sk+1| = Iskl +2tp s+ T |pk| (11)

where again the sign of pjs. depends on the type of error. The error conditions give

upper bounds for Ujsj and for -w.s. . For the square of length of input I pjl 2 s n
holds. Summing according to the stéps of corrections Isk|2 = ([s. 1|2 - Is.l 2 )
A J+ J
holds, and hence:
22 2ral + 2r(k-a)T + knr?
|Sk| < 2ra r(k-a nr (12)

10.3.CONCITION OF THE FINITNESS DF REOUCED TRAINING SEQUENCE.
If both of the upper and lower bounds are applicable, then the finitness of the

reduced training sequence follows.
11.EXAMPLES OF CYCLING.

CASE 1 - A 3-fan in neuron: f11~40000101l. It is realizable by (2,1,-1) separating
vector; U={4,6,7}, w={0,1,2,3,5} ; M<1, m=2; 1<T<2; Chow-parameters: (3;3,2,1).
Choose: 50=(0,0,0), initial state, T=1 threshold and r=1 correction factor. Let the
series of inputs be the following sequence: (0,4,1,5,2,6,3,7) where these integers
represent input vectors (000,001,010,011,etc..).

Fig. 1 shows the state transition matrix and also definitions of the created

states. A sample pattern of the state transitions and questions is as follows:

00 40 1F 5F 2F 6F 3R 7R DR 4R 1R SR 25 65 35 75 QT 4T 1T ST 2U 65 35 7S etc...
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Here the sequence is formed by the consecutive (pk,sk) pairs and the states are as
follows: 0=(0,0,0),F=(1,0,0),R=(2,1,0),5=(1,1,-1),7=(2,2,0),u=(1,2,-1)

At the given conditions (that is at correct threshold, sO:O,r=l and natural
question pattern) no convergence takes place and the (ABC) cycle emerges.
Investigating the matrix of Fig 1 numerous other possibilities may be detected +to
create similar state-cycles.

Comparable matrix structures have been observed also when +the following formal

110 f130 f350 f490 Tgon
These functions form an equivalence class

neurons were synthetized(all of them with 3 input linmes): f
To1s T174 T1gg> To06:T2200 Tou2r foua-
generated by negation and permutation of variables.

Two other phenomena are demonstrable by the same case: depending on question
strategy or initial state,cycling or convergence may occur.

CASE 2 - The same function generates different state-transition matrices depending
on the threshold, assuming that other conditions are identical and both thresholds
are correct (i.e. realizable). Compare the training of le6’ n=3 with T=-2 and T=-3.
In the first case cycling may appear, in the last one the convergence is absolute.

CASE 3 - If the function is linearly separable, but the threshold is not adequate,
then cycling may arise. Try with n=2 'and-gate'. This is realizable with h=(1,1) and
T=1. However, with a trial of T=0 or T<0, no success is available and cycling
arises. Similar ‘'threshold-inadequate' cases are not regarded as 'surprising'
examples,

CASE 4 The significance of the r correction factor is demonstrable by the next
synthesis cases: n=4,50=(0,—2,—4,0); the reference neuron is specified by
((-1,-1,-1,-1),4),M=-4 and m=-3. The input sequence starts with 15=(1,1,1,1)€ 8% and
continues with 0,1,2,3,4...14,15. This whole 54 set is repeated cyclically. If r=4,
then the following reduced training sequence was observed:

(0,-2,4,0015(-4,-6,0,-4)1(-4,-6,0,0)4(-4,-2,0,0)8(0,-2,0,0)15(-4,-6,-4,-4)1(- 4,-6,~4
,002(-4,-6,0,0)4(-4,-2,0,0)15...

The length of cycle is L=5: the input 4 evokes the same correction as before. The
cycle condition (see Section 13) is satisfied since the two vectorial sums are equal:
(0100)+(1000)+(0001)+(0010)=(1111), where Ly=4 and Ly=1.

A similar cycling occurs if Sg =(0,0,0,0) and r=4. But decreasing the value of T
the length of cycle also decreased. At r>4/3 L=3 was also observed. However if 1< r{
4/3 was satisfied then a guick convergence was achieved with the same initial states.

The examples prove that cycling may arise in the following inadequate choices even
if the other conditions were formally satisfied:

(1) training of non-separable truth-function(case of Minsky and Papert, 1969)

(2) an attempt to separate with incorrect threshold
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(3) separation of a separable function with adequate threshold but with bad initial
state or

(4) with bad question pattern or

(5) by a too large value of correction factor

12.AN ESCAPE FROM THE CYCLING PITFALL BY RANDOM INPUT STRATEGY.

As it was shown, when the f11 neuron was taught,a cycling may arise either at
lexicographic repetitive or regular sequences of inputs as a result of iterations.
However, generating the inputs in specific random way, then an ‘'escape of cycling
traps' toward the learned state (fixed point) was possible.

A definition of probabilistic learning automaton may be as follows:

1. An initial distribution of states must be chosen. E.g.: P(0)=1 for the 0 initial
state and the other probabilities are zeraoes.

2. The transition probability matrix is designed on the basis of the non-random
case. Probabilities for any non-prohibited transitions are equal to 1/2". 1t from a
state,k different inputs leads to non-dummy transitions, then (2"-k)/2" is the chance
of a state to remain unchanged. This is a 'natural' but not the unique possibility of
a stochastic matrix definition.

The next distribution now is computable: Dn+1=DnN’ where Dfi R™and W is an mxm
stochastic matrix, m is the number of created states.

In Fig 2 the probabilities of six sets of states are plotted against the parameter
of iteration (i.e. the 'time'). The probability of the state set which includes the
unique fixed point will be near to one after a few iteration.

It is obvious that the convergence is dependent on the transition graph structure
since it was designed on this basis. If cycling basins have escape pathways along
which the probability of passage toward the fixed point set is non-zero, then this
'random convergence' to learned state is guaranteed.

A metaphora of such a process is e.g the fate of one liter of fluid in some vessels
(=state sets) which are interconnected by tubes of which the conductances are
proportional to the transition probabilities. The P(t) results of computation
includes polynomial and exponential terms as a function of the t time-parameter since

this process corresponds to a well amenable discrete homogenous linear process.
13.A CONODITION OF CYCLING.
Let g be an initial state of the learning machine. If after L corrections this

state reappears first, then L is the length of state cycle and the sum of corrections

in it must be zero:
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Figure 1 State transition matrix of a learning machine. The f (n 3) performance
was taught. Rows represent s, actual and columns nex{ 5, states.

Numbers denote input-codes uhder the effect of which tranéltlons are
realized. Empty places correspond to prohibited transitions.

The diagonal spots represent mute transitions. Altogether 21 states and
46 non-dummy transitions are observable. The en01rgled two submatrices
enclose cycles. The state symbols are defined as R” vectors.
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Figure 2 Abscissa: t number of iterations. Ordinate: P(t) probabilities of the
defined six sets of states. The machine of Fig 1 was fed by random
input sequence. At start P(0)=1. Each non-prohibited transition was
equally probable. Chance to remain unchanged corresponds to the sum
of mute transition probabilities. Observe that to stay in the two
basins of this machine show transient peaks, while the probability
of learning tends to 1.
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L L
n (13)
Sy + T p, = S, OT p.=0 R
0 i 0 i
i=0 i=0

As a part of corrections consists of additions and others represent substractions

of the corresponding inputs, it follows that:

a L-a
E - § (14)
uy w; where uiE U,wiE W
i=1 i=1

Since the added inputs are true, the substracted ones are false vectors of the
reference function, then a sum of true vectors must be equal to a sum of false
vectors. However, there exists the theorem of Elgot (1961) and Chow (1961) called
assummability theorem which states that linear sparability is equivalent with
assummability (proof see in Muroga, 1971 p.175). This means that if UiE U and wiE W,
then the following relation cannot be satisfied:

Zui Z " (15)

Nevertheless, if the number of vectors in these two sums is not identical,then the
relation may be true. For example (1,1,1) is false and (1,0,0) or (0,1,1) are true
vectors of f182'10111010 and the first one is the sum of the two latter ones.

THEOREM: For the inputs which evoke cycle of states in the learning automaton, Ll#
L2 must hold in the following necessary relation:

2
i u Z Wy (16)

Remark: The condition means a kind of summability of true (u) or false (w) vectors of

threshold gates.

14.THE PDSSIBILITY OF BOUNDED APERIDDIC MOTIONS.

Aperiodic sequence of states is designable by suitable choice of input sequence.
Take first a function of which the state transition graph includes cycling basin with
alternative connected cycles. E.g. in Fig. 1 C1=(BCA)'and CZ:(BCD)' are such ones.
Aperiodic but regular input sequences may control walking from C1 to C2 and back
while turning numbers are e.g. increasing. Such non-autonomous aperiodic motions in a

learning automaton are possible.
15.DIFFICULTIES IN ADAPTIVE SYNTHESIS OF NETWORKS.

A negligible part only of the truth-functions is synthetizable as a single
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threshold gate but may be realized with suitable - at the worst case very large -
networks. The adaptive (or other) synthesis algorithms now available do not solve the
problem of minimalization of the network, since no a priori knowledge 1is available

about the size of the corresponding networks.
16 .CONCLUSIDONS.

The essential message of this paper is as follows. The convergence proofs of
adaptive single threshold gate synthesis in which it is claimed that only
separability is necessary for the convergence (e.g. Minsky and Papert, 1969) are
correct. Nevertheless, the separability concept applied in them is surely too narrow,
because based exclusively on the cases realizable with zero threshold. For the
remaining cases it is said that are non-separable and therefore cycling (Minsky and
Papert, 1969).

However, more than half of the threshold gates are synthetizable only with definite
negative or positive thresholds.As the examples of this lecture show, the absolute
convergence cannot be extended to these cases. It is necassary to specify: (1)
initial state, (2) threshold correction, (3) adequate values of correction factor
,(#) a suitable input or question-sequence generation, and (5) an adeguate choice of
(h,T) representation.

The most important open problems are related to the structure of transition graph
or matrix: (1) Is it at least one fixed point or not in the transition graph if the
function is separable; (2) Is the fixed point set reachable from any initial state by
choosing a suitable question strategy and correction factor or not?
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Adaptive Stabilization
Without High-Gain

Bengt MAirtensson
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Lund Institute of Technology
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Sweden

Abstract: During the last few years there has been a very intense discussion on the applicability
of adaptive control and on ‘standard assumptions’ made in the traditional theory. Some years ago,
the question of what is really the relevant information needed for successful adaptive control was starting to
receive some attention. The present work belongs to this tradition.

A very brief introduction to the concept of adaptive control is first given. The prototype problem
of stabilizing an unstable, unknown plant is studied. The main result is the complete characterization
of necessary and sufficient a priori knowledge needed for adaptive stabilization, namely knowledge
of the order of any stabilizing controller. The concept of switching function controller is introduced,
and some properties stated. ‘The Turing Machine of Universal Controllers’ is then presented. As the
title indicates, this adaptive controller possessed the greatest stabilizing power a smooth, non-linear
controller can have. The preceding works in this field have all dealt with variations on the theme of
high-gain stabilization. This paper deals only with adaptive stabilization algorithms not requiring
high-gain-stabilizability. Finally, the problem of stabilization to a possibly non-zero reference value
is solved.

1. Introduction

The discipline of Control Theory studies the problem of achieving “satisfactory performance” of a
plant, i.e. a2 dynamical system to be controlled, by manipulating the input u in order to e.g. keep
the output y close to 0, or to follow a reference signal r. The most general problem of control
theory can in loose terms be described as the following: Given a set G of plants, we are to find
one controller K that achieves “satisfactory performance” (or optimal in some sense) to each one
of the plants G € §. Figure 1 illustrates the concept. The dependence of the input u of the output
is exactly the concept of feedback.

Controller Plant

Figure 1. The Most General Control Configuration.
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Adaptation
Parameters
r
u Y
Regulator Plant

Figure 3. The General Adaptive Controller.

Adaptive Control is one—out of several other possible—approaches to solving this problem. It
is an approach based on the concept of learning, i.e. the splitting of the ‘true’ state space of the
non-linear system an adaptive controller constitutes in parameters and states. See Figure 2! The
parameters reside in the “adaptation box”, while the states reside in the “regulator box”. The
parameters are moving “slower” that the states, thereby motivating the values of the parameters
as a state of knowledge on the dynamics of the plant.

Adaptive control is a vital subfield within control theory, with over 100 papers published every
year. For an excellent overview of the field see [Astrom).

In the end of the seventies and the beginning of the eighties, proof for convergence and stability
of the commonly used adaptive schemes appeared. These proofs all required some variant of the
following assumptions:

(i) A bound n* on the order of the transfer function g(s) = n(s)/d(s) is known.

(ii) The relative degree r = deg d(s) — degn(s) is known exactly.

(iii) The plant is minimum phase.

(iv) The sign of the ‘instantaneocus gain’, i.e. the leading coefficient of n(s)*, is known.

This work is concerned with the fundamental limitations and possibilities of adaptive control,
regardless of the particular algorithm used. In particular—are the four assumptions (i)(iv) really
necessary? To this end, what is believed to be the most fundamental problem is studied, namely
the stabilization of an unstable plant. It can be argued that this is the “prototype problem”, if we
can do this there is hope for more achievements, and vice versa. It is also a very clean, quantitative

problem.
We next give some more precise definitions for the sequel.

Definitions

"Consider Figure 2! In general, with fixed values of the parameters, the dynamics in the states are
assumed to be linear. Under this condition, we make the following definition.

We assume that d(s) is monic
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Definition 1.1. Let the set of plants §, its times T, its input space U, its output space Y/, and its
space of reference signals R are given. Let ! be a non-negative integer and X a vector bundle of
rank ! over the C®°-manifold M. We shall call the mapping

S:YxRxX—U

a linear adaptive controller with state space R} and parameter space M if it is smooth in the sense
of a control system, [Brockett], and for fixed k € M the mapping Sk : ¥ x R x R! — U is linear.
That is, it can locally be written as

:=F(t,k)z+G(t,kly zecR
u=H(tk)z + K(t,k)y
k = f(yyrvtrz)k)

where F, G, H, K, and f are locally defined C*°-functions. Here z = (zT,kT)T is a decomposition
of the state of the controller corresponding to the local decomposition of X in R! and M. a

For a global, coordinate free description of a non-linear control system as a section of a certain
pull-back bundle, see |Brockett].

With this definition, what makes a nonlinear controller into a linear adaptive controller is the
{local) decomposition of the state space into a vector space times a manifold, together with linearity
for fixed values of the parameters.

This definition covers the traditional approaches to adaptive control, namely model reference
adaptive control and the self tuning regulator. Compare Figure 2!

Convergence of Adaptive Control

We will next make precise what we mean by convergence of a certain adaptive controller, controlling
a certain plant. Only the stabilization problem, i.e. when r = 0, will be considered. We restrict
our attention to stabilization of strictly proper, time-invariant, linear plants described by finite
dimensional differential equations, with vector spaces as their state space. That is, plants that can
be written on state space form as

Az + Bu, ze R, vueR™

on JCR? (MIMO)

i

%
v
Definition 1.2. We shall say that the linear adaptive controller K # 0, controlling the plant G,

whose state space is IR", converges, if, as t — 00, M 3 k converges to a finite value ko, while
R'352z-0,and R">z—0ast — oo. o

Adaptive Control Problems
Finally, this is what shall be meant by an adaptive control problem.

Definition 1.3. We shall call the following an adaptive control problem: Let G be a set of plants,
The adaptive control problem consists of finding a linear adaptive controller X, such that for any
plant G € G, the controller K, controlling G, converges in the sense above. o

The ‘size’ of § can be considered as a measure of the uncertainty of the plant.
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2. Necessary and Sufficient Conditions for Adaptive Stabilization

This section contains the complete characterization of the a priori knowledge needed to adaptively
stabilize an unknown plant, namely the order of any fixed linear controller capable of stabilizing
the plant. The necessity was proved in [Byrnes-Helmke-Morse], while the sufficiency was proved in
[Martensson 1985]. A new proof of the sufficiency part is given, based on the results on switching
functions presented in Section 5.

The Main Theorem
The following theorem is the most general result on adaptive stabilization.

THEOREM 2.1. Let G be a set of plants of the type (MIMO). The necessary and sufficient
a priori knowledge for adaptive stabilization is knowledge of an integer | such that for any plant
G € G there exists a fixed linear controller of order | stabilizing G.

Proof of Necessity. See |Byrnes-Ilelmke-Morse]. .

The original proof of the sufficiency of this a priori information is the controller given in Section
6. The result can also be obtained by the method of switching functions introduced in Section 5.
We will devote the next sections to the development of some tools for proving this result.

3. A Viewpoint on Dynamic Feedback

In this section it is shown that, from a certain point of view, dynamic feedback can conceptually
be replaced by static feedback.

The idea is very simple: the plant is augmented by a box of integrators, each with its own input
and output. Static feedback is then applied to the augmented plant, i.e. the plant together with
the integrators. The situation is depicted in Figure 3.

H
u -1
K C(sl-A) B —

Figure 3. Dynamic feedback considered as static feedback.
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More formally: Consider the following dynamic feedback problem: Given the plant
z = Az + Bu, z€R", ue R™
y=Cr, yveR? (MIMO)
and the controller

s=Fz+Gy, zeR
u=Hz+ Ky

It is easy to see that this is equivalent to the static feedback problem

#=Ai+ Bi
§=Cx (MIMOA)
i=Kj
where
- I - u - y
= (1) e= (1) = (2]
¥4 ¥4 ¥4
and

() (2 e[S w5

Remark 3.1. This observation might seem very powerful at least at first sight, but note the highly
non-generic nature of A, B, and C. This means e.g. that results on generic pole placement by
static output feedback, see |Brockett-Byrnes|, [Byrnes|, do not translate at all. D

4. Estimation of the Norm of the State

In this section a lemma is proven, which gives an estimate of the norm of the state z of (MIMO),
expressed in the L? norm of y and u. The lemma has a simple corollary, which implies that, under
mild conditions, to show that an adaptive algorithm converges and stabilizes the plant, it is enough
to show that the controller stays bounded. First we give the continuous time version.

LEMMA 4.1. Assume that the linear system (MIMO) is observable. Then:
(i) For all z(0), there are constants ¢o and ¢, such that

01" < o e ([ ool ar+ [ hutori?ar)

for allu(.), and t > 0. Here ¢, does not depend on t or u; and ¢, does not depend on t, u(.)
or z(0).
(ii) For T > 0, ¢, can be taken so

peten? <er ([ iwotar+ [ puioiiar)

for all t, u(.), and z(t — T).
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Remark 4.2. In (ii) we can consider ¢, as a function of T. This function can clearly be taken
continuous and decreasing. o

Remark 4.3. Note that, for t bounded from below (i} follows trivially from (ii}. Also note that
the ¢o-term is necessary if and only if we allow arbitrary small ¢ > 0. o

Remark 4.4. 1t is not possible to improve the result by deleting the integral of u. A simple counter-
example can be constructed by letting (MIMO) be an integrator, the initial state £(0) = 0, and the
input u(r) = 8§ (r — (t — €)), for some small € > 0. Choose coordinates in the state space so that
z = y. Then clearly z(t) = 1, and fyzdr = g, so by letting € — 0, we arrive at a contradiction.
The lemina is true without the u-dependent term if and only if G(s) has a proper left-inverse. o

Proof. In an obvious operator notation we have

z(t) = e*'z(0) + /0 eA('_’)Bu(r) dr =: L' z(0) + Liu(.) (~)
y(.) = Lsz(0) + Lqu(.) (~)

where LY, L4, Ls, and L4 are bounded linear operators between suitable Hilbert spaces. We first
prove (ii). Let T > 0 be given. By using time invariance, it is enough to show (ii) for t = T. From
observability, (—) can be solved with respect to £(0), i.e. =(0) is the image of y(.) and u(.) under
a continuous linear mapping. Inserted into (~), this proves (ii).

By Remark 4.3, it only remains to show (i) for small ¢, say ¢ < 1. For this, note that the operators
Ly={L{:0<t<1}and L, = {L}:0<t < 1} are uniformly bounded by, say, k; and k. From
these observations, (i} follows (for t < 1) from (~), since f(: lulj2dr < f(: (lll® + [lyll?) dr. The
proof is finished. "

A Useful Corollary

The lemma has the following immediate corollary, which will be used in the connection with
adaptive stabilizers. We make the following definition:

Definition 4.5. A function f: RPxIR™ x RxIR — IR will be called L2-compatible if it is satisfies
a Lipschitz-condition and there exists a constant ¢ > 0 such that f(y,u, k,t) > c([|y||? + [u|?) for
all k and all ¢. o

The name is motivated by the fact that for f being an L2-compatible function, we can estimate
the L%-norm of (y,u) by the integral of f, as will be done in the proof of the following corollary.

COROLLARY 4.6. Consider the plant (MIMO)}, and let u{.) be a continuous time-function.
Let k satisfy )
k:f(yvu)k;t)v k(o) :ko

where f is an L®-compatible function. Then, if k converges to a finite limit ko, as t — oo, it holds
that ||z(t)|| — 0 as t — oo.
Proof. Clearly

% 1 [ 1
[+ iy de < 2 [ okt di = % (ko — ko) < 00
0 0

Thus, for any T > 0, the right hand side of (ii) in Lemma 4.1 approaches zero when ¢t approaches
infinity. The corollary follows. .
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Remark 4.7. In previous ‘universal’ stabilizing algorithms, the step of showing that z(t) — 0 as
t — oo has involved a minimum phase argument. This is not required here. o

5. Switching Function Controllers

In this section we will deal with the following problem: We want to adaptively stabilize an unknown
plant G of type (MIMO), for which we know that G belongs to a set G. Here § is a set of plants
for which there exists a finite or countable set of controllers K, such that for any G € §, there is
at least one controller K € K such that the control law u = Ky will stabilize G.

A heuristically appealing algorithm for stabilizing the unknown plant G would be to try each
one of the K's for € units of time, until we find one that stabilizes the system. It is shown in
[Mé&rtensson 1986] that this is possible if and only if we know a bound on the McMillan degree of
the plants belonging to §. Instead we try each one of the controllers for some time, according to
some criterion, in a way that will hopefully converge, and thus will switch among the controllers
only a finite number of times. A switching function is a criterion of this type.

The concept of switching function was first introduced in [Willems-Byrnes], where the set of
plants § under consideration was single-input, single-output, minimum phase plants of relative
degree one. In [Byrnes-Willems| this was generalized to multivariable plants satisfying analogous
conditions.

In the remainder of this section, we introduce the pertinent concepts formally, and give a result
on switching function based adaptive stabilization.

Definitions

Definition 5.1. Let s(k) be a function of a real variable, and {r;}{, a sequence of increasing real
numbers. For r = 2,3,...,Ro, we shall say that s(k) is a switching function of rank r with associated
switching points {r;}, if s(k) is constant for k ¢ {r,}, and, for all a € R, s({k > a}) = {1,...,r}.
Further, just as a notational convenience, we require a switching function to be right continuous.

o

Remark 5.2. Note that it follows from the definition that infinity is the only limit point of the
sequence {7;}. o
By switching function controller we shall mean the following.

Definition 5.3. Forr =2,3,...,Ro, let K = {Ky,...,K,} be a set of controllers, with card K =r.
Let f be a Lipschitz-continuous function and s(k) a switching law of rank r. A controller of the
type

u =K,y
LW (SFC)
k= f(y,u,k,t)

will be called a switching function controller. D

Remark 5.4. Note that in general the control law v = K,y must be interpreted in an operator-
theoretic way, not as a matrix multiplication. o

Remark 5.5. The way (SFC) is written requires all the controllers K,,..., K, to be simultaneously
connected to the output of the plant, while the switching law chooses which controller’s output to
connect to the plants input, at least if the K;’s contain dynamics. For r large or infinite, this is
clearly not a practical way of implementing a controller. However, if all the controllers have a (not
necessarily minimal) realization on a state space of a certain dimension, then this difficulty can be
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circumvented by considering the augmented plant as in Section 3, and considering the controllers
as static controllers. o

For further reference, we shall make clear what we mean by a set of controllers stabilizing a set of
plants in some sense.

Definition 5.6. Let f an L%-compatible function, § a set of plants of the type (MIMO), all of
which having the same number of inputs and outputs, and K a set of controllers of compatible
dimensions. For ko € IR, let k be the unique solution to k = f(y,u,k,t), k(0) = ko. We shall say
that K is stabilizing for G with respect to f (or is f-stabilizing for G) if the following holds: For
any plant G € § there is a controller K € K and constants ¢, T such that the control law v = Ky
will stabilize G in the sense that

Sy, u, k, t) dt <c|z(to) ||2
to

for all z(0) € R" and for all ko € R,to > T. o

Remark 5.7. In particular, the left hand side stays finite, so it follows from Corollary 4.6 that
z{t) = 0 as t — oo. It also follows that the solution to the differential equation is indeed globally
defined. o

Remark 5.8. By considering singleton sets in the definition, it is clear what we shall mean by the
statement the controller K stabilizes the plant G with respect to f. D

The Main Result on Switching Functions

With the machinery developed so far, we can now easily prove the following results on switching
function controllers.

THEOREM 5.9. Suppose that f is an L?-compatible function, and that the set of controllers
K is f-stabilizing for the set of plants §. Then there is a sequence 0 = {7;} such that for s(k) any
switching function of rank equal to card K, with associated switching points {7;}, the control law
(SFC) will stabilize any plant G € § in the sense that for all £(0),k(0), it holds that ||z(t)|| — O as
t — oo, while k converges to a finite limit. Further, there is a ‘universal’ switching point sequence
o, independent of the individual set §.

Proof. The steps in the proof are the following: To say that the theorem is false is to say that
for all switching sequences, there is a switching function with the stated properties such that
stabilization does not take place. It will be shown that, if stabilization does not take place, the
sequence {7;} has to satisfy a certain requirement, depending on §, namely (£) below. A sequence
o is given, with the property that for all allowed §, the requirement is violated. We conclude that
with this very sequence stabilization takes place, which will establish the theorem.

From Corollary 4.6, and since k is increasing, it follows that in order to show stabilization it is
enough to show that k is bounded. By the definition of switching function, this is equivalent to
the statement that s, considered as a function of time, only switches a finite number of times. So
we assume that this is not the case, and investigate the implications of this assumption.

Consider an arbitrary, but fixed, G € §. Say that controller K; is f-stabilizing for G, and that
the controller K; is used with start at time to. That is, k(to) = 7;, where s(r;) = i. By the
assumptions, this will happen for arbitrarily large k and t. Therefore, with T as in Definition 5.6,
we shall make the assumption that ¢, > T.
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The assumption that s switches an infinite number of times implies that we will reach the next
switching point 7;¢, after a finite time. But this is exactly the statement that

oo

f(y,u,k,l)dlZTj+| -7 (l)

to

where the left hand side, by assumption finite, is evaluated as if the controller K; was used forever.
We will show that the sequence {r;} can be taken in a way so that (;) cannot be satisfied for j
sufficiently large, which will prove the theorem.

By definition of f being L2-compatible, there is a ¢, so that the left hand side of (;) can be
estimated as -

Sy, u, k,t) dt < eflz(to)]|
to

Using the same argument as in the proof of Corollary 4.6, it follows from Lemma 4.1, part(i), that
for all z(0), there exist constants ¢¢ and ¢, such that

lz()I? < co + c1k(2)

for all t. Substituting t = to, k = 75, and combining the last two estimates, we see that a necessary
condition for (;) to be satisfied, is that

Tig1 — T < eco + ey 7 (£)

But there are sequences {7;} such that, for any ¢, ¢q, ¢, the statement (£) will be false for all
sufficiently large j. This is the case e.g. for the sequence defined by

— .2 ;—
TJ‘+1—TJ-, 1—2,3,...

T|=2

Therefore, with a switching sequence like this chosen, the assumption of s to switch infinitely many
times leads to a contradiction. Since G was arbitrary, the proof is complete. .

Proof of Sufficiency in Theorem 2.1

The proof is a fairly straightforward application of Theorem 5.9. Consider a controller in the spirit
of Section 3, namely as a constant M x P-matrix, where M :=m + !, and P := p+ 1. The set of
controllers K is taken to be all such with rational coefficients, i.e. K := QM*¥. Let f be defined
as f(y,u,k,t) = |ly]|®> + ||u||>. This is an L%-compatible function. A stabilizing controller places
the closed loop poles in the open left half plane. The poles depend continuously of the parameters
in the controller. Since K is dense in the space of all controllers of order I, i.e. IRM*F K is thus
f-stabilizing for §. Theorem 5.9 establishes the existence of a switching function such that the
corresponding switching function controller (SFC) stabilizes any plant in §. This completes the
proof. ]

Remark 5.10. By some additional effort, an explicit algorithm based on the ideas in the proof
can be constructed. o

In [MArtensson 1986|, it is shown that the controller can also be taken to be continuous by
‘smoothing-out’ the discontinuities. Another approach is presented in the next section.
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6. “The Turing Machine” of Universal Stabilizers

In this section we will consider the problem of adaptively stabilizing the plant (MIMO), given
only the a priori information that an integer [ is known, such that there exists a fixed linear time-
invariant controller of order ! that will stabilize the system. An explicit algorithm for this will be
given. This will be given only very briefly, without proof. A more detailed discussion, including a
discrete time version, is given in [Martensson 1986]. The proof is also given in [MAirtensson 1985].

As shown in Section 3, it suffices to consider adaptive control based on static feedback. A (fixed)
controller is then nothing but a matrix in RM*¥, where M and P denotes the number of inputs
and outputs to the augmented plant (MIMOA). For the sequel, we assume that this augmentation
has been done, and therefore we only consider static feedback. Since a (fixed) controller achieving
internal stability to the closed loop system places all the eigenvalues in the open left-half plane,
(or the open unit disc) and these depend continuously on the parameters of the controller, there
is an open set in parameter space yielding a stable system. Equip RM*P with the norm

1412 = Y40

Thus we identify RM*F | as a normed space, with RMF equipped with the Euclidean norm. For

the rest of this section, we let ||.|| denote the this vector norm, or the corresponding induced
matrix norm. Partition RM*P = R* x $MP-1 in a natural way, namely by dividing out the
norm of every non-zero matrix. SMF-1 is now the unit sphere in a normed space of controllers.
Let the controller be

i = g(h(k)) N (h(k))§ (1)
k=g*+ lla]* (2)

where
N(h) is ‘almost periodic’ and dense on SMP~-1 (3)

while h and ¢ are continuous, scalar functions satisfying

h(k) /00, k- o0 (4)

There exists an a such that % <a (5)

g({av + (B,M)}2,) =RY forneZ, a#0, >4 (6)
ko(h(k) 5 0, koo (7

THEOREM 6.1. Consider the minimal plant (MIMO). Assume that | is chosen so that there
exists a fixed linear stabilizing controller, and that the augmentation to (MIMOA) has beed done.
The controller (1) - (2), subject to (3) - (7), will then stabilize the system in the sense that

(z(t), 2(t),k(t)) — (0,0,ke0) ast— 00

where koo < 0.

One set of functions satisfying (4) - (7) is

h(k) = /log k, k>1
g(h) = \/i_t(sin\/ﬁ+ 1)
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The construction of the function N (k) is a standard exercise in calculus on manifolds. One such
is given explicitly in the references cited above.

7. Setpoint Stabilization

In this section it will be shown how to introduce integrators in the loop, thereby being able to
track a constant reference signal with error approaching zero asymptotically. The problem is as
follows: Let G be a set of plants as before, and r € IR” a given constant (a reference value). We
want to find a controller K such that for all G € § it holds that

z— £ (= constant)
y —r
z2— 2

k — koo

as t — oo.

Tracking with Zero Error Asymptotically

Every engineer knows that you cannot track a constant reference signal with zero error asymp-
totically without having integrators in the loop*. The analogous statement of course applies to
multivariable plants. Conversely, with integrators in every loop, the asymptotic tracking error is
zero, provided the closed loop system is stable. This shall mean that every fixed linear combination
of rows or columns of the matrix G(s) has a pole at the origin.

The construction for adaptively stabilizing a plant, with a constant reference signal r(t) = ro is
very simple: We just put the diagonal ‘precompensator’ K = a"I!,, in front of the plant. For the
sequel, consider the problem of adaptively stabilizing the ‘plant’ G(s) := G(s) K(s) instead. This
is depicted in Figure 4.

K(s)

Figure 4. Setpoint Stabilization by Introducing Integrators.

More precisely, we have the following result.

. Quick and dirty proof: y{oo) = r{oo) <= ¢(0)/(1 +¢{0)) =1 <= ¢(0) = »
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THEOREM 7.1. Assume that the controller K stabilizes the plant G in the usual sense. Let
r € IR? be given. Suppose that there exists a unique £ such that

Let K operate on —e := y — r instead of y. Then, as t — oo it holds that y — r, z — %, and
k— koo

Remark 7.2. The uniqueness follows automatically from observability. a

Proof. We can write

So, assuming we have a proof of a theorem saying that the assumptions are satisfyed, we only have
to substitute all occurances of z by z — £, and all occurances of y by y — r in order to construct a
proof of the above theorem for the case in question. So Theorem 7.1 is really a meta-theorem on
adaptive stabilization. s

The most natural use of Theorem 7.1 is in the form of the following corollary:

COROLLARY 7.3. Assume K stabilizes G(s) = 1G,(s), where detG # 0. Then with error
feedback K will also do set-point stabilization for any r € IRP.

Extensions and Comments

Everyone with experience of practical control engineering knows that plants of high relative degree
are very hard to control manually, but often fairly simple to control with simple controllers, such as
standard PID-controllers. Something similar is true about adaptive control. We need some extra
dynamics in our controllers, that is all. By preceding the plant by integrators as in the construction
above, the minimal order of a stabilizing controller might increase. A classical control engineer
would say that we do this at the expense of a decrease of the phase by 90°, and thus need some

extra phase advancing to stabilize the plant.
The same argument may be used to introduce multiple integrators in the loop, thus being able
to track ramps of higher order.
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Topological properties of observability for a system of
parabolic type

S. Miyamoto

international [nstitute for Applied Systems Analysis, Laxenburg, Austria

ABSTRACT

The purpose of the present paper is to demonstrate topological properties of
observable regions in a distributed parameter system. A parabolic partial dif-
ferentiai equation with constant coefficients is considered. According to Sakawa’'s
definition, observabiiity is defined to be the possibility of the unique determination
of the initial value by point measurements, or by spatially averaged measurements.
Furthermore, n-mode observability is defined to be the possibility of the unique
determination of the coefficients corresponding to the first n eigenvalues, based
on the expansion of the solution by eigenfunctions. Then it is proved that n-mode
observabllity is generic, that is, open and dense, whereas observability is shown to
be dense in the whole space of measurements. In case of point measurements, it is
shown that observability is valid almost everywhere with respect to the Lebesque
measure. Moreover genericity of n-mode controllability and the related proper-

ties of controllability will be shown for the dual systems with controls.

1. Introduction

The problem of observability in distributed parameter systems has a different
aspect from that in lumped parameter systems, because the former includes the
specification of the spatial distribution of measurements, which we need not take
Into account for ordinary differential equatlons. For example, in distributed sys-
tems we have some local information of the state variable such as the point meas-

urement which should be extended to the whole spatial domain. Therefore some
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efforts have been devoted to the unique determination of the state from local

measurements.

Goodson and Klein [1] considered the problem of uniqueness with respect to
point observation. Moreover they proposed the definition of n-mode observabil-
ity, which means the coefficients that correspond to first n eigenvalues in the
eigenfunction expansion of the initial state is uniquely determlned. Furthermore,
Sakawa [4] considered a broader class of parabolic systems and gave the condi-
tions of observability with respect to point measurement and spatlally averaged

measurement.

In view of their results, the measurement space can be divided into two
regions, one where observability holds and the other where some portions of the
state is "unobservable”. Here a probiem of topological properties of the observ-
able region arises. For example, in case of lumped parameter systems, observabil-
ity has been proved to be generic, that Is, open and dense in the whole domain of
definition (cf. Wonham [6]).

We consider here this problem with respect to a class of parabolic differen-
tial equations and examine whether observability and n-mode observability are

generic, dense, or not in the space of measurement.

2. Preliminary consideration

This section depends mainly on Sakawa [4]. Let D be an open bounded region
in n-dimensional Euclidean space R"™ (n >0) with a smooth boundary 8D. Then we

consider the following system:

—l‘;—’:(t.x) =Au(t,z) (1.2)€0,T)XD @
.
A=A—ao=tz=llm—ao 9]
clu(t.€)+(1—cl)%(t,£) =0 (t.£)€(0,T)x8D 3)
0<c, <1

where a, is a real constant or an analytic function, ¢, is a real constant, and v is

the exterior normal to the boundary 8D.

We assume the initial condition to be

u(0,z) =uy,(x) zeD (4)
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Let the eigenvalues and the corresponding eigenfunctions be
}7\‘,¢U;j =1.2,...m;,it =1,2,..% )
and assume that the multiplicity of the eigenvalues is finite:

Slilp m; = m<+o (6)

Then the solution of the system and the initial condition are represented as:

) my
u(t.z) = ) exp (=At) 3 ug;9(x) M
i=1 j=1
o0 my
u(x) = 3 ¥ ugyeq;) (8)
{=1j=1

respectively.

Then we consider the following observations described by Sakawa [4]:

(tyupel) vi(t) = [ we(z)u(t,z)dz 1sksN (9)
D

(type2) vy, (t) =u(t,x,) 1<k<N (10)
On the other hand we describe the deflnition of observabillty and n -mode observa-
bility; the latter was studied by Goodson and Kleln [1].
Definition 1
The system described by (1), (), and (3) is said to be observable (resp.

observable In time T) if the initial state u,(z) can be uniquely determined from the

observation Y (&) = (y(£).¥2(¢), . .. ,yy (L)), 0<Lt <oo. (resp. 0<t<T ).
Definition 2

The system described by (1), (), and (3) is said to be n-mode observable

(resp. n-mode observable in T) if Uy Fj=12,...,my,i=12,...,n in (6) and (7)
can be uniquely determined from the observation
Y(t) = (y1(t), ..., yn(t)), 0<t <o (resp. 0<t <T).

Remark 1

As Is shown in Sakawa [4], observability in T (resp. n-mode observability in
T) means observabillty (resp. n-mode observability) in view of analytic property

of the solutions. Therefore, we do not distinguish the two notlons below.
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Then we have the following two propositions:
Proposition 1. (Sakawa [4])

For type 1 (resp. type 2) measurement, assume wfj = (wk.q;u) (resp.
th} = @y (z.))., where (, ) denotes the inner product of Lz-space. Then in order

that the system (1), (2), and (3) Is observable, it is necessary and sufficient that
rank W; =m; forall izl,

for

wh wl w‘Z”‘i
2 2 w
w w P im
Wt = i1 i2 o 4 (11)
N N ... N
Wiy Wiz Wimy
where we assume
i —-1—2— < +oo sup|<p”(z:)| <+oo (12)
1=2 (A —=Ay) i,7

in case of type 2 measurement.
Proposition 2

Under the hypotheses in Proposition 1, in order that the system (1), (2), and
(3) is n-mode observable for n >0, it is necessary and sufficient that

rank W; =m; forall 1<si<n .

The proof of Proposition 2 is a slight modification of that in Proposition 1 [4] and

is omltted.

3. n-mode observability

Roughly speaking, the word ""genericity" expresses that a property is valid at
"almost all” points of the domain of definition. This notion is widely used in the
theory of dynamical systems [2].
Definition 3

A property P defined on a topological space S is said to be generic if P is
valld on an open and dense set In S.

Hence, in order that P is generic, it Is sufficient to show that the subset

where P does not hold is closed and nowhere dense (it has no interior points).
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First, we suppose N>m =sup m;. otherwise the system can not be made

observable. Then the following lemma is obvious.

Lemma 1

N
1

Assume that det Wt (7). 7=12,..., be a m;-th order minor determinant

of W; and let

Dy =Y | det Wy(4)|
J

where | | denotes absolute value and the sum E is taken for all the m;-th order
J
minor determinants. Then, in order that
rank W; =m,
it is necessary and sufficient that
D; #0.
Remark 2

In the below, D; in the above lemma Is sometimes represented as D, (w), since

it is a function of the measurement w .

Lemma 2
Let
wh(z) = (Wi @) wh(z), ... wiENeL2DW .
If the sequence iwl, 1=1,2, - -} converges to w in LZ(D)N, then the correspond-

ing {D; (w!)} converges to Dy (w).

(Proof) Since ,¢tj; is complete, we can expand w“: and w; as:
wi =Y dbyy 0y Wy = ) diyy Py -
1. i,
From the assumption we have
afy~dyyy forall ki.j .

Since Dy is a finite sum of the absolute values of the finite polynomials of dgyy. it is

clear that

Dy (wh) =Dy (w) .
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Lemma 3
The set {w |D;(w) =0, weC(D){ has no interior points, where C(D) is the

class of continuous functions on D.

(Proof) For simplicity, we write an arbitrary one of Wk (7)'sasV. Lettingl =m,,

we assume that

Wy, ¢e1) Wyoe2) (wy.9g)
O A a®)
(Wi Pe1) Wegz) oo (W ®y)

without loss of generality. Considering V to be a function of wy(x) and expanding

it with respect to the first row, we have the following:
{
detV =3 f;fw,(=@)g(x)dz =0

J=1

where fj's are functions of w,..... W Prqaneee- Py - Let
L
p(z) = 2 fj ‘ij(z)
J=1

then it follows that

det V = fwl(z)gp(::) =0.

If we assume that ¢(z) is not identically zero, then we can show that in an

arbitrary neighborhood of w, in C(D), there exists a function w such that

J W(z)e(z)dz #0 .
D

If we assume w, not to be identically zero.on D, then there exists an open sphere
B such that
wy(z)e(z)>0, wy(z)>0, z€B
or
wy(z)e(x)>0, wy(z)<0, z€B
For any £>0, there is an infinitely differentiable function ¢ satisfying

support ({)CB , Os:i:%((z), iue% ¢(z)=<e.
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Then we take w to be

w(z) =w, (x)+{(z), TED if wl(z')>0 ,x' el

or
w(z) =w,(z) - &zx), TE€D ifw,(z)<0, z'€B .
Hence
i‘é% |w(z) —wy(z)|se
and

f w(z)p(z)dz >0 .
D

If ¢(x)=0, it means that f;, =0, 1<i <!, since eigenfunctions are independent.
The function f; i{s a minor delerminant of (I —1)st order. Therefore we can con-

Linue Lthe same argument as above for wj.
Lemma 4

The sel
fw|Dy(w) =0, weLX D)V}

has no interior points.

(Proof) Let

wy =) dyyey
1

and expanding (12) with respect Lo the first row, we have the foliowing form:

{
J=1
where f;'s are functions of wy,..... VN, Prqreere- g~ 1f some of f;'s are nonzero,

then it is ciear Lthal the above equation does not contain an open sphere of L2
- - Mmoo
j=1 k=1

If f4=f2=" - =f,;=0, we can continue Lthe same argument for w,.
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Lemma 5

The set
fw|D;(w) =0, weL?(D)V}

is closed.

(Proof) From Lemma 2, we have Dt(wl)*Dt(w) as w!-sw. Hence if
Dy(w!)=0,1=1,2,....., then D, (w) = 0.
Corollary 1.

The set
fw|D,(w) =0, weCD)V}

is closed.

(Proof) Since D is bounded, the relation that w! »w in C means w! »w in L2. The

result follows immediately from the previous lemma.
From these lemmas we have the following:
Theorem 1

In case of type 1 meansurement, n-mode observability is generic on

fw |w eL2(D)¥} or on |w |w €C(D)N§ for any n >0.
(Proof) From Lemma 4 and Lemma 5, the set

fw|D,(w)=0,weL?D)V], 1sisn

is nowhere dense.
Since the set where n-mode observability does not hold is represented as
" | 2/ N
U tw|D(w)=0,wel“D)"],
i=1

which is obviously nowhere dense. Therefore the genericity in LZ(D)N is proved.

The same argument as above proves the genericity in C(D)N.
Lemma 6

Assume that for z = (z,z,,..... ZIN), T epV .
det V(zq.xo..... xy) =0,

where V is an arbitrary one of Wk (7)'s:
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i 1(1'1) ¢k2(1' 1) ..... Pt (1'1)
v = |Per(F2) eea(=2) P (T2)
Cer(®) Gea(z) v G lEy)

Then for any £>0, there exists z' €DV such that ||z’ —z || <¢ and
det V(::t',:z:é, ..... ,:z:h',)#()
(Proof) If we assume the contrary, it follows that for some x and £,

det V(z{,zé, ..... ,z,(,) =0

for all ” such that ||z"~z || sg,.

Expanding (16) with respect to ¢, (zi ), we have
l . ’
2 fi‘l’u(l'l) =0, ”1'1_1'1”550
i=1
Since ¢, 's are analytic [5], the above equation may be extended Lo D, that is,
l v v

L fi#u(zy) =0 z,€D
t=1

Since eigenfunctions are independent, we obtain | = f, = ..... =f, =0. Since f;'s
are minor determinants of ([ —1)sl order, we can continue the same argument for
z, ., x4, and so on. Finally we have ¢, (:j)EO on D for some j, which is a contrad-
iction.
Lemma 7

The set

fz |Dy(x) =0, zeDNl

is closed, where the topology of DV is defined by Lhe Euclidean distance of
(Rﬂ )N = R‘nN-
(proof) The proof Is immediate because D, (z) iIs a conlinuous function of z.

Then we have the following theorem.
Theorem 2

In case of type 2 measurement, n-mode observability is generic in DV for any
n >0.
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This theorem can be proved in the same way as in Theorem 1 and we omit the

detall.

4. Praoperties of observable regions

Although n-mode observability is proved to be generic for type 1 and type 2
observations, the same property does not necessarily hold for observability.
Therefore we examine whether observable subset is dense in the whole space or

not. For this, we need the following definition of a set of the first category.
Definition I (cf. Mizohata [3].)
Let E be a metric space. G (CF) is said to be a set of the first category if

and only if it is the union of a countable family of nowhere dense sets, where a

nowhere dense set means that its closure has no interior points.

Lemma 8

In case of type 1 measurement, the set X (resp. K¢) where observability does

not hold in LZ(D)N (resp. C(D)N) is of the first category.

(proof) Let KZ‘ be the set where n-mode observability does not hold. Then

(See Theorem 1 in Sakawa [4] or Proposition 2 in this paper.) As is shown In
Theorem 1, Kz‘ is nowhere dense, hence K is of the first category. The same argu-

ment is valid for K.
Lemma 9

In case of type 2 measurement, the set KDY where observability does not

hold is of the first category.
The proof is the same as that of Lemma 8 and is omitted.
Theorem 3

In case of type 1 measurement, the sel in LZ(D)N or in C(D)N where observa-

bility holds is dense in the respective space.
(proof) The procedure of the proof depends on Mizohata [3].

Let £ be a metric space and X denote a set where observability does not hold

and is written as

K

U Ky

n =0
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where X, is nowhere dense (Lemmas 8 and 9).

Assume that the complement £ —K is not dense, then there exists a closed
sphere B, =z |||z ~z,|lgsr] such that B,cX and B,MK, = ¢, since X, is
nowhere dense. Next, we can take another closed sphere By = [z | ||z —x|llgsry}
such that B, 5, Blr\l(1 = ¢, r1<(1/2)r°. since K, is nowhere dense. In this way,

there exists a sequence of closed sphere

such that

(a) the diameler r, converges to zero
(b) B, Nk, =¢.

Then as is shown In Mizohata [3], there exists a £ (€E) satisfying £€ "\ B, <K. On
n =0

the other hand, £# X,, for any K,,. Hence Z £ X, which is a conlradiction.

In the same manner we can prove:
Theorem 4

In case of Lype 2 measurement, the set of points in DY where observability
holds is dense in DV.

Furthermore, in case of lype 2 measurement we have the following result by
applying standard measure theory.
Theorem 5

In case of type 2 measurement, observablility is valid almost everywhere with
respect to the Lebesque measure on R™ . In olher words Lhe sel where observabil-
ity ls not valid is measure zero.
(Proof) It is known that in case of the Lebesque measure the measure of the set X,

is equal to zero. (See [7]) Since K is expressed as a countable union of X, , the

measure of X is also equal to zero.

5. Controllability and n -mode controllability of the dual systems

As dual systems of the system with observation type 1 and type 2, we consider

the following.

(type 1')

du N
—Z zAu+)) wi(x)z(t), (t,z)€(0,T)xD
at ‘2



250

cyu(t, ) +(1 —cl)-%%(t.O =0, (t.£)€(0.T)x8D

u(0z) =u,(x)
where ug(z) is a known Iinitial value, w; (:c)eLz(D) or wy(zx)EC(D), and
Z(t) = (zq4(t), ... ,zN(t))€L2(0.'I‘)N represents the control.

(Lype 2')

fu _ y
B = Au +4z-:1 6(x —=xy )z (L), (t,x)€(0,TIXD

ey, &) +(1~cy) ‘3—’: (t.6) =0, (£,£)€(0.T)xaD

u(0zx)=u,(x)

where v, (z) is known and z(t) = (z,(¢), ..., zy(t ))ELZ(O,T)N is the control.

Below we write the state u (¢t,z) with control z €L2(O,'I‘)N as u(t,x;z).
Definition 4

The type 1’ system or the type 2’ system is said to be controllable (in a weak
sense) at t =T’ if the set fu(T,z;2z)|z€L?(©0,T)¥] is dense in L¥(D).

In the following definftion it should be noted that the state u(T,z) can be

expanded in terms of eigenfunctions:

L3 m(
u(T.z) = Z Z fu‘ﬂu(x)-
i=1j=1
Definition 5
The type 1’ system or type 2' system is sald to be n-mode controllable if for
arbltrary glven real numbers Uit 1i=12,...,n;j7=12,...,my; it is possible to

find a control z such that in the expansion of u (T, z;Z):

my o
u(Tz:iz) = 3 Y &y04(2).
1=14=1
the relation

n‘j =zlj ,1=12,...,n; j=1,2,...,m¢

is valid.
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Then we have
Theorem 6

If we assume w,"j = (wk,qzu) for type 1' system and wfj = @4y (z;) for type 2’

system, then the necessary and sufficient condltion for controllability is
rank W, =my, for i=1.2,...

where W, is given by (11).

In the same way, the necessary and sufficient condition for n-mode controlla-

bility (r >0) is

rank W, =m,;, i=12,...,n .

(Proof) We give the proof for controllability of type 2' system. Define a linear

operator T:L%(D)-+L%(0.T)Y as Tu, = (y(t). ..., yn(t), where y (), ..., yp(t)
are deflned by the original system with type 2 observation. Let us consider a sys-
tem

o &
- ot =Ap+2 é(z —z;)24 (), in (0,T)XD 15)

i=1

z,(t)€L?0,T), i=1,2,... ,N
p(T) =0

cp+(1 —cl)—g% =0 on (0,T)XD .
Then it is easy to see that
(v.2) e, 1y¥ = (2.2 (0))ep, -
Therefore
T'z =p(0)

Note that the system (15) is equivalent to type 2' system concerning the con-
trollability and the n-mode controllability. In view of the relation

(Ker T)-L =1In T', we have the above condition for the controllability.

As for the n-mode controllability, it is sufficient to consider a linear opera-
tor Ti:S*Lz(O,T)N where S is a finite dimensional subspace of LZ(D) and 7 is an

imbedding map of S into LZ(D). Note that [ is a projection onto a finite
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dimensional subspace.
Corollary 2

The n-mode controllability is generic and the controllability is dense for the

type 1’ system with wy (z)€L2(D) orwy(x)eC(D), i=12,... ,N.
Corollary 3

The n-mode controllability is generic and the controllability holds almost

everywhere on DN with respect to the Lebesque measure for type 2' system.

6. Conclusions

The objective in this paper is to introduce a degree of easiness in construct-
ing measurements or controllors for parabolic systems. If the observability is
dense, we can find sufficiently many points everywhere for measurement. If the
observabiliy holds almost everywhere, and if we select randomly the points for
measurement, then the probability that we have "unobservable” points is zero. In
case of genericity the construction of measurements is still easier.

The above properties are closely related to the zeros of the eigenfunctions
Pij- if Piy =0 for some i,j on a subset D'cD, then 1t is easy to see that the obser-
vability and the n-mode observability for sufficiently large n are not valid on D'.

Therefore generalization of the properties considered here to a broader class of

parabolic systems needs examination of zeros of the eigenfunctions.

7. References
[1] R.E. Goodson and R.E. Klein. A Definition and Some Results for Distributed
System Observability. IEEE Trans. Auto. Cont., 15, 2, (1970) pp. 165-174.

[2] M.W. Hirsh and S. Smale. Differential Equations, Dynamical Systems, and
Linear Algebra. Academic Press, New York, (1974).

[3] S. Mizohata. The Theory of Partial Differential Equations. Cambridge Univer-
sty Press (1973).

[4] Y. Sakawa. Observability and Related Problems for Partial Differential Equa-
tions of Parabolic Type. SIAM J. Cont., 13, 1, (1975) pp. 14-27.

[5] H. Tanabe. On Differentiability and Analiticity of Solutions of Weighted Ellip-
tic Boundary Value Problems. Osaka Math. J., 2, (1965) pp. 163-190.



253

[6] W.M. Wonham. Linear Multivariable Control: a Geometric Approach, Second
Edition. Springer-Verlag, Berlin (1979).

[7] S. Ito. Introduction to the Theory of the Lebesque Integral, Shoka-ho, Tokyo
(1963), in Japanese.



SIMPLE ALGORITHMS FOR ADAPTIVE STABILIZATION+

A. S, Morse

Department of Electrical Engineering
Yale University

New Haven, Ct, 06520/USA

Introduction

Within the past few years there has been a resurgence of interest in the de-
velopment of adaptive stabilizers for processes modelled by finite dimensional
linear systems. This renewed interest is due in part to a paper by R. D. Nussbaum
[1] which proves constructively, for a one-dimensional linear system, that one of
the classical process model assumptions of adaptive control 1s unnecessary. Subse-
quent work by others [2-7] shows that these assumptions can be relaxed very much
further while [8] addresses the necessity of the assumptions themselves.

The purpose of this paper is to describe several different algorithms for adap-
tive stabilization., Some are new, while others have been discussed previously in
[2-4]. 1In contrast with the general adaptive stabilizers of [6,7],each algorithm
considered here is very simple in structure and easy to analyze. All are "minimal
compensator based", {cf. [9]} and consequently of the high-gain feedback type. None
uses a "probing signal" or an “augmented error" {cf. [3]} and one is applicable to
process models of relative degree 3 or less.

In the discussion which follows use is made of several concepts and construc-
tions which differ sharply from those of classical adaptive control {e.g, [10]}.

In 81 a Nussbaum Gain is employed as a component of an adaptive stabilizer for a
one-dimensional system - and closed-loop stability is proved using a nonclassical

"indicator function” [1]. 1In 82, a nonclassical parameterization is used to prove

that the algorithm of 51 also stabilizes relative degree one minimum phase systems

[2]. A parametrically dependent indicator function is used in §3 to prove that the

algorithm of §1 also stabilizes relative degree two minimum phase systems with
"positive damping". Finally in 54 it is shown that any minimum phase system of
relative degree two or less can be stabilized by a one-dimensional adaptive stabili-

zer which is nonlinearly dependent on a single tunable parameter.

1. One-Dimensional Systems

Let us begin by considering the problem of adaptively stabilizing the one-

dimensional linear system
y = ay +gu &%

with unknown but constant parameters a and g, assuming g # 0. Our objective is to

t The work of the author was supported in part by the U. S. Air Force Office of
Scientific Research under Grant No. 84-0242,
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construct an m-dimensional, nonlinear dynamical system of the form

f(x,y) :
} @
h(x,y)

which stabilizes (1) in the sense that, for each initial state (yo,xo), the solution

X

[}

u

(y(t),x(t)) to the closed-loop dynamical system (1), (2) exists and is bounded on
[0,*) and y(t) > 0 as t + =, Here f{: R" xR +R"and h: " x R + R are "smooth"
functions not depending on a or g.

1f Ug = gign(g) 1s known, stabilization can be achieved with the classical

adaptive controller

u = —cgky (3a)
k= y? (3b)

Tt is easy to prove that the resulting closed-loop system

y (a-|gl)y (4a)

K=y’ (4b)

is stable, For this, first choose a constant k_ so that a - |g|k0 < 0. Next, evalu-

0
ate the derivative of the "indicator function"

Ve y?r2 e (g Gekg)?r2 (5

along solutions to (4); i.e. V= (a-|g|k0)y2. Since V 0, V is monotone nonincreas-
®

ing. Clearly 0 g V(t) ¢ V(0) so y and k are in L , the space of bounded functions

on (0,»), Next observe that (4a) implies ; € Lm, whereas (4b) implies y € Lz, the

space of square integrable functions on (0,*); it follows that y(t) + 0 as t + =,

Thus controller (3) stabilizes (1).

The preceding analysis 1s classical. An indicator function (5),(actually a bona-
fide Lyapunov function in this particular case) which is quadratic in y and "paramet-
er error”" k - ko,is used to prove stability. There is another way to prove stability
which has the virtue of being applicable in a variety of more general situations.
This alternative method uses an indicator function which is quadratic in just y;

i.e.
V= y2/2 (6)

In this case evaluation of V along solutions to (4) gives V= (a—|g|k)y2; hence from

(4b),
V- (a-|g|k)ﬁ

This equation can be integrated to yield
2
v(t) = ak(t) - |glk™()/2 + ¢ €}

-]
where C 18 a constant. Examination of (7) reveals that k € L -~ for if this were

not so, then for Ikl sufficiently large, V would become negative which by (6) is



256

impossible. Clearly V ¢ Lm, so from (6) y € L” as well. With (y,k) € Lm now estab-

lished, (4) can be used just as in the classical analysis discussed earlier to prove

that y = 0, We shall use this non-classical method of proof again in a moment.
Consider again the adaptive stabilization of (1), but now with og unknown. To

deal with this situation, we replace control law (3a) with
u = N(k)ky (3a")

where N(+) is a Nussbaum Gain; l.e., any integrable function satisfying

1 X
sup ;—f N(u)udu
x>0 0

o

(8)

X =

x
inf f N(W)udu = -,
x>0 0
e.g., N(U) = u cos(u). To prove that the resulting closed-loop system
y = ay + gN(k)ky (9a)

Kk = y2 (9b)

is stable, we proceed just as before by evaluating the rate of change of the indica-
2 .

tor function V = y /2 along solutions to (9). Thus V = (a + gN(k)k)yz; hence from

(9b), V= (a+gN(k)k)i. Therefore by integrating

k(t)
V(t) = ak(t) + g { N(u)udu + C (10)
0
*
The definition of N(*) in (8) clearly implies that for some number k 2 k(0),

*

ak + g J N(Wudu + C < 0
0

Since by definition V 2 0, k(t) cannot attain this value. It follows that

k(0) g k(t) < k* or that k € Vm. The definition of V together with (10) thus imply
that y € L* as well, With (y,k) € Lm, (9) can now be used, just as in the classical
proof discussed earlier, to show that y -+ 0,

This proves that controller (3a'), (3b) adaptively stabilizes (1). The concept
of a Nussbaum Gain and the nonclassical stability analysis we've just used, are

based on ideas introduced by Nussbaum in [1].

2. Relative Degree One Systems

We now consider the problem of adaptively stabilizing a process with scalar
input u and scalar output y, which can be modelled by a linear system I with transfer

function

a(s)
& B(s)

where g is a nonzero constant (the high frequency gain), a(s) and B(s) are monic and

coprime polynomials, and a(s) is stable (i.e., £ is minimum phase). A useful state

space realization of I is provided by the following Lemma:
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Lemma 1: Write vy and p for the unique quotient and remainder of B divided by a; 1.e.

B = ay + p, degree (p) < degree (a)., Then I admits a state-space model of the form

YRR

&1 = Ajx; + b (gu+ L(y))
L(y) = ¢y%,

iz = A2x2 + b2y

where El = (cl,Al,bl) and Lz = (c2,A
- p/a respectively.

,b2) are canonical realizations of 1/y and

2

For a simple proof of this lemma, see {4].

El and 22 are called respectively, the quotient and remainder subsystems of I.

As a consequence of the minimum phase assumption, I

2 is necessarily stable., 1In

*
addition, note that the dimension of 21 equals n = degree (B) - degree (a), the

relative degree of L.
[}

Assume n = 1, In view of Lemma 1, I can be described in the state space by

the equations

y = ay + gu + L(y) (11a)

L(y) = %, (11b)

x2 = A2x2 + b2y (11c)
where A, 1s a stability matrix. We wish to prove that control (3a'), (3b), pre-

2
viously shown to stabilize (1), also stabilizes (11). 1In this case, the closed-loop

system 1s described by

y = ay + gN(k)ky + L(y) (12a)

o=yl (12b)

together with (11b) and (1llc).

To prove stability, we shall proceed along exactly the same lines as before.
The first step 1s to evaluate the rate of change of the indicator function V = y2/2
along solutions to (11), (12). Thus

V= ay2 + gN(k)ky2 + yL(y)

As before, we can substitute k for y2 and integrate. The result is
k(t) t
V(t) = ak(t) + g J N(w)udp + C + [ y(r)LT(y)dr (13)
0

Except for the term yLéy)d1, this expression for V is the same as (10). To deal
with this term, one additional technical result is needed [2].

Lemma 2: Let x = Ax + Br, w = Cx + DT be a stable linear system. There exist posi-

tive constants Cl and.Cz‘ depending only on (A,B,C,D) such that for each initial

state x(0) = Xq and each pilecewise-continuous input (),
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¢ 2 t 2
Iow(r)c(r)dr £C) H"o || +C, Io ||c(r)|| dt

In view of Lemma 2, we see that for some numbers 81 and C, not depending on t,

2

t n t 2
on(T)LT(y)dT < C1 + C2 J y (t)dt
0

Replacing y2 by k and substituting into (13), there results the inequality
k(t)

V(t) € ak(t) + g I N(p)pdp + C

0

where a = a + C2 and C = C + El - C2k(0). Observe that this expression for V is
of exactly the same form as the expression for V in (10). Hence the same reasoning
as before can be used to conclude that (y,k) € Lm and that y(t) - 0, as t + =; and
with A2 a stability matrix, it follows from (llc) that xz(t) + 0 as well,

To summarize, we have shown that controller (3a'), (3b) used to stabilize (1),
also stabilizes any relative degree one minimum phase system I in the sense that the
state (y,xz,k) of the closed-loop system (11), (12) is bounded on (0,*) and I's
state (y,xz) + 0 as t * », The method of proof is basically the same as that used
in §1, The new ideas needed for the generalization to relative degree one systems -
the parameterization of I in (11) and the inequality of Lemma 2 - are due to Willems

and Byrnes [2].

3. Relative Degree Two Systems with Positive Damping

It is well-known from root-locus considerations that minimum phase relative
degree one systems can always be stabilized (in a nonadaptive context) with high~
gain control laws of the form u = ky provided gain k is of the appropriate sign and
sufficiently large in magnitude. Root locus arguments can also be used to identify
those relative degree two, minimum phase systems which can be similarly stabilized.
In particular, 1if y(s) = 52 + as + b is the denominator of the transfer function of
the quotient system of I {cf. §2}, then I can be stabilized with a high-gain feed-
back u = ky provided :'s '"damping coefficient" a > 0. It is natural to expect that
controls such as (3a), (3b) or (3a'), (3b) can adaptively stabilize such systems. At
present we are unable to prove that (3a'), (3b) stabilizes; however, for the case
when og is known, controller (3a), (3b) can in fact adaptively stabilize. Our ob-
jective 1s to show that this is so. Our ideas here have been heavily influenced by
M. Corless who, in an informal communication, proved that controller (3) stabilizes
any system with transfer function g/(52+as+b) provided a > 0.

To proceed, assume I is minimum phese, of relative degree two, with damping
a > 0. Since I's quotient subsystem has transfer function 1/(52+as+b). by Lemma 1
I can be modelled in the state space by the equations

. a
y T eyt (l4a)

i oe_a,
2

1 + gu + L(y) (14b)

1
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L(y) = Cox, + (a/2 - b)y (l4c)

X, = A x, + b

2" MM T P
where A2 is a stability matrix. Application of control (3) results in the closed-
loop system (l4a), (liac), (l4d) together with

(14d)

. a
X = -5 K- lglky + L(y) (15a)
k=42 (15b)

Note from (15b) that either k ¢ Lw or k grows positively without bound, Our first
objective is to show that the latter is impossible, For this, assume the contrary.

Therefore, for some time t k(t) > 0 for £t 2 t_ . For such values of t, computation

0’ 0
of the rate of change of the indicator function
V= |g|y2/2 + x21/2k (16)
along solutions to (l4)-(15), yilelds
x X
. _ gla 2 2 a_1_"1
V=- A T A " L(y) 517)
.2 *1 d*1
where w = k/2k” 3 0, Let d be any positive number, and note that 'S L(y) g i
+ %E Lz(y). Application of this to (17) and then integrating yields k
t
ve-| 18220 2L 12 () 4 qugr) +ote - — 9 ) (mdt + © (18)
N 2 2d 1 2k(T) 2k2(1) 1

0
At this point we need the following technical result [10]:

Lemma J3: Let x = Ax + B, w = Cx + D; be a stable linear system. There exist posi-

tive constants C1 and C, depending only on (A,B,C,D) such that for each initial

2
and each piecewise-continuous input z(*)

- wz(r)dt s C X 2 + C ‘ (1) Izdt
. € Cflx” < t"‘C |
In view of Lemma 9, there are constants C, and C2 not depending on t such that

state x(to) = x

0

t 2 N t 2
I L™ (y)dt ¢ C, + C I y (1)dt
T 1 2-
t t
0
Hence with d = 2C2/|g|a, the preceding can be used together with (18) and (15b) to
obtain
gla t a d 2 =
v(t) € - k(t) - (W(T) + =—— - —— )x ,(1)dTt + C (19)
4 ta 2k(T) 2k2(T) 1
- o
where C = C + Cl/2d + 7 3 k(0). Examination of (19) clearly reveals that if k{(t)
were to grow positively without bound, then V(t) would eventually become negative
which is impossible, Therefore k € Lm.
Having achieved our first objective, we now must show that k ¢ = implies that
(y,xl,xz) *+ 0 as t +«~, For this we make use of the following special result.
Lemma 4: Let (C(t),A(t)) be continuous matrices with Lim (C(t),A(t)) = (E,K) exist-

tro
ing and observable. If for some initial state Xg» and some Lz-input b(t), to the
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linear system X = A(t)x + b(t), the output y(t) = C(t)x(t) satisfies y e L‘, then
x(t) + 0 as t » =,

Proof: Since (E,K) is observable there exists a matrix K such that A + KC 1s stable.
Then x = (& + KCO)x + (X + K&)x - Ky + d where X=a-Kand C=cC - €. Since
Ky +d ¢ L2 and X(t) + KE(t) + 0 as t + », 1t follows from Theorem 2, Chapter 2 of

[11], that the lemma is true.

Lemma 4 can be used as follows. First observe that (l4a) and (15a) can be
- v = (7Y - | a2 1
written a30y> Cx, x —Akx + d where x ( xl) C [1,0], Ak [ -|g|k -a/2

and d = L. Since k ¢ LW, (15b) implies that k approaches a finite limit k
and that y € LZ. Clearly d € L2 and (C’Ai) is observable. Therefore by Lemma 4,

(y,xl) + 0; since A, is stable it follows from (l4d) that x, + 0 as well,

2 2
The preceding analysis proves that controller (3) can adaptively stabilize any

relative degree two minimum phase system with positive damping, provided o 1s known.

The novel feature of the analysis 1s the use of an indicator function (16) which de-

pends on a control parameter k.

4, Relative Degree Two Systems

We now turn to the problem of developing adaptive stabilizers for the class of
all relative degree two, minimum phase systems. Since there are systems in this
class which cannot be stabilized (in a nonadaptive context) with the simple high-gain
feedback law u = ky, something more general than the controllersof §1 will have to
be used if adaptive stability is to be achleved for every possible system in the
class, One possible control structure with this potential 1s described by the equa~-
tions

T = —kze - klkzy 20)
8+ A8 =u
where A 18 a positive constant. For if this controller is applied to a relative
degree two, minimum phase system I with transfer function ga/8, then for sufficient-
ly large values of parameter constants k. and k, stability will result, This can

1 2
easily be proved by examining the closed-loop system characteristic polynomial

n(8) = (s+A)B(s) + ky(B(s) + Kk ga(s)(5H1))

Since a(s)(s+X)/B(s) is a minimum phase, relative degree one transfer function, for
klg sufficiently large, 8(s) + klgu(s)(s+X) will be stable. With kl fixed at such a
value, (B8(s) + klga(s))/(s+x)8(s) is also a minimum phase, relative degree one trans-
fer function so for k2 sufficiently large w(s) will be a stable polynomial.

An adaptive version of (20) has been shown to be capable of stabilizing any
minimum phase system with relative degree not exceeding two [4]. The tuning formulas

for this controller are
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2 2%
k N((k e+k y) )k0

2
2 .2 .5
k1k2 N((k e+k y) )ky
ke = Oy + Z4

ky =l y2 + z,
zg = (M1r))0y - uy
Ey - lez
where Al is a positive constant, and N(*) 1s a Nussbaum Gain.

In the sequel we consider an alternative controller, depending on only one
parameter k. In particular we assume a, is known, set kl = ng’ k2 = k and adjust
k according to the rule k = y2. The resulting controller {see also [12]} 1s thus

described by the equations
2
u=-k6 - gk
g y
6+ 18 =u (21)
k=y
Our objective 1s to show that this controller can stabilize any minimum phase
system with relative degree not exceeding two. For this, assume that for 1 = 1,2,
I, 1s a minimum phase system of relative degree i. By Lemma 1, 21 admits a state

i
space model of the form

y = =iy + gu + L(y)

L(y) = (A-a)y + c %,

x2 = A2x2 + b2y

where A2 is a stable matrix and 1/(s+a) 1s the transfer function of Zl's quotient
system. A direct calculation shows that

y = g6 + L(y)

where
i(y) =z
z = -Az + L(y)
provided z(0) = y(0) - go(0). Thus using state (y,xz,k,z) rather than
(y,xz,k,e), the closed-loop system which results when controller (21) 1s applied to
El is
. 2 -
y = -dy - |g|k®y - ky + L(y) + kL(y) (22a)
k= y? (22b)
Ly) = (x-a)y + c,x, (22c)

&, = Ayx, + by (22d)
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L(y) = z (22e)
z = =iz + L(y) (22f)

A similar system of equations can be derived for the case when the controlled

By Lemma 1, £, admits a state space model of the form

b
system is I 2

2
; = -y + Xy
X, = ()\—a)xl + gu + L(y)

L(y) = (A(a=-2)-b)y + Cy¥,

X + b2y

2 T A%
2

where 1/(s"+as+b) is the transfer function of 22'5 quotient system and A2 is a

stability matrix. By direct calculation, it is easy to verify that

X, = g + f(y)

1
where
L(y) = (2x-a)y + z
z = <Az + L(y)
provided z(0) = xl(O) - g6(0) - (2x-a)y(0). Thus using state (y,xl,xz.k,z)

rather than (y,x xz,k,o), the closed-loop system which results when controller (21)

1!
is applied to 22 is

y =y o+oxg (23a)
%, = Gealoxg - Kgly + LGy + k() (23b)
k =y’ (23c)
L(y) = (A(a=))=b)y + €)%, (23d)
iz = Ax, + by (23e)
L(y) = (2x-a)y + z (23f)
z = =Az + L(y) (23g)

Our objective now 1s to show that systems (22) and (23) are each stable, in
the sense that k € L and all other state variables go to zero as t + =, Note that
for either system either k ¢ ¥ or k grows without bound. Suppose the former is
true. Then y € L2 and k approaches a finite limit k. Thus L(y) and L(y) are in
L2 and Lemma 4 can be used to show that y and X] BO to zero. From this it then
follows that (xz,z) goes to zero as well, To prove stability, it 1s therefore
enough to show that k ¢ L™,

Consider first (22). Evaluation of the rate of change of the indicator

function V = y2/2 glves
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Ve O glik? + 0yl + L) + ykL(y)
2 -2
-0 + 5 kT o+ k)y2 + yL(y) + E%ET L™ (y)

Thus by integrating, and then using Lemmas 2 and 3,
¢ gl .2 2
v(t) < - J ()‘—C1 + 5 k(1) + k(t))y“(t)dt + C2
0

where C. and C2 are positive constants. Replacing y2 by k and carrying out the in-

1
tegration there results

2
V(o) €~k - LB 3y - K@ ¢

Quite clearly, 1if k were to grow without bound, then V would become negative which
is impossible. Therefore k ¢ Lm, which proves that system (22) 1is stable,

We now turn to system (23). Assume k(t) grows without bound. Then for some
time tO 3 0, k(t) > 0 for t 3 tO. For t 2 to, the rate of change of the indicator
function V = |g|y2/2 + x21/2k2 along solutions to (23) 1s
,L{y)  xL(y)

. 2 kta-A | 2
V= =gl _(M_jz_)xl+_2_+k—
Kk k
2 1 -+ 1/2d 1/2d 2 d 2 d -2
s Mgl - w+i+ L2 2/ )+(/4))x1+3L(y)+7L(y)
k Kk
3

wlere w = E/k 20 and d and d are any positive constants, By integrating this
inequality, using Lemma 3 for Lz(y) and Ez(y), then appropriately selecting d and d,
and replacing y2 by E, we obtain

t -

Vet € - /\zlgl Kty - J (o(r) + Lo 4 (A= 1720 (1/2d)
t
0

k(1) kz(r) k4(1)

)le(T)dT + C

where C is a constant, Examination of this expression shows that 1f k were to grow
without bound, then V would become negative which 1s impossible. Therefore k ¢ L

and system (23) 1s stable.

Concluding Remarks

In this paper we have analyzed three simple algorithms for adaptive stabiliza-
tion. The most general of these-the one-dimensional system u = -k - cgkzy,
6+ 20 = u with a single parameter k adjusted by the rule k = y2 - 1s capable of
stabilizing any minimum phase system of relative-degree two or less, provided o_ is
known. For the case when ¢ 1s unknown it 1s likely that adaptive stabilization can
be achieved using the above controller with Ug replaced by a Nussbaum Gain N(k) -
but this remains to be seen.

It 1s natural to expect the ideas in this paper to generalize to systems of
relative degree greater than tgo. It can be shown that the one-parameter, two-

2

4 . N
1 1 = - - - N = A -
dimensional controller u k el k 82 ogk y 61 + Alel 82,.82 + 262 u,

with Al and AZ positive constants, together with adjustment rule k = y2, stabilizes
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any relative degree three or less minimum phase system with og known. A proof of

this will appear elsewhere.

What's especially interesting about these results is that they strongly suggest

that at least three concepts - namely error models, error augmentation and positive

realness - are not as crucial to adaptive stabilization theory as they were once

thought to be. It seems that this paper raises more questions than it answers and

that there i1s a great deal of work to be done.
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General structure of hierarchy control
and management with both of objective

and subjective approach

Toichiro Nakagawa
Consulting director of Chichibu Cement Co,, Ltd.,

President of System Sogo Kaihatu Co., Ltd. Tokyo, Japan.

1. Introduction

Control problems of the production process generally signifies the field of
stabilizing control of process variables in most cases, However, optimum produc-
tion level and setting level of the corresponding process variables have not been
regulated at all, and have been selected empirically on the basies of static heat
and mass balance without colored noise in the process, and the basic operation
is generally subjective rather than objective. The behavior of production is
dynamic as far as it is in operation field, and it is improper to obtain optimum
production level only from static specifications of equipments., [n other words,
static control is only passive management after event is occured, and does not
solve the problem of how and what to manage.

In this report, a hierarchy system of stabilizing control and control manage-
ment including determination of optimum production level, pursuit control to this
level, is described, and the system of how and what to do is presented briefly
with examples in practical field. Further more, the cooperation with both objec-
tive and subjective (Artificial Intelligence ) approach is also referred. Fig-1
shows the system structure and Fig-2 shows diagram of the relation-ships with

each field.
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2. Production Management and Control System

Control system in a broad sense including production management has generally
hierarchy structure. Conventional PID control, which is widely used, and optimum
regulator problem by modern control theory are controls of the local stabilization
So far, set points of each variable are given tentatively case by case. Selection
of each set point is made in a trial-and-error manner by considering the original
unit cost, quality, ease of operation etc.

Therefore, even if stabilization control is realized, the effect of the stabili-
zation control from the aspect of production control, or the reduction of costs or
guarantee of high quality, has been indefinite. Even though various optimization
techniques have been developed in the field of operations research, they have not
been applied to the actual optimization of industrial process. This is considered
to be originated in the fact that it has been difficult to construct practical
production levels of process models without dynamical consideration of process.

If optimization model of production level is obtained, as refered later, a
set of set points is determined by the optimization technique, and stabilizing
control operates to stabilize around this optimum set points. Moreover, if a set
of optimum set points changes because of the shift of process state, pursuit con-
trol operates to shift the process forward to each of the new optimum set points.
Fig.1 shows the flow-diagram of analysis and control procedure, and the rough
draft of generalized system structure is shown in Fig.2 and presents the relations
among the fields.

The systems are composed of surface-level models and deep models of reasoning
using of a multi-level approach. The surface knowledge is described by the pro-
duction rule type and the deep model is mathematical and implemented as a complex

sof tware tools, such as process and human simulator.
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3. Stabilizing control of the kiln process

Since a very good exposition of cement manufacturing process is already available,
only a brief description of the kiln process, which is depicted in Fig.3, will be

given,

Sccondary malerial

02
Fr lig F
- !
Kiln T e J— l:UCl
\ ® s K M Tzna
Fan r O Thbz A\ Cooler
Tond W o T
D Air 1 T —\\]—
Fan
P Cr
Fig. 3 Rolary kiln and clinker cooler syslcm

The raw materials such as lime stone, clay and pyrite cinder which are ground in
mill are fed into the higher end of the kiln and the raw material is moved down-
wards by the rotation of the kiln, During the travel through the kiln the raw
material is first dried, calcined and further heated to reaction temperature to
form the clinker after several phases of physical-chemical reactions. The clinker
is then quenched and cooled in the clinker cooler. The necessary heat for the
reactions within the kiln is supplied by burning fuel at the lower end of the
kiln. Rotary kiln with suspension preheater (so called SF Kiln ) is dry system
and thermal effectivity of SF kiln is strongly improved, comparing conventional
long kiln,
Table 1 shows parametes of auto regressive model through identification (1](2]
(3)(8)(9) (10} (11} and optimum control gain fo wet rotary kiln process.
Table 2 shows one example of the model parameters fordry SF rotary kiln process.
s is shown in Table 2, these auto regressive equations represent the process
behavior model and operator model at the same time, Then operator can realize

and check his own operation by himself.

This behavior with feed back of operation’s action is reproduced and can be easily
simulated on the CRT and printer. Then we can play the simulation-game from the

operation board just like the atmosphere of the real process. Of course, optimum
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control through the design by dynamic programming can be easily executed and dis-
played. Furthermore, optimum production level and pursuit control are also
realizable for hierarchy control systems,

These functions and contents are referred by paper (11) {12} (14}

Fig.4 is a charts of the result of one step ahead prediction, for Tbz (burning
zone temp ) , KW (power of driving motor) and kiln speed (rev./hour) , and one
ahead prediction error chart is also presented. Fig.5 shows simulation of mud-
ring failure. As is shown in Fig.5, mud-ring failures are figured out and finding
of this event occurrence is significantly valuable for thereaf ter operation against

probable emergent situation.

soo RESULTS OF 1 STEF ANEAD PREDIC, STMULATIDN eos
Tlae: 795,00 WODIL LAG: 3 [NIERYAL: 15.000
: SOURCE DATA  ———w: PHEDICTION : INTERPD. © EXTRAPO,
401,10 T T T v T
[NAML] oo OPERATUR'S o
K¥-1
361 98 4 ISYSOUNl 1 bz 6000 s 450
1 Tbe
363,41 7 e
7 Kw- | (FH
i [sYs. IN)
325.12 g
krph-st2
1ERRDR)
10R00T (050} s
o/ 36.8
Fig. 4 Fig. 5

4. Application of analytical artificial intelligence

The control mode must be selected under the decision whether the process is
stational or not,

Classification between stational state and non-stational state, and detection of
these transient state are necessary,

Fig.6 shows moving average of one-step ahead prediction error of the running data

under the computer control of cement rotary kiln (3) .

When this moving average of one ahead prediction error happens to shift up-ward
or down-ward, we can realize something happens in the process.

For example, when fuel quality such as kilo calories is changed gradually, we can
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not usually find this change of quality in real time base, because we can only
monitor the quantity of flow.

fgainst the probable causes as mention above, corresponding operation are executed,
After these procedure, process shifts back again to stational state from non-stational
state.

When it is decided that the process is fallen in non-stational state, control mode

is changed over from objective control system, so calledii%ltac system, to subjec-
tive system, so called expert system,

Detection of cause by inference of backward resoning, and control decision by forward

® 2
reasoning are performed by ESPA (Trading name of Expert Shell) (5] [6][16) (17)

pe ~—M%“{WWMWMMM&>&

Tend

=
-
8

SATIONAL STATE —————== NON-STATIONAL STATE

200min Fig, 6

5. Spectral observation of hidden information for process insight

It is natural that variation of KW power of the kiln driving motor is depended on
the load. And the state of coating covered on the inside of kiln is irregular
and rough and the travelling speed of raw material passing through the kiln has
strong correlation with these uneven shape of coating, Then heat transfer effi-
ciency is strongly depended on this (7).

Therefore, spectral analysis of power within the range around one revolution, is

likely considered to be valuable for the insight into kiln process situation.

When process is under normal and good conditions, the spectral value of specific
frequency is rather high, and to the contrary, when bad condition, then spectral

value is lower.
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Examples of these results are shown in Fig, 7.

Fig. 8 shows time series spectral values of draft in combustion chamber. These
intensity of spectra seem to be valuable information about state of combustion,
That is, when combustion condition is good, spectral value is rather high and under
bad condition, spectral value is lower at the specified frequency.

These examples present the existence of the information behind the process. These
measures with intelligence are thought to be useful for expert system, even though

these cause and effect relation is qualitative in stead of quantitative.

LA_L_LL L !

(a) normal (L) mud-ring lTailure (¢) afler cleaning of ,\/'—_T\[/m/’_’\\_

-—

tower inside wall by waler gun (J) bad candiliun 200 soc AL = 0. 0bscc

big., 7 lig. 8

6. Optimum production level (optimum set point )

The process balances at the value (state ) of controlled variables responding
to the set points of manipulated variables. As set points of process variables
have ever been adjusted by experience of operators or staffs based on static heat
balance and mass balance. it doesn't always satisfy the requirement from production
management to produce high quality products with a minimum cost. [ think the
set points based on experience doesn't always guarantee the requirement of them.
The characteristic of low frequency near zero is occured by natural causes in-
cluding external causes of process, and considered to be autonomous changing of
process by itself. And then it provides a characteristic of low frequency of
energy cost and quality.

Autoregressive model (AR model) of discrete type is built through the iden-
tification of behavior. OQutput variables of the process (controlled variables)

are expressed as dimensional vector x (n) , and input variables to the process
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(manipulated variables ) as [ dimensional vector y (n) , then the model is
expressed as the following equation
x (n) —x= gl dm {x (n—m) —-%} +§. Bn {y {(n—m) =¥} +ZE(n)
Where X : mean value of actual.data x (n)

vy : mean value of actual datay (n)

Am: rXr dimensional coefficient matrix to each

m where m=1, oo !
Bm: rX1 dimensional coefficient matrix to each
m where m=1, «-oooeeeeeeee 1
Y& n) : r dimensional white doise vector of 0 average.

When the sampling interval At is smaller than the time constant of the process,
equation ( 1 ) represents process model for stabilization control, and expresses
dynamic characteristics of relatively high frequency zone. On the other hand,
whenAt is large (At > time constant) , a model only with extracted low fre-
quency zone is obtained Gy taking an average of running data during At's, because
frequency characteristics is filtered out.
4s the problem of productiion level is started from the problem of determining the
set points, the model is expected to be expressed by equation ( 1) only with
low frequency characteristics. Set points are originally determined by theoret-
ical physical or chemical models, but in the gractical control cases they mostly
manage unobservable variables which cannot te treated by theoretical models.
Therefore, models of eauation ( 1 ) obtained from actual data of daily operation
are needed as more praciical models.

The above-mentioned method has been applied to the problem of optimum pro-
duction level for a rotary kiln process. (13} (15) Optimum production is perforted
under a set of set points of each variable to manufacture high quality products
with the least fuel original unit ( L/ ton ) within the given constraints. The
model is given in Fig.9 and Table 3. Variables of constructing the model, which
are considered to be significant as production level, are selected.

Five variables, x, -~ xs , are chosen as process output {controlled variables) ,
and other five variables, y, -~ ys are chosen as process input (manipulated vari-

ables ) . Total of these ten variables construct the model. Data used to identify

(1)
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the process are shown in Fig.10. Time series data are average values during eight
hours operation. Sampling intarvals is 8 hours, and data length N is 201.
Fig.1l and Fig.12 present the relative contribution of power spectra density

between noise and power of variable at frequency f, and will conveniently be used

for graphical representation like these. I3 2261
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As shown in graph, for example, about 75% of quality (x) are explained to be
effected by variables other than x at low frequency. Also, almost 100% of fuel
original unit (x) is caused by other variables at low freguency region.
We have selected variables that are considered to be relative to fuel cost and
quality, composed multi-dimensional autoregressive model shown in Fig. 9 and
Table 3, and by using the average time series data of every eight hours,
identified them by AIC criterion. The resultant model that we call Set point
Model was expressed as following equation ;

yit) = Z AwleD + E Bubl) + e (2)

Qutput variables of the process and input variables to the process are ex-
pressed as five dimensional vector y{n) and u(n) . In order to introduce
the characteristics of steady state, the final value theorem is applied to
equation (2) and if steady state value of process is expressed as Ys and Us,
the following equation is obtained.

fs=¥ = (1-ZAi) (ZBI) (Us—u) .
kp = - [I—gei] (gl}i) , kp :stational gain of process.
Ys—y = —kp (Us—u)
Then stational model is presented as follows.
Ys+kpUs=Bs (¥, u) (3)
Optimum production problem is to minimize following objective function (4)
under the equation (3) and constraints (5) .

M M
J= Zeai¥si +ZfjUsj (4)
i=1 i=1

Ly s Y¥s s Uy
lu = Us = W (5)

Lastly principal component analysis has been carried out to determine
parameters of an object function as given in Table 4. The first principal comp-
onent P is found to be ralated to quality fuel original unit and combustibility
from the size of the absolute value. Therefore, using the first principal
component P as an object function, J is expressed as the following equation
for eigenvectors of P

J =0.26y + 0.04345y — 0.06994y + 0.49704y — 0.3835y

+ 0.403u + 0.3484u + 0.34282u + 0.195567u — 0.30251u
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Then we obtain Ys and Us as the solution which make equation J minimum,

Resultant optimum production level affect the fuel original unit, and it is esti-
mated that about 1.47 L ton is decreased. This means 1.8 % saving of total
fuel consumption comparing with conventional product level as shown in Table 5.
This naturally assumes preconditions that manipulated variables which do not be

not adopted in the model are set almost perfect.

ACLYBCL)
1= 1
HATRIX 10 x 10
1 2 3 4 3 & 7 8 9 10
1 +26830E+00 -.76692E-03 ~.17172E~02 .96084E-02 -.32127E-0) .71925E+00 ,05I35E-01 L, 25787E-01 -.3B8625E-01 -.21408E-02
2 -.28041E+00 .50012E+00 .40670E+00 .21448E+D1 -.J7569E-01 .13210£+03 =.67107E+01 -.53745E+00 .108)14E+0! .80251E+00
3 «15953E+01 -.37401E~-01 .BOG64DE+DC  .19111E+00 ~.19944E-01 -.J3742E+01 =.79327E+00 ~,70720E+00 .12255E+00 21618E+00
4 +39374E400 -, 19861E-02 ~.29006E-01 .21635E+00 -.45430+ -02 .79398E+00 +37094E+00  .39914E+00 -.1130ZE+00
5 ~77376E+01 -,40726E+00 .77337E+00 -.31949E-01 ,4B40654+00 ~,28730E+03 —.88471E€Q1 . 11348E+Q1 .34717E<01
& +34336E-02 -.15394E~-04 -, 47647E-03 -.10626E-02 -.40643-0& ,47293E+00 +10867E~02 ,75163E-02 -.91082E-03
7 ~.18102E+00 ~.49402E-D2 ,10046E-02 -,28B94E-01 -.57415°~03 . 19537E+01 «68347E400 ,57940E-01 L 19724E-02
8 -.36071E¢00 -.53347E-02 .15416E-01 -.78B744E-01 -, (34950 -02 .&62021E+01 ~.47013E-01 .84048E+00 .S0768E-02
9 -.32084E+00 .19413E-02 ,15784E-Q1 -.74864E-01 ~.11802 =02 ., 18470€+01 =.115476-01 ,20493£+00 ,72901E«00 ~.38562E-0
10 -.34768E+01 -.47691E-01 ,93821E-01 -

+68255E-01 L 45624£-02 .I5477E+02 -.18600E401 .Z22048E+00 .31020E+00 +58969E+00

Table 3 Parameters of Prucess Hodel

Py 2, P, P, P, 2 P, 2,
2.76a97 .2318 1. 42275 1.04728 LT8518 . 55163 . 40228 32502
X1 . 25000 - 42538 a7 - .7239 — 4291 - 877 32559 AUl
Xz L0448 .4l921 - z:n 24720 - .61255 - .010CS L28118 — 41499
X3 - .CE994 - .52 Nikr-] 2D - 28301 ~ .zan — .4203 - 02534
X4 49704 - .05461. 07764 .02719 .13348 -~ . 33904 22 - 882
Xs - .au 09253 .21878 - %33 L0231t — 32587 .03611 — 27651
Xs L40U7 -~ .05327 — .18233 — 47756 - 33916 . 1E663 ~ .%E080 - 11575
X1 L 842 .14293 47407 .C6798 . 14590 .52:28 . 05368 - . i8ZT
Xs 24282 . 38538 L2183 - L2549 -~ .051%0 - 37837 - .073086 ROETE
L9 19587 L3485 = . 12491 L11138 .13338 - iR - 04431 . 35178
X100 - .3 29220 , 30696 — .26328 — 11637 .Mz 7919 05248
(P: PRINCIPAL COMPONENT)
Table &
New SV Ave. DEV.
Feao Y 0.3636 0.5984 -0.2348
H (B 1 1513.9 1521.8 -1.9
T A ) 840.42 842.52 -2.10
Fuel Consusption : Yo 179.110 80.586 -1.476
Liln Power i §17.63 550.586 61.29

Raw Hix Feed B4 : U, 2,1651 2.1919 -0.0268

Kiln Coal Fead : U 12.565 13.256 -0.691

FF Coal Feed : U 194713 2.5 -t

Crate Speed : U 16,548 14.576 1912

Kiin Speed i Us 170.28 112.02 -1

New SV » New Set Value
Ave, = Average
DEV.  « New SV - Ave,

Table-5 Results of Oplimum Froduction Level
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7. Pursuit Control to Optimum Production Level

From the discussion mentioned above, an optimum production level can maintain
a decrease in costs and high quatity. However, in order to continually realize
optimum production, it is necessary to use pursuit control with many variables for
the present state of process to transfar smoothly to new production levels.

In Fig.13, simulation of pursuit control of set point exchange, using process
model (Table 3 ) is shown. The upper half of Fig.13 indicates control when step-
like disturbance is added to the variable x and the lower half is simulation of

pursuit control to set point exchange of optimum production level.

sYS. 007T) OPTIMUM CONTROL

— T T T — T T

IR R

3 Y3 S +234 512345

9 U4 = 676

8. Conclusion

We have reported a consistent approach with examples from design of optimum
production level to pursuit control, and to their constant stabilizing control.
The constant stabilizing control is devided into two regions, that is, stational
state and non-stational state.

When big disturbances happen to occur, which are the inherent character and
probable significant event, then process condition shifts to ill-defined situation
from well defined situation. Under such a circumstance, temporaly back-up function
based on artificial intelligence approach enforces the process to shift back again
from the unstational state to stational state. A arrangement of these as a whole

is so called hierarchy system,
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In this paper, the validity of the cooperation with both objective and sub-
jective approach, and building a coordinating and advisory system are also referred.
Practical applications to the cement making process by means of Siltac tool and
problem solving agent inference °“ESPA” engine are presented.

The hybrid control system, with hierarchy structures which share with each func-
tion how and what to do, as mentioned meaning, is preferable for robustness of
control and expansion of control capability. We don’t expect expert system to
completely replace conventional control or humans operation. Expert systems may
be assistant as advisory systems around the objective control systems,

And further more, the knowledge acquisition through both mathematical and
symbolical style is evaluated and complementary corporation of both is expected
for further progress.

%3
These systems with supporting circumstance which are called SOIDECS are to be

demonstrated in [TASA conference which will be held in Kyoto Japan, Aug.. 1986.

1. Self-Instructive, Learning and Tutorial system for statistical Analysis
and Control of dynamic systems.

% 2, Expert Shell Partnership Agent.

% 3. This epoch-making system named SOIDECS (SSK's Objective and Intelligent
Model Design Environment and Control System) realizes a novel concept
through combination of the Al techniques with the multi-input and output
model identifying and control techniques on the basis of a series of
SSK's system products.

The SOIDECS system basically consists of the following elements.

1) SILTAC : Self-Instructive, Learning and Tutorial system for statis-
tical Analysis and Control of dynamic systems
This system for statistical analysis and control of a dynamic system
implemented on a personal computer performs prediction and control
of complicated processes.

2) CAC : Compact Advanced Controller
This compact-size controller manipulates the control models of the
multi-input and output system identified by SILTAC.

3) ESPARON : Expert Shell for Partnership Agent with Rule Organized
Network
This expert shell implemented on a personal computer to construct a
knowledge base system is capable of constructing cooperative type
models and systems for FA networks,

4) Intelligent Monitor : Process monitor with expert system and intelli-
gent detector
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5) Display Human Interface : Display facility with animation and voice
synthesis

Fig.1l4 shows the connection of functions.

fxpert Hodel
Bulldar
Disptay
{ Yoice )

Bxpert Intalllgent
foniter
Hathuastical Nodel

SILTAC

deatification
Hodel Oazign

ESrARON

Bxpart hodel Shelt
Coatrol by Expert Nadel ‘\
Towplata cac \U cac \U
Controller ( Controller
]l [
5t
Event Analyzer e
Datactor

PROCESS

Remarks : In this demonstration, a simulator with a plant model of SILTAC
in place of an actual process is connected.
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ADAPTIVE CONTROL AND GROWTH PROCESSES
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Introduction

In this paper we are going to study the interrelationship between
growth phenomena and control.

On one hand growth in complex systems like individual species or
populations with interaction between different kinds of species is
mostly based on socalled cooperative structures leading to clusters
built up from some of the species or subsystems and competing with
other but similar clusters.

This complex interaction structure can usually be considered as a
certain network composed of interacting modules.

In this network we meet frequently feedback loops leading to internal
conttblmechanisms aiming to a global equilibrium.

This global equilibrium can be a static one equilibrium point

or a dynamic one exposing oscillating regimes-limit cycles.

Thus in nature we find control phenomena and even adaptive control.
Therefore it seems guite reasonable, to learn control principles
from nature.

We use this source for concepts of new nonlinear basic controller
as a substitute of the well-known classical PID-controller.

For this purpose we studied growth transitions in different applied
fields, we established the socalled EVOLON-concept for a simple but
reliable description of a growth-step, and we will now use this

EVOLON-concept for the design of new basic controllers.
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On the other hand in practice, especially in biotechnology we are
often confronted with the necessity to appty an additional control
from outside besides the internal autonomous control of the bio-
ecosystem.

For the design of a good external control strategy we need a reliab-
le model-description of the bio-ecosystem.

In the recent years we developped the socalled Lotka-Volterra
approach for applied Systems Analysis which declares the Lotka-

Volterra equations

Fx, & xi()_'cijxj-#)_'ﬂisys) with F = 4 1n/dt

as a relevant concept for modelling bio-ecosystems.

This approach together with a lot of concrete studies is published
in f1{.

If we use the Volterra equations as model descriptions for real
systems the problem arises, how to control such a system.

This could be done using control influences Yg as a linear superpo-
sition on the autonomous driving force on the right-hand sides of
the model differential equations.

But there exist some different control concepts for applying an
external éontrol onto the system.

In the second part of this paper we inform about our control stra-
tegies for the control of growth in connection with the proposal
of an adaptive controller.

Lotka-Volterra equations possess a very interesting expansion
property which in some sense make them more attractive than a
Taylor expansion of the nonlinear Dynamics of a system.

In the third part of this paper we communicate some informations

about this idea.
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Concepts for controllers and control strategies in connection

with growth processes

Design of nonlinear basic controllers with the EVOLON-concept

We first give a short description for the EVOLON as a model for

a growth step.

Every evolutionary process of a system, of an individuum, of a new
technology, a population etc consists of a staircase(increasing

or decreasing)of s-formed growth-steps.

Behind this form of such a growthstep usually an elementary evolu-
tion process is hidden, which we call an EVOLON, if some characte-
ristic properties will be present.

Such an evolution step expresses a rich manifold of different
interaction mechanisms within the system considered and between
this system and its environment.

For the process called EVOLON we have to distinguish between an
extensive phase at the very beginning and an intensive phase at
the end of the process, when we can observe a saturation on the
next higher level, on a new steady state.

In its extensive phase the system builds up a cooperative structure
with the aim, to create himself optimal conditions for a guick
growth. The consequence is a rapid consumption of the available
resources and their transformation into ever increasing growth-
rates.

But in the intensive phase cooperation for the purpose of increa-
sing growth-rates makes no longer sense, more and more the system
is encountered with competition phenomena caused by arising compe-
titors and maybe a growing scarcity of resources.

Therefore the preestablished cooperative structure begins to loose
its strong links, the system exposes a tendency to decomposition

into parts accompanied by the trial to find a new cooperative struc-
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ture by recombination of the parts which better fits into the new
condition of development.
The system tries to open a door into the future by starting the
next s-formed evolution step.
From basic considerations to implement this system philosophy in
a corresponding formal model description and from our experiences
with data-analysis for time-series in different fields we could
draw the conclusion, that such an elementary growth process for a
onedimensional growth indicator x in a highly aggregated robust
system can be reliably described by the model of the socalled

hyperlogistic differential equation
dx /dt = K xK (8" - x¥) 1
In this model the introduced parameters have the following meaning

- K is the driving force amplification factor.

- k is a measure of the complexity of the cooperative structure
in the background of the growth phenomena.

- 1 is a measure for the complexity of the growth-damping interac-
tion of the system with its environment.

- w is a velocity parameter of the approach of the growth indica-
tor x against the next saturation level B.

- B is the steady state approached in the considered growth-step.

With this S-parametric family of growth-curves a rather rich mani-
fold of s-formed transitions can be described with a flexible
adaption capacity to real growth phenomena.

Most of frequently used growth models in ecology, economy, agri-
culture are special cases of this family. '

Also the broadly used logistic growth model with k#1l vwef is

contained in the hyperlogistic growth model.
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In some sense the hyperlogistic growth model is at the same time
the most simple Lotka-Volterra system.

By introduction of twsadditional state-variables X and x, accor-
ding to the socalled Structure Design Principle /1) the hyperlo-

gistic model can be equivalently transformed into the following

Lotk=-Volterra system

dx/dt= x.l(.xl

dx,/dt ® xg s K(Ovd) Xp —w . 1. xz)

dx2/dt = x, K «}+w-l) Xy - w.(l-l). x2)

This is an elementary autocatalytic predator-prey édystem with

the prey x, and the predator x., on which a nonlinear ob<¢mer- an

1 2
exponential integrator- evaluates the growth of the prey Xy
If we now try to make use of the EVOLON concept for the design of
new basic controllers we meet for this purpose two different possi-
bilities, namely, we can use immediately use the hyperlogistic
differential equation, or we can apply this gnfolded form after
transformation of the hyperlogistic differential equation into the
corresponding Lotka-Volterra equations.

In the following we will describe in general terms the possibili-
ties we recognized for using the EVOLON as design concept for new
controllers.

. EVOLON- behaviour in a nonlinear follower system

Here the control system S shall be a linear follower system, pro-
portional with a transfer factor equal to 1.

B, the saturation value of an EVOLON usually a relatively slowly
changing time-function B=a B(t) , shall be the leading variable

being providing at the input of the control system S.
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After measuring the actual value x(t) of the control variable x

the controller R has to produce such a correction at the input of
the control system S, that we get a good following process of the
curcuit with the control feedback.

Our essential orientation for this concept shall be that we demand
a certain transition process of the closed curcuit which shall more

or less exactly realize a wanted EVOLON.

. Modified EVOLON-concept for the control curcuit as a whole

In analogy to the case just discussed we demand that the whole
behaviour of the closed control curcuit reproduces the behaviour

of a prescribed EVOLON. In comparison with the first case we here
introduce a demand-value Xg of the control variable x.

Therefore now the controller has to act on the base of a compari-
son between the actual value of x and the demand value Xg.

This difference gives rise to greater differences in the concrete
implementation of the EVOLON, now we must admit sign changes of the
power-functions within the EVOLONdescription. To avoid difficulties
with these change of signs we must introduce special modifications

of the power functions definitions (even and uneven power functions)

for arbitrary real exponents.

. Application of the EVOLON immediately within the controller

In comparison with the two concepts just considered we know con=
centrate our attention no longer immediately on the control variab-
le x, but on the controller output variable xI. Now xI for us will
be the relevant growth indicator which now should follow the
EVOLON model. As in the case 2 above discussed we must also here
allow for change of signs in the arguments of the corresponding
power-functions. In this case we can in general not expect that

the controller R will fulfill one EVOLON+~like state transition,

if this is the case for the control variable x. Usually the
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controller R has now to realize a whole evolution staircase, maybe

going upstairs and downstairs during one EVOLON transition of the

control- variable x.

Interesting in this aspect is also the idea to consider x and xI

as species in a 2-nd order Lotka-Volterra-system or in a Lotka-

Volterra network composed of two coupled 2-nd order Lotka-Volterra

systems respective two coupled EVOLONs.

. Overall behaviour of the control curcuit shall be an EVOLON in
its Ynfolded form as a Lotka-vVolterra system

In this case we repeat the first approach, but we use for this pur-

pose the EVOLON in its #nfolded Lotka-Volterra form. This can be

simply done only for the first case where sign changes of the argu-

ments of the power- functions are not possible or can be avoided.

This concept also works, but it can be remarkably qualified, if

we now make explicit use of the 3 state description equations we

have at hands. We introduced for example another control correction

immediately into the equation for the state-variable x the prey,

1!

proportional to the control deviation x, - x, which gives a much

S

better control process in comparison with the case without this

additional correction.
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Design of an adaptive multivariable controller for growth processes

Properties of classical relais switching controllers

The adaptive microcomputer controller proposed here is based on

the socalled classical relais switching controller in combination

with a simple basic controller(ée can use for this purpose the

wellknown PID- controller or a EVOLON basic controller just dis-

cussed in this paper).

In our considerations we rely much on the dissertations [2/,/3/,

I4/. In these references the dissertation /2/ had a certain pioneer

role.

At first we give some informations about onedimensional relais-

switching curcuits working under the following conditions

. The forward plant, the control system S, is an arbitrary

linear system with constant parameters, in most cases only a

linear chain composed of PT.-modules.

1

. In the references mostly the nonlinear autooscillations occurring
in the closed loop were studied, therefore an application of
demanded values Xg usually were omitted.

. In the feedback channel there is a symmetric relais plant,
which in the normed case, without restriction of generality is
switching between the two levels 1 and -1.

. With a prescribed switching- period Ta samples will be taken
from the output of the relais and corresponding to the sign of
the relais input signal either positive or negative pulseg$
will be generated.

. The pulse taken with the period Ta from the relais output is
then added to the actual statevalue Int of an integrator after
being modified by the factor Gy’ the transfer factor of the

integrator.

. The integrator Int produces immediately the correcting input
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signal of the control system S.

This feedback curcuit generates at the switcher output interesting

and sometimes rather complex autooscillations. These combination

oscillations consist of impulse tracks, socalled halfperiods, of

consecutive pulses of the same sign.

Important for the following design of an adaptive controller are

the following properties of the considered control curcuits.

Practically the autooscillation which establishes in the closed
control curcuit does not depend on the initial values of the
state variables of the linear control system. Only in the transi-
tion process ending with the occurrence of a complex autooscilla-
tion some traces of the initial values of the states of the
control system can be observed.

The established autooscillation at the end has forgotten comple-
tely its origin and only depends on the parameters of the con-
trol system S, the switching period Ta and the integrator ini-
tial value Yo

The integrator initial value in normalized form yO/Gy will be
not forgotten in the process of the establishing of the combina-
tion oscillation, in contrary this is a very important parameter
for the nonlinear autooscillations. In whole connected inter-
vals of the normalized integrator initial value and dependent

éon the values of time-constants of the control systems or corre-
sponding ratios with the switching period Ta we meet the same
autooscillation.

In this aspect the ratio yo/Gy is extremely important for the
dynamics of the closed loop. But at the same time we recognize a

farreaching symmetry of this influence.
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There exists a fundamental interval, namely

-0.5 € y, /Gy <0.5

Outside of this fundamental interval the whole picture of existing
autooscillations repeats periodically with the periodicity of inte-
gers.

. Of great significance for the complexity of the autooscillations

is the ratio
Z=1 /T,

Here T is the biggest time-constant of the linear control system
S. Here the following empirical finding is of importance.
The larger the value of # is, the longer will be the length of
the halfperiods of the arising autooscillation.
For the concept of the adaptive controller,we shall propose, this
property is very important.

. In superficial consideration one might expect that in the closed
loop curcuit only such combination oscillations can be stabillized

for which no longlasting deviation x X can exist. But this

S -
argument from the linear control theory aoes not hold here.
In the nonlinéar case a nonzero mean value of the pulse tracks
can easily be compensated by a corresponding integrator constant.
. Autooscillations in switching relais control curcuits are rela-
tively robust from some different reasons.
There are whole existence areas constructed on the parameters
Ti/Ta and'yofcy, in which,despite of parameter variations
within the limits of such an area,the same combination oscilla-

tion exists.

This phenomenon does not depend on the initial values of the
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control system S as was already mentioned above. There this combi-
nation oscillation should be stable against some fluctuations of
these control variables, that means the same autooscillation re~
establishes after a certain transition regime following the distur-
bance has ended.

This promises that controllers based on the switching relais con-
trol principle should be rather robust against disturbances in the

state space as well in the parameter space of the control system S.

Heuristical aspects for the design of an adaptive controller

The basic idea for an adaptive microcomputer controller makes use

of the empirical finding, that with an increasing ratio:

¥ =T /'1'a
the halfperiod duration of a complex combination oscillation in a
closed switching controller curcuit will also increase at least
in tendency.
Naturally with growing halfperiod duration also the control devia-
tion

Xg - X

should increase and we should expect larger deviations from the
demanded value of the control wariable x.
Maybe D the basic computation tact of the microcomputer controller.

Then we generally put
Ta g D. A

where A shall be a natural number.
For the generation of adaptive effects we follow the idea H
If we increase A, then with a certain tendency and accounting also

the dynamic influence from the control system S the halfperiod dura-
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tion of the combination oscillations will decrease because of the
decrease of 2 =TT /’I‘a. The result will be also a diminuation of

the control deviation

XS-X

Therefore we should 1 for concrete mechanisms on the base of
which we can reasonably adaptively change the value of A.

At the same time we plan adaptively to change the integrator trans-
fer factor Gy.

By a lot of simulation experiments we could show the following
properties of the proposed adaptive controller.

We used for an adaptive multivariable controller a combination of

a switching relais controller with adaptive change of A and Gy with
a classical PID- controller separately in every feedback channel

of a multivariable control curcuit without introducing a correspon-
ding decoupling networkl

Instead of decoupling we applied in different ways a reference
control and a diagonal control - control of selfreproduction rates.
By these means we could observe satisfying control transitions

for multivariable linear systems and Lotka-Volterra systems’ for

the task to design a good follower controller.

We could use these control approaches also for the problem of
parameter identification in linear- multivariable systems and in
Lotka-Volterra systems.

We could with good success identify diagonal elements of these
types of systems.

We met some difficulties in applying this control concept on

systems with chaotic attractors (Schulmeister—shelkov model).
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Control layers for the control of nonlinear systems via transforma-

tion into a Lotka-Volterra description.

Frequently the Taylor expansion is used as an approximation of
nonlinear dynamic systems, for ékample in the analysis of autooscilla-
tions in mechanical systems.

This approximatioh goes after the following steps.

We consider a nonlinear dynamical system with the following equa-

tions
dxi/dt = fi (xl,xz,...,xn) il,2,...,n

We first try with a linear approximation based on a Taylor series
expansion in the neighbourhood of a certain reference point, which

has the form

dx, /dt & a.x.
i i%i

A corresponding control concept would in this case refer to this
linear multivariable description.

If we are forced to apply a better approximation of the given non-
linear system by a model, we woulq,following-the Taylor series ex-
pansion linq/propose to take into account now the quadratic compo-

nents, that means to use now the better approximation

dxi/dt - )_-aixi + Zaijxixk
This is obviously a more complicated model, for which we have now to
design a geod multivariable controller.
On the next step we would account for the products of 3 state-va-
riables and so on.

It is likely to interpret this process of model refinement in the

following way.
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We interpret the linear model as a competition of the X, within a
common medium, a substrate.

Taking into account the quadratic terms we interpret this as a two-
particle rendevous in connection with a competition within a com-
mon substrate. The third order model will then be characterized
as an additional accounting of three particles interactions and
so on.

We are afraid that following this way the control complexity ever
increases.

This will be not the case, if we use the Lotka-Volterra approach
for such a systems analysis.

Here we use as a first approximation the Lotka-Volterra approach.

dxi/ at = x, (IGijxj

interpreting this from the very beginning as a two-particle inter-

action without a rather neutral competition for -a .common medium.

From the very beginning we rely here on a two particle interaction.
On the next step of model approximation we should take into account
three particle interaction using now additionally the third or-

components

dxi/ at = xi(:Gijxj +IGijrxjxr
This obviously is in comparison with the Lotka Volterra descrip-
tion a model with higher order nonlinearities.
It is characteristic that nature always repeats the use of
given means on lower and higher levels. This feature of nature
can be reproduced by the Lotka-Volterra approach which offers
something like a linear hull operation on different levels.

If we introduce for the products xrxj new state- variables

xjr = xj Xr
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we at once get also for these state- variables a Lotka- Volterra

description, because of

F xjr = F xj ¢ F X, with F = dln / dt

The same can be done if we take into account higher and higher or—t
ders of interaction.

Therefore, if we are able to design suitable control strategies for
systems in a Lotka- Volterra description, we can propose similar
controls for the models on different hierarchical levels arising
together with a model refinement above described.

Therefore it seems to us so important to design adaptive control-
lers for the control of Lotka- Volterra systems as feasable growth

models for rather complex highly aggregated nonlinear systems.
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1 INTRODUCTION
Given two Hilbert spaces Y1,Y2 of zero mean second order real random
variables with inner product <z, n> = E(gz n) we say that a third subspace X

is splitting for Y1, Y2 if

“Exn.

X
<n, 1» NE'ny> =0 (1.1)

for all random variables n, e Y € Y2. Here Ex denotes orthogonal

17 M2
projection (conditional expectation in the Gaussian case) onto the subspace
X. A splitting subspace X makes Y1 and Y2 conditionally uncorrelated
(independent in the Gaussian case) given X. Notation: Y, 1 Y, | x.

A splitting subspace X is sald to be minimal if there are no proper
subspaces X'C X still satisfying (1.1). A thorough analysis of this
concept is presented in [7],(8],{3]. One reason for its usefulness is the
fundamental role played in various stochastic modelling problems. The
following Proposition gives perhaps the simplest instance of relation

between splitting and the construction of models for random phenomena. The

proof follows immediately from the definition (1.1).

PROPOSITION 1.1

Let Y1, Y2 be the subspaces generated by (the scalar components of) two

and m Let the random

2°

zero mean random vectors Yo Yo of dimensions m,

vector x = [x1, . xn]' be a basis for a splitting subspace X for Y,, Y,.

Then Yir Yo admit the representation
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(1.2)

where Hi' i =1,2 are mixn deterministic matrices and the random vectors w1,

X, W, are mutually uncorrelated i.e.

W, I x] W, (1.3).

Viceversa, let Yo Y5 be generated by the scheme (1.2) with w X, W

1

2
uncorrelated as in (1.3) Then X = span {x} is splitting for Y1, Y

>*

Models of the type (1.2) are called Factor Analysis (F. A.) models for

the random vector y = [y{, yé]', ([6], [11]). The vector x, which we shall
always take to be a basis, i.e. with a positive definite variance matrix
Exx', is sometimes called the factor and X = span {x} the factor space of
the model. Two F.A. models of the type (1.2) for which the factors, say x
and x, span the same splitting subspace will be called equivalent. Observe
that from the orthogonality condition (1.3) it follows wi = yi - Exyi, i=
1,2 and hence two F.A. models are equivalent if they have the same "noise"
vectors, W, = ;1 i = 1,2 and ﬁi = HT, 1 = 1,2 for some nonsingular n x n

matrix T. There is a one to one correspondence between splitting subspaces

X for Y‘, Y, and equivalence classes (defined module choice of the factor)

2
of F.A. models.
Proposition 1.1 generalizes in a straightforward way to the case of

more than two blocks, when the data are N random vectors Yir seen Yy of
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dimensions m k =1, ..., N. In this case conditional orthogonality of Y

Kk’ 1°?
. YN given X 1s defined by the condition
X X
- - = A
<ny = Eng, ny E nj> 0 (1.4)

nJ € YJ and all 1 = j. By the same argument leading to

Proposition 1.1 we could, more generally, state that every equivalence class

for all n1 € Yi'

(defined modulus basis change x = Tx, T n x n nonsingular) of Factor

Analysis models,

cee e “es (1.5)

where w, L1 Wy | x, is uniquely attached to a splitting subspace X for

In this paper however we shall only consider the case N=2.

F.A. models are potentially very useful devices In Multivariate
Statistical Analysis and in Econometrics. Their structure is however very
poorly understood. One difficulty with these models is their intrinsic lack

of uniqueness. Even if we restrict to the class of minimal models by

requiring X = span {x} to be a minimal splitting subspace, there are in
general infinitely many (equivalence classes of) F.A. models describing the
same data. This is due to the fact that there are in general infinitely

many minimal splitting subspaces for given Y Y Indeed, the two

10 T2t

predictor spaces
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X, =E"Y (1.6)

are both minimal splitting. Other minimal splitting subspaces can be

constructed by suitably combining X, and X2 ([3], [10]). Note that X1C: Yl'

1

XZC: Y2 and, unless some unlikely degeneracy occurs, X1 and X2 are very
different objects. Now, If a F.A, model 1s to be used for identification of
real data a preliminary question to solve is which minimal model (actually
which equivalence class) should be chosen to fit the given data. Note that
the choice of the model (i.e. of the minimal splitting subspace) has to be
done a priori since all F.A. models generate the same data y1, y2, in
particular the same covariance matrix (the same probability distribution in
the Gaussian case) and are therefore indistinguishable by looking at sample
values of y1, y2. The nonuniqueness manifests itself with the presence of

"too many" parameters to estimate and has sometimes been called lack of

identifiability in the literature [6],[11]. In our opinion this terminology

is misleading. In effect 1dentifiability is a concept related to

coordinatization i.e. cholce of a particular coordinate system to describe a

model in a one to one way and is a condition that can always be achieved (at
least locally){5]. It has nothing to do with the (probabilistic) problem of
selecting that particular model out of a model class.

The elucidation of some basic propeéties of F.A. models corresponding
to different minimal X's and the suggestion of a possible criterion for the
choice in the model class will be the main theme of this note. Due to
reasons of space we shall only present and illustrate the main results
without supplying proofs. A more complete version of the theory will be

found in the forthcoming article [12].
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In this paper we shall restrict our discussion to (models corresponding
to) minimal splitting subspaces X contained in the data space Y: = Y1 v YZ.
There are very good reasons to do so if our F.A. models are to be used for
identification of real data. In ldentification all what is available are
sample values of the random vectors y1, Yo and this means in particular that
we will not be able to distinguish, on the basls of our observations, among
factor vectors x having the same conditional expectation given the data Yqo
Yye To have a chance of reconstructing x unambiguously from the data we

shall then have to use models in which x is a function of ¥y Yoo

2. A PARAMETRIZATION OF MINIMAL SPLITTING SUBSPACES
Let Q € Rn xn be a positive definite symmetric matriz. A Q-orthogonal

projector 1, is an idempotent nxn real matrix satisfying

nQ=qn (2.1)
(the prime denotes transposition) or, equivalently,

nQ(r-m'=20 (2.2)

This notion is simply that of an orthogonal prbjector in g" with respect to

the inner product <x,y> = x!' any.

and, respectively, m,-dimensional zero mean random vectors

Let Yir ¥, be m 5

1

with a nonsingular joint covariance matrix A. We shall write A in block-

partitioned form as



y ' A A
1 12
]

1 [ ' -
A-E [y2] by; vl = [, (2.3)

and denote by n the rank of the cross covariance A12. Notice that n < min

(m1, m2). Since A is strictly positive definite, both matrices

=1
Q]. = I\1 I\]2 A2 1\21 (2.4)

Q,: = A, - A, A, A (2.5)

are (symmetric and) strictly positive definite. Actually Q1 and Q2 are the

covariance matrices of the "prediction errors"

71|2 =y, = By lyy) (2.6)
Vapg = ¥p - E(y,|v,) (2.7)
m, x m,
be the class of all 01—orthogona1 projectors NI, € R , mapping

1 1

onto a subspace of the range space R (A12) of A ,. Dually, let P, be the

Let P

m, X m
set of all Q2—orthogonal projectors H2 e R 2 mapping onto a subspace

of R (A,

).

There are as many I.in P. (in a fixed basis) as many subspaces of

1 1

). The next theorem states that this is exactly how many minimal

(

[RE="

A2
splitting subspaces X Y there are.

THEOREM 2.1 ([12])
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There 1s a bijective mapping between the set 21 and the family of all

minimal splitting subspaces X contailned in Y = Y1 v Y2. For each H1 € El

the components of the m1~ dimensional random vector

Foo= My (I -0 E Gy fyy) (2.8)

span a minimal splitting subspace XY and each minimal XY 1s obtained

in this way for a unique H1 € Bl' Moreover 91 = Exy1, X being the splitting

subspace corresponding to Hl.

The same statement holds for the class 52. For each n2 € 52, the
components of the m2—dimensiona1 random vector
o0 = My, + (I -1,) E (y,]y,) (2.9)

span a minimal splitting subspace X Y and vice versa, given any minimal X

in Y there is a unique projector I such that 92 given by (2.9) spans

2 2

e P

X. Moreover 92 = Exyz.

We would like to comment briefly on the significance of this result.

Pick any I, € P, and I, € 52, then from (2.8),(2.9) we can express Yy

1 &= 2

and y, as
v, = ¥ oty (2.10)
Yo = ¥, tw, (2.11)

where the random vectors wl, W, are glven by
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W, = (1 - H1) y1|2, W, = (1 ~ II2) y2|1 (2.12)

Note that w, and ?1 are uncorrelated (similarly, w

’ and ?2 are uncorrelated)

2

because E(y1|y2) and ?1|2 are, E (y1 y{|2) = Q1 and H1 is Q1—orthogonal.

Thus if 91 spans a minimal splitting subspace X, then W, l X and ?1
necessarily coincides with the projection (conditional expectation in the
Gaussian case) Elxy1 ~ Exactly the same argument applles to ?2.

We shall call 91 the component of ¥y explained by the minimal splitting

subspace X. This component i3 In turn composed of two parts
~An "exact" part H1y1
~A "regressfon" part (I - 1) E(y1|y2)
While the "exact" part of ¥ is explained by X with no modelling error

.4
(i.e. H1y1 = E

H1y1). the regression part, which uses y2 to model the
remaining piece (I - H1) Y of Yq» can describe (I - H1)y1 only up to some
random modelling misfit (error). Note that the modelling misfit vector is

precisely w, in (2.12). It is evident that choosing H1 (and this can be

1
dome arbitrarily in 21) means in essence deciding what part of ¥y will be
described exactly, i.;. with no modelling misfit, by the corresponding
model. Note that, since rank H1 can at most be chosen equal to n = rank
A12, there are a maximum of n linearly independent linear combinations of
the scalar components of y1 which can be described exactly. We introduce

now the following definition.

DEFINITION 2.1

Two projectors II1 € 51, H2 € 52 are called "conjugate" if they generate

the same splitting subspace X (i.e. If 91 and 92 span the same X ).
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Given II1 € Bl there is, by Theorem 2.1, an unique projector H2 € 52

conjugate to I This projector determines a corresponding decomposition of

1°

the second random vector y2,
v, = MLy, * (r - H2) E (y2|y]) * W, (2.13)

where I is now the part of y, which is described exactly by the model.
p 2

2Y2

Note that H2y2 is uniquely determined once the exact part I Yy has been

1

chosen by selecting I The main question here is to discover how conjugate

1°

projectors are related to each other.

THEOREM 2.2 ([12])

m
A projector H2 € 52 is conjugate to II1 € 31 if and only if it maps R 2

-1
exactly onto the range space of A A] (1 - H1). Dually, II1 € El is

21
conjugate to H2 € 32 if and only if the range space of n] is equal to
-1 -
E(AIZAZ (1 Hz))‘

a
This characterization of conjugate projectors provides the rule for

computing I, or equivalently, the companion representation of y2 in (2.13),

2

once H1 has been selected. The procedure could in principle be adapted to

sample covariance matrices and hence used directly in estimation problems.

Let I be the Qz~orthogonal projection onto the range space of A

2MAX 21’

or, equivalently, onto the range space of the regression matrix

A: = A A : R » R (2.14)
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Dually, let H1MAX be the Q1—orthogonal projector onto the range space of the

adjoint regression matrix

A* A, + R+ R (2.15)

(it 1s easy to check that A and A* are really adjoint operators with respect
-1 -1 ™
to the 1inner products <x, y>1 = x'Q 1Y and <x, y>2 = x'02 y in R and

m
R 2. The verification follows from the identity

Tq (2.16)

QA A 5

18 Ao = Aot

2

Notice that by definition 31

and 32 consist precisely of all Q1—

orthogonal H1 and, respectively, all 02~orthogonal H2 satisfying
§1: T, owax 2 0, 20 (2.17)
22: Ty yay 2 M5, 20 (2.18)

where 2 1s the partial ordering of projections induced by subspace

inclusion. From this it is seen that the decompositions

)+ ( n) (2.19)

I-1m = (I~ H1 max T

1 Ty max

n,) (2.20)

)+ G ypy = 1

(I =1,) = (I =T, iy

are (respectively) Q1~ and Qz-orthogonal.
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The nullspaces of the regression matrix A21A;1 and of its adjoint

-1
A12A2 are the range spaces of I H1 MAX and of I II2 MAXL respectively.

For, from R (I ) = R(A*) {t follows that the nullspace of A is the

1 MAX

range of the complementary projector I - Il Thus

1 MAX®

-1
L (1

) =0, AAIN(I-

1285 ) =0 (2.21)

Ty max o Max

0
On the orthogonal complement of its nullspace the map A is injective. Hence
Theorem 2.2 together with (2.19), (2.21) implies that the conjugate

projector I, maps onto a subspace of exactly the same dimension of the range

2

space of H1 Max " Hl' In other words,

rank I, = rank (I (2.22)

> - Hl) = n ~ rank I

1 MAX 1

This, in turn, implies that there 1s always an n-dimensional subspace of the

data space Y = span {y1, y2} which is described exactly by any minimal

Factor Analysis model. Obviously, since a random variable n € Y is

described exactly by X (i.e. n = Exn) if and only iIf n € X we see that the
exact subspace of the model is nothing else but the minimal splitting

subspace X attached to it. Then,

COROLLARY 2.3

The minimal splitting subspaces X Y are just the linear hulls of the

exact parts of y1 and y2 i.e.

X = span (H1 Yoo I } (2.23)

2 Y2
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and I are conjugate projectors.

1 1 2

where M, ¢ P € 22

The notion of conjugacy has an interesting probabilistic meaning. It

is based on the relations
E((I - M)y, | y,) = EAT = Iy, |ILy,) (2.24)
E((I - 1)y, | y) = E(T - L)y, |yy) (2.25)

Theorem 2.2 can be restated to say that the projector conjugate to II1 is

just the minimal H2 € 52 for which (2.24) holds. In other words, H2 Y, is a

minimal sufficient statistic in Y2 for predicting the "non exact part"

(1 - HI)y1 f Yq» on the basis of the observation Yo A similar

interpretation can be given to H1.

Given any palr of conjugate projectors we can then represent yI, y2 by

the F.A. model
v, = My, + E(T = m)y, [ILy,) + W, (2.26)
Yo = Iy, + E((I = )y, [my,) + w, (2.27)

where the "noise" terms w1 and w2 glven by (2.12), are uncorrelated of

(Ly,, Myy,). In matrix terms E((I - H1)y1|H2y2) = (I -m) E(y1|H2y2)

-1
2¥od = (1 - W) Aohy Ay,
-1

E((I - ne)y2|n1 y{) = (I = m,) Ay A My,. If we now bring in the

orthogonal decompositions (2.19), (2.20) and recall that I - ]'[1 MAX
-1

=1
A2 (similarly (I H2 MAX) A21 A1 = 0)

(I - n,) E[E(y,[|y,)]m and similarly,

annihilates the range space of A12
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we can rewrite the various components of the model (2.26), (2.27) in a more

explicit form as

Fp= My (M oyag — Ty) Ay Ay T 0,

(2.28)
§. =My, + (I Sy AL ALYy
2 = Ty, oomax T M) Ay A Ty Y
and,
W oy = TGy = BOYy T, yp)) + gy
(2.29)
Wy = My yax = T) (v, =BG [Iy yyd) oy oy
where
Wemmn T T T T ) Yy oy 3T I ey Y5 (2.30)

Observe that the random vector 91 takes its values in the n-dimensional

m
subspace B(A12)C: R 1. Its sample values are the Q1—orthogonal sum of the

exact and regression parts of ¥q- The noise vector w, is the sum of the

1

regression error incurred when estimating (I - 1'[1)y1 by Yo (this is the

1 MAX

first summand in (2.29)) plus a term, which is the (maximal)

¥y MIN®
component of y1 uncorrelated of Yoo This last term is of course not

dependent on the choice of the splitting subspace. Similar comments apply

to 92 and w,.
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As a last issue we shall briefly address the question of model choice.
In the present context all models represent the data exactly (i.e. equally
well!). However, different choices of the splitting subspace X originate

w. 1in (1.2). These noilse vectors are infact

different noise vectors Wie W,

representation (or prediction) errors of the two random vectors ¥y and y2.
Once X is selected we will be able to predict ¥ and Y5 on the basis of X

alone as 91 = H.x and 92 = H2x. In doing so we commit the errors LPT A

1

3"1 and Wy =Y, " ¥ye (These errors are the same irrespective of the choice

of basis in X). Hence the covariance matrices of w, and W which we shall

1

denote by R1 and R2, measure how well a model is doing in predicting y1 and
Yo From the general expressions (2.12) we compute R1 and R2 as
R, = (I-1)Q, R, = (I -1, Q, (2.31)

Note that we have been using the Q-orthogonallty property (2.1). In (2.31),

M, and 0

1 are conjugate projectors.

2

It is a consequence of the characterization given in Theorem 2.2 that

the ordering 2 between projectors in P. gets reversed when we pass to the

1

conjugates l.e. if ]T1 2 H2 in P

1 1 P then the conjugate projectors satisfy

n
nN —

(Compare the argument given to derive (2.22)). For example, the conjugate
of II1 = 0 is ]'[2 MAX and the conjugate of ]'[1 MAX is ]'[2 = 0. This fact
implies that a "good" description say of y1 , producing a small prediction

error covariance matrix R'l, will automatically have to be paid with a "bad"

representation of y2 which will Instead have a big error covariance matrix
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As a last issue we shall briefly address the question of model choice.
In the present context all models represent the data exactly (i.e. equally
welll!). However, different choices of the splitting subspace X originate

w, in (1.2). These noise vectors are infact

different noise vectors w1. 2

representation (or prediction) errors of the two random vectors Yy and Yo
Once X is selected we will be able to predict y1 and y2 on the basis of X

alone as ?1 = H,x and ?2 = H,x. In doing so we commit the errors LET Al

1 2

a

?1 and w, = y2 - y2. (These errors are the same irrespective of the choice

of basis in X). Hence the covariance matrices of W, and w2, which we shall

denote by R, and R2, measure how well a model is doing in predicting ¥y and

1

Yoo From the general expressions (2.12) we compute R, and R2 as

1

R1 = (I - n1) Q. R2 = (I - n2) Q, (2.31)

Note that we have been using the Q-orthogonality property (2.1). In (2.31),

M, and I

1 are conjugate projectors.

2

It is a consequence of the characterization given in Theorem 2.2 that

the ordering 2 between projectors in P, gets reversed when we pass to the

1

conjugates i.e. if II} 2 1112 in 21, then the conjugate projectors satisfy

n
N —

(Compare the argument given to derive (2.22)). For example, the conjugate

is I, = 0. This fact

of M, = 0 is I and the conjugate of II1 MAX >

1 2 MAX
implies that a "good" description say of Yo producing a small prediction
error covariance matrix Rl' will automatically have to be paid with a "bad"

representation of Y5 which will instead have a big error covariance matrix
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R2. (Here "big" and "small" are in the sense of the positive semidefinite

ordering). We proceed to make this observation precise.

There are minimum values of R1 and R2 which are obtained for II1 =

II1 MAX and H2 = H2 MAYX respectively,
Rymin = 07 T yayd @ = (=T y) A
(2.32)
Rooman = 0= Mo pay? Q@ = (3= T g A

These correspond to the case where ?1 and ?2 have no regression parts.

Actually R and R are just the covariance matrices of the "minimal"

1 MIN 2 MIN

noise vectors w in (2.29), (2.30). Clearly we cannot have at

1 MIN® "2 MIN

the same time R1 = R1 MIN and R2 = R2 MIN®

noise for the Y vector corresponds to the model with conjugate projectors

In fact, the case of minimal

n and T, = 0, i.e. to,

17 1 max 2

Y= Tmax Y1 ' ¥ N
(2.33)

Yo = Ely) Yol

where w_, iIs the full regression error term w Observe that the

2 2 = Yar-

covariance of w, in (2.32) is actually the maximum possible value of the

2

error covariance matrix R2, namely R2 MAX "~ Qz. Dually, the best model for

describing Yo i.e. the model with smallest prediction error covariance

matrix (R2 = R ) for the v, variable, is obtained when I

> MIN = 0 and H2 =

1

H2 MAX
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y; = EQy,ly,) + 71|2
(2.34)

Yo = My yax Yo * Yo miy

In this case the prediction error for y1 is the full regression error ?1 >

with covariance R1 MAX = Q1.

In general the prediction errors for ¥ and Y5 are composed of the two

terms appearing at the right hand sides of (2.29). Setting

17 Y MmN By = Yo = % (2.35)

where 72|1 is the maximum variance prediction error for Yoo we

= Yo Max

compute the covariance matrices

- ' AR = F(Awu Aut
AR1 E(Aw1, Aw1), AR2 E:(Aw2 Aw2).

From (2.29) it is easy to check that Aw, = (n (By Q-

pomax T M) e

orthogonality of the projector, Aw1 and w are actually uncorrelated).

1 MIN
Moreover
BRy = (My yay = M) Q= By = Ry (2.36)
Similarly we find Zﬁé - H2 V2|1 (uncorrelated of wz) and so
AR, = T, Q; = Ry yuy = By (2.37)
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We may thus conclude that for a general minimal F.A. model the normalized

error variances satisfy

-1

(Ry = Rywpy?Q = My = 1
(2.38)
=1
(Romax = B)& = T
Although there is no simple explicit formula connecting H2 to H1MAX - H],

the range spaces of these two projectors are related by a fixed invertible
transformation A : 5(A12) > 5(A21) where A is just the regression operator A

). Thus we may say that the two

of (2.1k4) restricted to 5(A12) = g(IIWAX

relative errors in (2.;8) are, roughly speaking, "proportional" and the
extreme situations encountered with the models (2.33) and (2.34) are seen to
be just particular instances of a general behavior.

To conclude, there are precisely n scalar variables that any F.A. model
is capable of describing exactly. Choosing a model is the same as choosing
these variables. If say only k < n scalar components of y1 are chosen to be
"exact" (and if this corresponds to an admissible projector H1) then the
conjugate projector ”2 will fix the n-k linear combinations of Y, that will

also be described exactly. The resulting model will then describe the

vectors y, and Y, with prediction error variances given by (2.38).
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Adaptive Pole Assignment by State Feedback.

J.W. Polderman

Centre for Mathematics and Computer Science
P.O Box 4079, 1009 AB Amsterdam, The Netherlands

An algorithm tor adaptive pole placement tor a restricted class of systems is proposed. The asymptotic pro-
perties of the algonthm are analysed by studying the invanant points and the asymptotic aciive part of the
state space. A weak form of self-tuning is derived.

1980 Mathematics Subject Classification: 93C40,
Key Words & Phrases: Adaplive pole-placement, sell-tuning, cerlainty-equivalence.

|. INTRODUCTION.

This note is concerned with the problem of adaptive pole placement of deterministic systems without
external excitation. We consider a linear plant with only one input and observed state. The problem
we then want to study is the asymptotic assignment of the closed-loop poles in a pre-described
configuration by means of adaptive state feedback. The proposed algorithm is based on direct estima-
tion of the plant-parameters and the certainty- equivalence principle. Since identification takes place
in closed-loop the true system cannot be identified without external excitation. However it will be
shown that because of the chosen control objective, closed-loop identification causes no extra
difficulties, which is in contrast with adaptive LQ control (see [4]).

Since no external excitation is added, it cannot be expected that the state trajectory will span the
whole state-space. Therefore the concept of excitation subspace will be introduced to analyse the pro-
posed algorithm.

This work is motivated by two approaches of adaptive stabilization that appeared in the literature.
The first is the model reference adaptive control method (see for instance [5]). The other approach has
been presented in a series of papers which culminated in [2]. The first method was developed for sys-
tems in input/output form, whereas the second works in state space. In both cases stability results are
derived without impasing conditions on exciting signals. Here we make an attempt to derive a weak
form of self-tuning,

A shorter version of this paper is [3].

A serious difficulty is caused by the fact that we consider systems in state space form and try to
identify the (4,b) parameters. During the estimation procedure all estimates have to be reachable in
order to be able to calculate the control law to be applied. This problem has not yet been solved and
will be commented upon elsewhere in the paper.

We start with a description of the class of systems under consideration and of the control problem.
Next we present our algorithm. We will then formulate our main theorem followed by its proof,
which is distributed over several lemmata. We end with some concluding remarks.

Report OS-R86..
Centre for Mathematics and Computer Science
P O Box 4079, 1009 AB Amsterdam, The Netherlands
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2. PRELIMINARIES.
Consider the following system:

X =Ax, + by, (2.1)
where (A4.b)e E:= {(A4,b)eR"*"XR"™' | (4,b) reachable }.
Let A:= {A,..,A,} CC be such that AcA = AeA. Define ocR[X] by: o(X)= I"I(X —A).
Define f: E — R " by: .

fd,b):= —[0..01] [BibAi...:bA" '] Ta(4) (2.2

Then the characteristic polynomial of A +bf (A4,b) is exactly o and moreover since the system is
single-input f (4.b) is the only feedback law with that property. (see [6]).

Suppose now that the true value, say (A4¢,bg) of the system-parameters is not known, then the ques-
tion arises how ‘much’ we should know about them to be able to control the system as desired. Of
course it will be enougb to know f (A4,bhy), but we will see that this is not the minimum of informa-
tion we need.

In this paper we want to present an algorithm based on direct estimation of (A44,by) and the cer-
tainty equivalence principle. This structure causes certain identification problems (see [4]). In the fol-
lowing theorem the best possible situation for an estimate (4,b) is studied.

THEOREM 2.1 Let (4,h)e E and V a linear subspace of R">*" such that:
i) Forall veV: (4y + by f(A,b)yve'V
iiy For all veV: (Ag +bof (A.b))y = (A4 +bf (A,b))v
Then:
Forall veV': f(A,b)v=f(Aq,by)v.

PrOOF Suppose that ACR and that A, A, for all i7£j. Let V be one-dimensional. Then *V is gen-
erated by an cigenvector v of (4 +hf(4,h)) corresponding to let's say A:=A. Hence
(Ag+bof (A.b)y =Av. Suppose (Ag,by) is in standard controllable form. Then v =[LA,. A" .
Since A is an eigenvalue of (Ag +byf (A¢.bo)), there exists v such that (4 +bof (Ag.bo))v=Av. Itis
easy 10 see that v =pv, for some p=£0. Hence (4o + by f(Ao,bo))v =(Ag +bof (A.b))v. Since by5£0, we
conclude that f(A4,b)v = f(Ag,by)v.

If dim3> 1, then “Vhas a basis of eigenvectors and the above reasoning gives the result. For general A
the proof goes along the same lines, but then one has to study several different cases. We skip the
details.

CoMMENT. Suppose we have an estimate (4,b) of (4 O;bo), according to the certainty equivalence
principle we will then apply w, = f(A4.b)x,. The resulting closed -loop system is:

Xer1 = Agt+bof(A,b)x,
Whereas on the basis of our guess we would predict:

X vl = (A Hhf(AbY)x,

Suppose now that for all k£ we have Xi+1 = Xk 41, this is in some sense the best situation we could
have. For once we have an estimate (4,b) with that property, the observed data will not give rise to
any update of the parameter estimates. Define V:=span(x, }, then it can be checked that V satisfies
the conditions of Theorem 2.1 and hence we conclude that for all ve V', f(4.b)y = f(Ap.by)v. In
particular: f(A4,b)x; = f(Ag.by)xs, for all k, or otherwise stated the applied input equals the desired
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input.

Summarizing: In order to control the system (2.1) as desired, it is not necessary 10 know (4 ¢.by),
nor is it necessary to know f(A4g,by), we only need to know the action of f(A4y,by) on the active part
of the state space.

3. DESCRIPTION OF THE ALGORITHM. ..
We will introduce the algorithm inductively. Choose the initial guess (4y,bg)eE of (A4g,by) arbi-
trarily. Suppose the k —th guess (A, ,b;) has been calculated. Then take u, = f (A, b )x,. This gives :
X w1 =(Aothof (A b )
Deline
G vii= {((AD) | (A +bf (A i )X =x¢ 41 ) (3.1)

Gy +y is an affine subvariety of R"*7tn*1 Hence we can take (A, ,1.b; +1) to be the orthogonal pro-
jection of (A,.b) on Gy oy in R"*" 7! This procedure is equivalent to the following recursion for
(/f‘ .b‘ )

A=A+ Ul I+ DI oy = R e 0x] (3.2a)
by oy =be + (g + 1) 7 0y — X4 (3.2b)

u :f(;h.l‘u Xk (3.2¢)
Ao = (A + [;kf(/;kui’l. )i (3.2d)

ComMeNT. The algorithm is based on two ideas. The first is concerned with the analysis of the invari-
ant points of the algorithm. From the above description it follows that (4, 4.6, 4 1)=(A4,,b,) if and
only if (4..h)eGy ). Define G:={(A4,b)|A +bf (A,h)=A,+byf(4,b)}. Then certainly every ele-
ment of G is an invariant point of 3.2. It follows Afrom Theorem 2.1 that (4,h)eG implies
S(Ab)=f(Ay.bg). Hence if all the limit points of {(A,b:)}c. w are in G, then we have achieved our
control objective. L.

The second motivation is the following. Suppose at time k& we have the estimate (A;,b,) of (Ag.by).
The certainty equivalence principle tells us to act as if we were sure about (44.by) and hence we
should apply w = f (A, b )x; to the real system. After having done so we observe the new state x; 4.
Now G; . is exactly the set of those parameters (4,b) that are able to explain the observed data
(Xx.Xc v 1,4)- Since obviously (A¢,bg)€Gy 4y, it is natural to_choose (Ay ,1,b +)) somewhere in
Gy v - The reason that we take the orthogonal projection of (Ay,b,) on G 4 is that as a direct conse-
quence |l(Ag.by)—(A;.b)ll converges. The idea of orthogonality was already used in [1], where it was
derived from a certain stochastic approximation algorithm. Here we choose it as a starting point
rather than as a consequence. . .

One further remark has to be made. The algorithm 3.2 only makes sense if (4,,b;) is reachable for
every keN. Throughout the paper we will hence make the following assumptions: For all keN,
(Ag.by)eE, and also all limit points of {(4,b))x.n are in E. The first assumption is not really a
limitation, for it is not difficult to see that for a generic choice of (4¢,by)€E, (A, by )€ E for all k. The
condition on the limit points however is undesirable and should follow as a consequence of the first.
This point is still under investigation,

4. ANALYSIS OF THE ALGORITHM,
The properties of the algorithm will be derived in several steps. We will need some definitions and
lemmata before we can draw asympiotic conclusions. First we shall state our main result.
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Tut:oreM 4.1 Consider the (controlled) system (2.1,3.2), there exists a sequence of matrices {4 }i, no
such that:
i) x4y =(Ay Y hof(Arb))x,
=(Ay+bof(Ap.bo)+8,)x,)

i) lim4, =0
k—o

CommeNnT. Theorem 4.1 tells us that asymptotically the action of the closed-loop matrix is identical
to that of the optimal closed-loop matrix. It should be noticed that we do not claim that the real
closed-loop matrix converges to the optimal one, but only as far as the action on the real state-
trajectory is concerned. This weaker form of convergence is not surprising if we realise the fact that
the estimation procedure only receives information about the action of the real closed-loop matrix on
the state-trajectory. We propose the term ‘weak self-tuning’ for this kind of behaviour. Self-tuning
would have implied that Alim (Ao thof (Agby) = Ayt Byf (Ag.by), which we do not claim,
— 0

We shall now state two technical lemmata which we will need in the proof of Theorem 4.1.

LiMMA 4.2 Let KCR"™" be compact and let ¢>0. Then there exists y>0 such that for all 4 €KX and
for all xeR" with IlAxl|=e and x'x =1 : |4xxT||=y.

ProOOF Suppose the claim is not true. Then there exist A €K and xeR" with [|[Ax||=e¢, xTx=1 and
lAxx Tl =0. This implies that AxxT =0, which means that either Ax or x” =0, which are both con-
tradictions.

Limma 43 Let {M;),.n be a bounded sequence of matrices in R"*", such that
Alim 1My =M ll=0. Let xoeR" be given and define the sequence {x;} by putting: x; +y =My x,.
-2

Suppose Alim M, =M, define X as the linear subspace generated by the limit points of x:+,‘, where /
—0

ranges from 0 to infinity. Then MX TN\,

ProOF Suppose x” is a limit point of {x;, } for some f. Say limx;,, =x", for some subsequence
k-

{ss} of {1, }. Then:

. 1
lim —”XI*I*:‘

. . . |
Mx =limM,, x; =limt——M,, x,,=
A o0 k k—co “"’I*-‘l

—00 "xH-:A ”

ey vl MMl , ..
= lim —————x; 44, = lim ———————xy,;4, = lim |lMI*s,-‘I4:‘ X7+ 1 45,
Ao “.\’1*;‘“ h—oo “X/u-.” k-0

=M mox) 445,
k00
Hence Mx™ eX. By linearity the result follows.

LemMa 4.4 H(/Ai,‘.l;‘)—(A w-bo)ll is a decreasing sequence, hence it converges to some real constant
R=0.

ProoE  This a direct consequence of the orthogonal projection feature which assures that
(AL D)= (Ag bIZ AL 41 b D)= (A g bl
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Although Lemma 4.4 is very simple not to say trivial, it is the central feature of our algorithm. A
direct consequence of 4.4 is that (4, ,b;) converges to a sphere with centre (4¢,bg) and radius R. If
R =0 then (4,,b;)—(Ay.by) and we are done. In the sequel we shall hence assume that R >0.

DeFiNiTION 4.5 .

i) Denote by {(4,,b)},., the set of limit points of ((As,b;)}x.n. Assume that for every iel
AIi_{\;(A,;.b,;)Z(A,,b,). Since (A.b;) cannot make positive jumps bounded from below infinitely
often without penetrating the sphere to which it was supposed to converge from the outside, 7 is
either a singleton or an infinite set.

ii)Let {x;}x. v CR” be the state trajectory of the real closed-loop system. Define for every xeR™:
x":=x /lxll if x5£0, and 0":=0. Denote by % the linear subspace of R" generated by the limit
points of {x;}.

ii)Let for every iel , %, be the subspace generated by the limit points of x;,,, where / ranges from
zero to infinity.

The space X can be viewed as the excitation subspace of the state space. It reveals the separation
between fast and slow convergence/divergence. Since it is easy to see that 3.2 depends only on x;
rather then on x, itself, it will appear that X will be very helpful in the analysis of the algorithm. It
will be supposed that dim >0, since if dim =0 then x;, =0 for k =k, for some k, and then there
is very little to analyse. o

“X, can be interpreted as the excitation space belonging to (4,,b;). The reason that we take the
union over all /, is that since [[(A4 + .55 +,)— (Ax,b)II—0, k]im (Ar+4.bi+¢)=(A;,b)), for all L.

—a0

LEMMA 4.6 3 X, =9
ield

ProoF It lS obvious that the left hand side is Lonlamed in the right hand side.
Supposc x" is a limit point of (x,.} say, llmx =x". Let for some iel , (A,,b) be a limit point of

(A b .), then x"e%,. For arbitrary xe‘){ lhc result follows by writing x as a linear combination of
Iimn pomls

Limma 47 lim [(Ay + by f( Ak b)) — (A +bo f(Ax,b))x; =0.

PrOOF Define Mk:=[(.:1,., +l;,..f(;ik,5k N—(Aqg +b0f(,3k,l;k))]. Suppose the claim is not true. Then there
exists €0 and a sequence {s;} such that: ||M,, [|=¢ for all k. From 3.2a we see that:

WA g By 4 )= (A b = (I (A, By )x, 12+ 1x, 1) M, x5, x, 1€, >0,
This follows from the facts that (Ak,bk) is bounded and reachable, the continuity of f on E, the
reachability of (A,,b) and Lemma 4.2. Now denote II(Ak,bk) (Ao.bo)ll by ri. Choose 8>0 and let
Ay be such that R<r, <R +é for all k=ky. Using Pylhagoras theorem we see that for all k=kg:

s 20, (A= CH ER(I— (1= (—)) )= >0.

R+8

Since r, is non-increasing we have r, —r, =C,, which yields:

'

r, <r

Siy

—Cytk —kg)<R +8—Cy(k —ko).

Hence there exists k such that r, <R, which is a contradiction.
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LrmMa 4.8 For every ief and xe%,: (A, +I;,f(z.-5.))—(40 +bof(;.-51))lx =0.

ProoF Suppose x” is a limit point of x/,, say ‘Iim X745, =x", then from Lemma 4.7 we deduce:
— Q0

[(Z, +E,f(§,.5,))—(A0 +b0f(Z,-.E,))]x' =0. For arbitrary xe% the statement follows by writing x as
a (finite) linear combination of limit points.

COROLLARY 4.9 o

i) For every iel: (Ag+bgf(A4,.b))X, CX,.

ii)For every i€l f(4,,5,)|x, =f(Ao.bo)|«.-

Proor . . . . A

i) Take My =Ag +byf(Ai,b,) in lemma 4.3. Since |[(Ag +1.0¢ +1)— (Ae,b)II—0, we have by the con-

tinuity of fon E that M, +| — M, —0.
i) From Lemma 4.9 we deduce that (4, +b,f(A,,b Niw, =(4o +b0f(A,,b Nl From i) we deduce that

(Ay Fb,,j(A,,h,)).’(, C*X,. The result now follows from Theorem 2.1.

THEeOREM 4.10
i) llm ”(f(AkvbA) ~ fid.bo)xi 1 =0.
i) |'m [(A +b0f(Ak b/.)) (Ag+bofidg,bo))x; =0.

PROOF

i) Suppose the claim is not true. Then there exist €>0 and a subsequence {s¢} such that
(fiA, b )= f(Aobo)x; I=e, for all k. Choose a subsequence {5¢} of {si] such that
I|m(A b )=(A,b) for some iel and Iunx =x"e%, Then by Corollary 4.9ii:

hm II(f(A,A b,_) S(Ao.bo))x;, ||—||(f(A,,b) f(Au,bu)),\ [I=0, which is a contradiction. The result
follows
ii) This is now trivial.

We will now prove Theorem 4.1:

PrOOF of THEOREM 4.1 : Choose 0. Denote by S" ! the boundar?' of the unit sphere in R", and
define B(x,8):={yeR" | |x—y|<8). Let for every x eS5" ' g eR'™" be such lhat
|g.x" | =>2e. Define:

0, :=8"""'MB(x".9
Where §>0 (depending on x”) is such that:
XEO0; =|g; x|>e

Then {0} s forms an open covering of $" 7!, Since §" 7! is compact we conclude that there
exist x“, x(,,) € 8777, such that (O, )} =.., covers S§"7'. Define K, as the closure of O, -

Choose subsequences {s,(} of N with lhe following properties:

P ®
ay YUsi)=N

i=1k=0
b) iFj={sileen N kn=9
¢) {limit points of x; } C X,

Define g,,: =g:.“ .
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Choose (A4,.h,,€ E such that:

Ag Lhyf(Ag.by) = A, thg,

Define:

g =7 (Ao— A, +bof (Ay.b)
Where # denotes left inverse. ¥ should be chosen such that b by5%0. Then:

.o |
SAb)=——— @k +55(4,—A44))
h‘ bu

Then for every ie(1,...p} we have by Theorem 4.10 that:

klim (g, —g’)x;llzklim 6T (Ao —A, +h0f(f},..‘l;k)—(Ao —A, +bof (Ag.bo Pl

= lim 67 bo(f (s i)~ f (Ao.bo))xill = 0.
—a0

Since by construction |g,x;; | ¢, for k sufficiently large, we conclude that:

5 (g5, —8")xs,
Iimlg = 1] = lim | =0
Ao ! 5, k—x g’xs‘
Deline:
A S8 en lima! =1
g'x“'A k—o0
Hence:
TG By e =—— (gl + b (A, — Ao,
Db )x =S e
1, .
= Lo b ¥ (A, —Ag)xe
b7 by (ay g ( oNxq,
= b,,'b (0l b (Ag +bof (Agubo)— A+ b7 (4;— Ag))x,
i 0

- b")h (@ — IXBF [Ag— A, + bof (Aobo)l+ bl bof (Ag.bod)x;
i Do
Hence define:
Ay =bybd (1 —ay Ao —A)+(1—af;)f (Ao.bo)
Because of the properties a,b of the sequences (s}, A, is now well defined for every k. Since
klim A, =0, for ie(l,..p)we also have:
jimd, =0
Moreover:
X 11 = (Ao +hof(Ap,bo)+A)xi

This completes the proof.

Corotrary 4.11 For all v U we have:
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(A0+b0f(/10,b0))x(:".’l'

Proor This follows immediately from Theorem 4.1 and Lemma 4.3

Note that the above results are valid whether or not A is contained in the unit disk. But of course
for stability of the closed-loop system it is needed that A is contained in the unit disk.

The theory as presented does not exclude the possibility that (Ak,b,.) or even f(AA,bA) does not
converge. We have only derived results about their limit points. Indeed it could happen that (A‘ h,.)
keeps drifting along a subset of the sphere to which it converges. However this drifting behaviour
requires very rare properties of the sequence of estimates. For if it moves too fast it enters the sphere
and if moves too slowly it converges. But the question of convergence versus eternal drifting remains
relatively unimportant considering Theorem 4.1.

SiMULATIONS. Extensive simulations have been done for low order systems (#<6). As could be
expected convergence gets slower as n increases. Problems with the reachability of limit points have
not been observed and hence it can be expected that the imposed condition is superfluous.

4. CONCLUSIONS.

An algorithm has been proposed and analysed for adaptive pole placement. A weak form of self-
tuning has been derived under the reachability condition on the limit points of the estimates. In a
forthcoming paper the presented ideas will be applied to a more realistic class of systems, namely
SISO systems with unobserved states. There we will also investigate the state trajectory of the con-
trotled system.
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Abstract

Deterministic nonlinear large scale dynamical systems are
considered as the interconnection of subsystems described by n-ports

having nonlinear memoryless and/or memory-type characteristics.

Statements and conditions are given in terms of interconnection
and subsystem characteristics. The particular questions considered,
mostly in the time domain, are

the uniqueness of the solution,

the qualitative properties of the solution,

the uniqueness of the computed solution,

the convergence of the computations,

the complexity of the computations in terms of the complexity of
the systems and the computing machines and

the choice of the time step in large systems.

Furthermore, the role of the choice of the state variables, the
role of the qualitative properties of the subsystem characteristics,
the choice of the nonlinear models in large systems and the
controversial role of asymptotic results in guessing the complexity of

computations are discussed.

1 Introduction

The main question to be answered 1s as follows. Given a large
scale lumped dynamical system i.e. the number of the subsystems are
large (e.g. 1000 or greater) and the interconnection 1is simpler
(linear, memoryless and sparse) than the subsystems (they are

nonlinear and dynamic). Under what conditions are the time domain
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results of the analysis qualitatively correct and within a prescribed

accuracy with a reasonable computational complexity.

The various aspects of the dynamical circuits, networks and
systems have been considered recently in review papers (e.g. (1,2)),
in several books (e.g. (3,4)) and research papers are published

continuously in the field.

The specific aspects of the investigations of the present paper
are as follows:
(i) non-asymptotic results are preferred,
(ii) the complexity of the computations are considered also in terms
of the complexity of the computing devices and
(iii)the limits of the results are emphasized in view of the practical

analysis of the large scale dynamical systems.

These questions seem to be important because , in spite of the

many advances,

(i) asymptotic results are frequently misleading in actual computa-
tions

(ii) the possibilities due to the rapid and continuous development of
the computing devices (both in speed and complexity) are partly
neglected or overestimated  and

(iii)to improve the computational efficiency nonconvergent and inaccu-

rate numerical methods are used sometimes.

Besides reviewing the relevant results and emphasizing some open

questions it is shown that

- some recently introduced passivity properties and the
algorithmic passivity are useful concepts assuring the qualitatively
correct computations,

- well known, frequently wused algorithms for numerical
integration have inherent defects as the number of variables becomes

large,

- a definite limit of the complexity of the systems to be
reasonable analysed are given in terms of the complexity of the

computing devices,

- a memory type discrete time realization of 1lumped dynamic

nonlinear systems is proposed and

- it 1is pointed out that, except simple cases, the minimal

complexity digital simulators can not be found.
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2 The uniqueness of the solution

Before any analysis or computations the prerequisite is that the
model of the system should be causal (outputs are unique and are zero
until the inputs are zero e.g.at t=0).In case of lumped systems this
means the wuniqueness of the solution in the time domain starting at a
unique initial condition. Models of dynamical systems do not posses

always a unique solution, they are not always causal.

The basic result on this topic (5) asserts that as far as the
elements (including the interconnective ones) are linear and passive
(they could be lumped and distributed) the interconnected network will
be causal.If there are linear active elements in the network too, the
key theorems and the various conditions checking causality have also
been given (6,7).In these results a crucial point is that t=0 should
be an essential point of all non-zero principal minors of the
convolution operator and a checking condition has been given in terms

of a multivariable real rational matrix.

In case of nonlinear networks and systems such complete results
are not known. If the input-output operator is known then it has been
shown (8) that a type of local passivity ensures causality. However ,
while most of the elements of the physical systems are globally pasive

only a few of them are locally passive.

In case of lumped nonlinear systems it is not true that global
passivity implies the uniqueness of the time domain solution on the
other hand under reasonable conditions local passivity of the elements
and strict passivity of the linear interconnections does it (9). If
the nonlinear state equation has the Lipschitz -.property (L-property)
then according to the well known sufficient condition uniqueness is
guaranteed. The problem is that the L-property of the subsystems does
not imply the L-property of the interconnected system and , on the
other hand, simple non-L systems have unique solution. In (9) it has
been shown that under reasonable assumptions if there are unbounded
elements in the diagonal entries of the Jacobian then, if they are
negative, the time domain solution will be unique. The generalization
of this result to the case of interconnected subsystems can be found
in (10).

In case of systems with variables having positive values only
(e.g.prices, commodities,etc.) several results were also published
(2).
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An important question is the representation invariance of the
uniqueness. In case of nonlinear circuits it is true that if the
solution is unique{( in the sense of local solvability) in the
canonical representation using the charge and flux variables of the
lossless element then it is unique in all other representations and if
it is not unique 1in the canonical representation then it 1is not

possible to find another representation having uniqueness(35).

3 The qualitative properties of the exact time domain solution

Without going 1into the details of the vast amount of literature
only the main questions relating to our specific goal are considered.
Namely, we try to compute the solution of the system in a finite time
domain and the question 1is how long to 1integrate for getting a

complete information about the system.

Hence, supposed there exists a unique solution, the presence of
impasse points and the finite escape time should be excluded (1) and
the bounded input bounded output (BIBO) stability is required. Next,
logically, there are three possibilities:(i) the solution tends to a
finite state vector, (ii) the solution is (almost) periodic or (iii)
the solution 1is chaotic. The latter case is far not being a result of
complicated systems. On the contrary, the most simple population model
represented by the simple nonlinear difference equation (12) or simple
electronic circuits (11) e.g.a 5 element RLC circuit containing only

one nonlinear element ( piecewise linear) result chaotic solutions.

The problem is that if the qualitative properties of the solution
are not known the relevant finite time domain can not be determined.
To determine these properties in case of the large scale systems only
those conditions are useful which can be algorithmically evaluated in
terms of the subsystem characteristics and the interconnection
properties. The general mathematical conditions are often useless,
some specific properties based on the very nature of the subsystems ,
on the other hand, could be useful. Such an example is the monotone,
isotone and antitone characteristics of the mappings (13). These
properties of the Jacobian of a dynamic system state equation are
called cooperative or competitive( 1l4). It turned out that in the most
different areas like e.g.in medicine and biology (the compartmental
system models (e.g.16)), in economic system models(15), in electronic
circuit models (17), etc. these properties of the mappings of the

relevant models are derived from the nature of the subsystems.
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Exploiting these properties leads to strong and algorithmically
testable conditions (e.g.15-17). On the other hand, despite the many
nice results of system theory it seems that without the relevant
knowledge of the area of application 1i.e. without realizing the
essence of the nature and the generic properties of the objects strong

results can not be obtained.

4 Uniqueness of the computed solution

At a first glance it seems that if the system (model) has a
unique solution in the time domain then the computed solution (e.g. by
numerical integration) will also be wunique if the computations
converge. This 1is true for open type numerical integration formulas.
Unfortunately, however, this is not the case for the most important
closed type integration formulas.It depends very much on the structure
of the state equations and on the characteristics of the subsystems.
Many results in the literature on numerical integration refer mainly
to cases where the time step h goes to zero or the number of steps
become very large. Hier, however, the most important case is when h is
finite and sometimes as large as possible. For a practically important
class of nonlinear networks conditions have been given to ensure the
uniqueness of the solution of the multistep implicite (closed type)
integration formula (18). Furthermore, quite surprisingly, it turned
out (19) that in case of nonlinearities having negative slope it could
happen that even for finite but arbitrarily small time steps the
solution will not be unique. Hence, only an explicite (open type)
integration formula can be wused. The conditions of the uniqueness in
terms of the interconnection and the element characteristics has also
been given (19).

Summarizing the qualitative conditions discussed in sections 2,3
and 4 we are 1in a position to define the notion of a "well posed
circuit or system analysis problem'(22). Namely, the following
conditions are to be satisfied:

(i) there exists at least one locally stable initial condition,

(ii) the solution exists, it is bounded and unique in any finite
time domain and

(iii) the computed solution is unique (if the computational

process is convergent).

Unfortunately, in case of many systems having subsystems of well

posed system analysis problem the interconnected system fails to have
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this property. For a fairly broad class of networks having passive
linear interconnections and eventually passive memoryless elements the

conditions of well posedness have been given (22).

5 The convergence of the computations

Suppose, given a well posed system analysis problem. The next
question is: does the iterative algorithm for finding the solution
converge ( and stable)? Basically two types of problems are
considered. The stability of the integration formula and the
convergence of the algorithm used for solving the system of nonlinear
algebraic equations. Furthermore, sometimes the former problem is
inherently interconnected with the 1latter. This has been the famous
case with a stiffly stable numerical algorithm where the implicite
formula has been degraded by the predictor corrector iteration
algorithm (23,pp.516). Since 1968 the importance of the implicite
integration formula (23,24) has benn fully acknowledged and special
attention is devoted for the stable implementation of it. Another
important way of investigating the convergence and stability of the
integration process 1is by the wuse of the notion of algorithmic
passivity (21). 1Its limited applicability in circuit analysis can be

generalized as follows.

Passive systems have a strong interconnection invariant property.
If an algorithm is designed in such a way that first it is applied for
the subsystems and next the algorithms are interconnected then if the
subsystem algorithms are passive the whole algorithm inherits this
property. The passivity of an algorithm can be defined either by the
circuit equivalent or by applying the direct scalar product passivity
condition.

General conditions for checking the convergence of iteration
schemes are numerous (e.g.13,20). The problem wusing these are
twofolds. First, they are sufficient conditions only, secondly, in
case of large systems they are very time consuming. For large systems
instead of the Newton type process relaxation type algorithms are
frequently preferred (e.g.Gauss-Seidel, Gauss-Jacobi etc.) despite the
fact of the slower convergence. A temptation in large systems is that
only one or two relaxation sweeps are carried out. Therefore the nice
properties concerning stability and accuracy are no longer hold.
Hence, even standard, famous programs are not working always correctly
(25,26). In case of a general partitioned relaxation process the
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conditions of convergence have been found (26). It turned out again
that certain consistency conditions and passivity constraints
(inherently in the subsystems, e.g. in some MOS device models) could
play a central role.

In case when the subsystems have certain isotone and antitone
(13) characteristics and the interconnection 1is simple then the
convergence and stability properties of well known relaxation
procedures have been proved (15,17). It turned out that certain class
of subsystems (n-ports) which are between the local and global
passivity properties play a crucial role.

6 The complexity of the computations

The complexity and the speed of computing machines increasing
spectacularly and due to the scaling down process in electronic
devices this development proceeds further (27). New questions of
designing information processing circuits and systems arise (28). The
joint consideration of areas of information theory, physics (e.g.
thermodynamics) as well as the circuit and system theory (29) promise
new dimensions of understanding the highly complex systems including
the computing machines. Due to the very high complexity of these
machines(e.g. one million elements per device being the building
blocks of the computing machines) the representation, the simulation
algorithm, the design of a hardware simulator and the electronic
realization of analgorithm or a dynamical system are becoming

eventually the same problem, the four areas are inherently coupled.

What the simulation of 1large scale dynamic circuits and systems
is concerned two conflicting tendencies are competing: the complexity
and speed of the simulators increase, however, at the same time the
complexity of the systems to be simulated increase too. What is the
balance! Based on the above ideas some partial results were published
(30) which 1indicate that if the rate of increase of the complexity of
the simulator does not exceeds the rate of increase of the complexity
of the circuit or system to be simulated then the simulation comlexity
will not decrease (even when taking into account the speed increase of
the computing devices due to the scaling down effect). More precisely,
in the line of these investigations the following statement can be
proved (30,pp.459).
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Consider a dynamic system composed of K subsystems of identical
structures. Suppose a conceptual digital simulator (CDS) is wused
having a combined (in some sense optimal) use of the time parallel,
time series (pipelined) and time iterative mode of operation including
the memory elements for realizing the nonlinear I/O operators. If the
complexity of the simulator (proportional to the gate count or the
relative area of the comuting machine) is increasing as fast as K then
the simulation complexity tc (measured in basic operation steps or
relative time) is increasing as follows;

te= ko + kl w + k2 w?
where w 1is the bandwidth of the interconnection matrix and ko, kl, k2

are constants (independent of K),.

A natural question or objection concerning of this reasoning is
that how can the minimal complexity of the simulator be determined.
The answer is that, in principle, the minimal complexity of the
simulator can not be determined. The reasoning uses a basic result of
complexity theory (34,Theorem 1) and the algorithms of the subsystems

are considered as partial recursions.

The complexity of the realization of a nonlinear operator (the
number of memory cells) depends on the total sum of the input and
output bits. In case of multivariable nonlinear operators this can be
greatly reduced by using the nonlinear approximation theorem due to
Kolmogorov (36) applied also in mnonlinear synthesis for device
modeling (37). According to this approximation any multivariable
function can be approximated by a finite number (not greater than 2n2)
of one variable functions. Our new method is that these approximating
diagonal mappings are realized by single input single output memories,
additions are carried out directly and the chain functions are
realized by cascading the memories. Using this idea the memory type
realization of any discrete time nonlinear dynamical systems can be
carried out.

7 The choice of the time step in large systems

Practical experiences show that increasing the number of
variables in solving large scale dynamic systems the time step
predicted by the accuracy formula (e.g. (33) p. 497) is shrinking

unnecessarily. The well known equation for a k-th order multistep
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formula is (see e.g.(33))
(k+1))

emax = h abs( ck x

where emax = Emax/T; Emax being the prescribed maximum truncation
error in the time interval (to,to+T); ck 1is a constant of the
integration formula; the (k+l)-th derivative is defined somewhere
within the time step. Considering the simple case of a cascade
connection of K identical subsystems of order 1 (the same reasoning
can be applied for any other order) having about the same (k+l)-th

derivative we get the time steps hl and hK for the case of systems

containing one and K subsystems respectively:
hl =\/k emax/ck / 2 (xl(k+1)) 2
hK *h1 /KT

(xi being the i-th element of the vector x).

Hence in case of a backward Euler formula (k=1) it means that the

number of time steps increases unnecessarily by sqrt(K).
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PROBLEMS (ESTIMATION OF THE SPECTRUM AND OF THE IMPENDANCE FUNCTION)
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1088, Budapest, Muzeum krt. 6~8. Hungary

Introduction

The aim of the present paper is to provide some new tools and
methods for the theory of (recursive) identification of a class of
linear, causal infinite dimensional input-output systems, where the un-
known of the identification problem is (or can be uniquely associated
to) a nonnegative mass distribution. Important special cases to be
studied are the following (closely related) problems

1) estimation of the spectrum of a stationary (gaussian) stochastic
process

2) identification of coefficients in onedimensional hyperbolic sys-
tems (describing waves in horizontally layered media,whose impendence
or reflectance function is to be recovered).

As it is well known,see e.g. [14], associated to 2, is a coefficient
(potential) recovery problem for a corresponding Sturm-Liouville (Schré-
dinger) equation, in the latter problems however more smoothness needs
to be assumed for the impendance function. We are interested in assum-
ing no smoothness on the impendance functions except its positivity

and bounded variation (so that two positive measures correspond to it);
the connection beetween the smoothness properties of the impendance
function and those of the corresponding spectral function (measure) are
not yet understood, see [231.

In a more abstract level problems 1) and 2) are about the identi-
fication of self adjoint input-output systems i.e. those which are
realizable by state space triples (A,b,c) where A=A*:H-H (or AA* =1,
i.e. A unitary), as usual we denote conjugation for operators by ';b=c,
(for simplicity we restrict ourselves to the scalar case, i.e. that of
single input - single output systems).

The association between mass distributions and self adjoint or uni-
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tary operators is via the spectral functions of the latters

u(S) = <E_ b, b>, A=/ s d(E),
s s S

where ES, s € R1 are the spectral projectors in the spectral decomposi-
tion of A (we shall assume in the sequel that all monoton nondecreasing
functions p are defined to be continuous from the right).

The motivation for proposing (thus expecting superior performance
from) sequential identification, i.e. mass recovery methods - contrasted
to passive or open loop procedures like the Levinson (fast Cholesky)
algorithm or "layer peeling", downward continuation methods - comes
from the intuitive idea that "measurements" (on the available data or
within the given experimental setup) should be more concentrated, where
the unknown measure is more concentrated; this should provide not only
a more exact recovery (for many, natural definitions of distance bet-
ween measures) but also assure a more stable recovery, i.e. one in which
the recovery errors due to measurement errors are kept smaller. Precize
elaboration and justification of this "expectation" will be given below
partly based on earlier results(experience) concerning analogous
problems, see [18]1 - [22]1.

In (deterministic) moment problems concerning mass distributions
du(s) on a set S we (potentially) have the data {c(t), té€ TM], where
TMGET, the set of all possible measurements (nodes) and

lc(t) = &(t)1 <€ eod(t), 1.1

c(t) = [ K(t,s)u(ds), te TM,
[

from which pu is to be recovered. Here K(.,.) is a known continuous
Kernel function defined on the product set TxS and d(.) is a known
positive function e, is a known (measurement error) scaling parameter.
In many cases only N values cy = 6(ti), i=1,...,N can be measured, thus
TM 1= (t1"'°'tN)' since each measurement t-&(t) is a costly operation

(in the case of cheap measurement we usually have T,=T). In the above

identification problems these may correspond to measgring {or evaluating)
the value of the transfer or impendance function at specific complex
numbers ("frequencies") z<>t, inside the unit circle or the left half
plane for discrete resp. continuous time systems.

In the problems of spectrum estimation one finite length realization
of the process is used to estimate the values of the "positive real"
(impendance) function associated to the spectral measure, thus we al-
ways have a nonzero function d(.) and eo in (1.1).

There are two main problems associated to the recovery based on the
information (1.1).

The first problem is to find one "nice" solution ;=E(TM) of (1.1).
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In Section 2 we show that the solution u {called "the analytic centre"
of (1.1)) - defined (uniquely, if it exists) as the solution of the

"convex,analytic" extremal problem
sup{f log u’(s)ds ISCt) - f K(t,s)u'(s)dsl < eod(t)} (1.2)
S S

has many "nice" (desirable) properties; these are:

1) stability with respect to perturbations, i.e. errors in the values
of éi, t, o1 K(.,.)

2) low complexity, i.e. p’(s), s€ S can be computed "easily" this
means that for €0=0 and some important cases,i.e. choices of the kernel
function in (1.1) (corresponding to the Nevanlinna-Pick type moment
problems for the impendance functions c(.) see below (1.7)) the solu-
tion of (1.3), E(TM) can be computed exactly in O(Nz) arith.op.-s. In
analogons (and approximations) of (1.3) (for €,=0)

m
sup{ I 1log ui|<ki,u> =c,, i=1,...,N, ué RT) (1.3)
i=1

fast numerical algorithms (combining Newton’-s method with special
globalization techniques using homotapy and rational extrapolation, see
[20]1 and below) can be constructed for the solution of (1.3).

3) Invariance with respect to affine transformations of the "poly-
hedral" set K(tN,cN) (1.1), more precizely of K(uN,cN) in (1.3).
4) Existence and easy computability of inner and outer ellipsoidal

approximations (for €o=0)

- N N - N N

o+ e, M e kN, MNMen s e, M) (1.4)
where

E(uY,tY) = wiwe RV N<-1w,w> < 11, L=L*>0. (1.5)

The solution p of (1.4) is known (for €o,=0) as the maximum entropy

(and asymptotically maximum likelihood) solution in the theory of
statistical spectrum estimation (using generalized covariance data, see
£51).

Below we shall present some results also concerning the minimal
atomic solutions of (1.1), i.e. those in which dp is concentrated on a
minimal number of (distinct) points in S, since these solutions can
also be used for devising sequential recovery methods. While - for the
concrete moment problems (1.6) - (1.7) the latter solutions Hoa always

exists (for TM=(z1,...,z ) and the solution (1.2) may not exist) the

N
point in favor of the solutions(1.2) is that they can be computed more
easily and recursively (in N).

Of special inteest for us will be the following Nevanlinna-Pick type
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moment problems for the impendance function c(t)<=>h(z)

1
Z-s u(ds) '

h(z) = f
s

-1 »
Notice that h(z) is a transfer function <(z I-A) b,b> for A=A ,

SE (-w, @) . (1.6)

Spectrum A=S. Notice that - up to a simple change of variables - this
is the class of continuous time,positive real functions (i.e. those
analytic in the right half plane and having positive real part there)
associated to stationary, continuous time stochastic processes (note
that lm=h(z)20 for 1lm 220); the same class of functions arise as trans-
fer functions of hyperbolic {(purely oscillating, energy preserving)
systems. The discrete time analogon 1is the class of Caratheodorey
functions defined over the unit disc (corresponding to measures on the
unit circle which are symmetrical with respect to the real line)
1 " eie—z
Qlz) = 5o [ =5—= n(do) (1.7)
-1 e +z

An other interesting class of moment problems is given by

clt) = f e Bau(s) téluwo,wyl, SE (==, =), (1.8)
S

where we set TM=T, assuming thus that all (error contaminated) values
of c(t) are available for recovery. Of course, if we have further, a
priori knowledge concerning the unknown measure or its derivative this
could be included - as side conditions - in the problem (1.2). The
contrast between the two solutions p and Hna is geometrically that of
a "central" and of an extremepoint of a polyhedron. Therefore if we
have - for the unknown p€ R a possibly nonlinear (convex) inequality
constraint g(u)<0,then this is not added as a condition in (1.3) but
is included by adding log(-g(u)) to the function to be maximized, see
[221.

The second, more difficult problem concerns the seqguential choice

of the sequence of measurement nodes t.,...,t, or in the case TM=T,the

N
linear information functionals

& = fk(u) := Zk(t)é(t)dt, k=1,...,N, (1.9)

where L, 1s a sequence of scalar functions defined on T. Here the choice
of the right, i.e. suitable family F of functions %, %€ F should depend
on the final aim of the recovery problem, i.e. on the notion of dis-
tance (see below) over the class of objects to be identified (measures,
impendances) and is a rather nontrivial, delicate problem. We propose
algorithms in which the family of information functionals F (which for

the case of costly measurements are defined to be ?k(.)=K(tk,.),
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tké F(T)) has the structure of a regqular binary tree B. This structure
for F allows to generate 2N different sets of possible evaluation pat-

terns f1,...,f, in an N-step algorithm

N

fk+l = Ak+l(f1,...,fk, 51,---:6]()1 k=0,...,N=-17, (1.10)

so that - at each step k - one {(or both:then k=2j, j=0,1,...,) succes-
sors of an already selected element f_, j<k of F=B will be selected as
fk+1 (resp. fk+1' fk+2)' The functions A;,A2,..., are just used to
define that element in F =B which should be "subdivided" (this they do
by finding the maximum of "local uncertaintiest i.e. those corresponding
to the 2k potential followers in B of the already selected elements;

the idea being to achieve equilibration of the local errors, one expres-
sion of which is that

[um(Al)]p d(ay) ;E,S=liJAi, (1.11)
where um(Ai) denotes the maximal mass that can be placed on a subinter-
val Ai - of length (area)d(Ai)-of S and the value of p depends on the
distance chosen to measure the error of recovery. In the Nevanlinna-
Pick problems (1.6) - (1.7) we shalluse the radii of the inclusion
discs and the values of the maximal masses - for given Zasee a2y,
CryevesCp = to compute the "local uncertainties". The role of the
Christoffel functions of the arising,generalized power moment problems
will be emphasized.

This procedure is a generalization of techniques of "interval sub-
division" used in algorithms for adaptive, i.e. sequential node selec-
tion for the spline approximations of functions over a line segment or
over multidimensional intervals (boxes) developped by the author, see
£181 - [22]1. In these papers we demonstrated the superiority of suitable
constructed sequential N-step algorithms over the optimal passive al-
gorithms (i.e. those corresponding to a simultaneous choice of the
information functionals) even with respect to the order in N of the
global, i.e. worst case error over classes of measures with total mass
not larger than 1 for a number of moment problems.

In problems (1.6) - (1.7) we shall select the countable set F of
nodes with a binary tree structure as centres of noneuclidean triangles
constituting a reqular subdivision of the noneuclidean space (unit disc
or upper half plane).

Now these nodes can "tend",with uniform density,to any subinterval
of the support set S of the measures p unlike the traditional information:
the values of Markov parameters (correlation functionals) which arise in

the limit case,when all nodes are concentrated at one point. Illustra-
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ting our remark concerning connections of stability and accuracy of a re-
covery we point out that in many application the high index Markov pa-
rameters (as high order derivatives) cannot be evaluated accurately
enough.

Now we have to give examples of distances which proved to be useful
for defining the distance of measures. Let us denote by mi(s) the func-
tion which is obtained by r-fold integration of the monoton function u
defined for § = €0, 71 in (1.7) and S= (a, B1 in (1.6), (1.8}, thus

in the latter case

B8 _
mi(s) = f (s=) X" au(q) (1.12)
a
and define
25
||u1—uz||r 1= sup{\mr (s) = m, (s)| axss B} .

A stronger norm (distance) seemsto be of interest also

1/2

B
Hua=pzl ] !=(f|U1(S)‘U2(S)|2dS) . {(1.13)
a

For the functions (1.6), (1.7) useful norms can be defined by

(fixing a parameter y>1)

Y
| |ha=ha|]|_:= sup Imz|h,(z) - ha(z)] (1.14)
Imz>0,Rez€lqa,B]
[lei=22]|_:= sup (1-121)7|0,(2z) 22(2)| . (1.15)
Y lz1<1

While these distances are natural and interesting for the mass recovery
problems, it is not yet clear: what is their relation to the ocoeffi-
cient (impendance) recovery problems? Our final remark is that identi-
fication methods based on solving a nonlinear least square problem for
finding the optimal parameters (o,,...,op) yielding best LS fit with
finitely parametrized impendance function to the observed data usually
lead to nonconvex and rather ill conditioned value functions (to be
minimized by a sequential search in the parameter space). Examples of
this situation are well known, see e.g. the rather instructive ones in
£3]1, C41. While such method are instrinsicly "sequential", they usually
fail to exploit the deeper structure of the problem. What we propose is
not optimizing with respect to a fixed number of free parameters,but
trying to get increasingly better parametrizations of the solution with
a growing number of parameters (using and equilibrating some measures

of local uncertainty). Of course this general idea is (and can only be)
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implemented by exploiting the deeper algebraic structure of the problem,
(simple) recursive expressions for the "uncertainties" :maximal masses,
inclusion discs for the values of c(.)). This algebraic structure is
partially illuminated by the use of an important paper 241, in which
the strength operator theoretic methods for the solution of moment
problems (1.6) ~ (1.7) have been demonstrated (for the related theories

of extensions, dilations,... of operators, see [25]1 and [93),.

2. The analytical centre solution of moment problems

In the finite dimensional case (1.3) the polyhedron of localization

for pn € Rm.K(tN,cN),can be described (more simply) by a set of m linear

inequalities for p--zg R™ N

k(tV,cNyewp(a™,b™) = {zlb 2<a,,2>, i=l,...,m, 2z e VN (2.1)

The special solution characterized by (1.3) is then the solution of the
following (convex, analytic) extrenum problem
Ym

m
sup {( 1 (bi—<ai,z>)) lze P(a™,b™)}
i=1

) (2.2)
By "convex , analytic' it is indicated that the function ¥(z) to be maxi-
mized is strongly concave,see [20] and analytic in z over the feasible
set, thus it has a unique maximum, whenever the latter set is bounded
(and has a nonvoid interior). These properties together with the alge-
braically simple form of the gradient and Hesse matrix of logV¥

a.

i 2 _ i~i
lbi_<ailx>, D lOg\y(Z) = lil bi_<ailx> z (2.3)

grad log ¥(z) ?
allow to construct fast numerical methods for the solution of (2.2),
see [20],where the Newton method is globalized with the help of suit-
able homotopies and rational extrapolations (to follow the homotopy
curve).

The ellipsoidal approximation (1.4) - (1.5) can be computed (from
the solution E(am,bm)) as follows. Let the linear map L:R™R" be defi-
ned by Lei = ai/(bi-<ai,5>), i=1l,...,m, where e, is the i-th unit
coordinate vector in Rm,

B := (m-1)m LL*, E(a™,b™) :fﬁ%{zl<82,z> < 1}, (2.4)

Note that B is essentially the Hesse matrix of ¥ at z=z(a",b™) and
(1.4), (2.4) allows to define an"analytic" condition number for a
system of linear inequalities. We emphasize the specification "analytic"

since there exist other,more tight ellipsoidal approximations for
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™) in which however the approximating ellipsoid is not an analy-

Pl(a
tic,but only a piecewise smooth function of the data (a",p™). For
example one can prove that for the largest in volume ellipsoid,
Emv(am,bm) inside P(a™,b™), the homotheticity constant mlin (1.4) can
be replaced by n=m-N. Now, even if the latter problem is again "convex"
(since det is a concave function over the set of symmetric,positive

definite matrices) the parameters of Em (am,bm) are more difficult to

compute (they are only piecewise smootz in (a™,b™).

The most remarkable property of the solution concept (1.2) is per-
haps the one of it simple algebraic structure and - as consequence
there—of - O(N2) computability of ﬁ(tN,cN), exhibited in the Nevanlinna-
Pick type problems (1.6) - (1.7). The results describing these solutions

-of course without (1.2) and our (geometric) interpretation (1.4) of it—
in terms of orthogonal polinomials and Pade approximants go back pre-
sumably to Christoffel, with contributions by many authors like Stietjes
Kolmogorov, Szegd, Baker, Goncar, Burg, Dewilde-Dym, Krein and others,
for a survey concerning the case of (1.7) see [51 and [8], while for
(1.6) further (earlier)references in [11l] and [161. Nevertheless it is
interesting that for the moment problems (1.6) even in the classical
case (corresponding to 2 =, i=1,...,N)

@

c = [ S

—

" au(s), n=0,1,...,2Kk-1=N-1 , (2.5)

the solution ﬁ(wN,cN), i.e. the one which solves

sup{ f logp’(s)dsiué¢ K(wN,cN) from (2.5)}, (2.6)
-which is computable in O(Nz) arithmetical operations, see Theorem 1 below
- has not been identified (used) earlier! Only in the context of the
problem (1.7) were the maximum entropy solutions, i.e. those determined
by the problem (1.2) identified with (i.e. computed as the inverse of
the squared module of) orthogonal polynomials (on the unit circle with
respect to the measure uN=m(zN,u))
N -2
uﬁ(s) = U'(S)|,E (s-zj)l
i=1

where - as would be natural for the case of real transfer functions -

(2.7)

we need not to assume that the interpolation points are real symmetric,
i.e. chosen in conjugate pairs or as real numbers . The specail case
zj=0, j=1,...,N corresponds to orthogonal polynomials with respect to

P and to the original "maximum entropy" interpretation advocated by
Burg. On the other hand (and earlier), for real symmetric data in (1.6)

orthogonal polynomials - with respect to square root of the inverse
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1
polynomial the weight (2.7), now s€R - have been identified as pro-
viding denominators for the multipoint Pade approximation problem con-
cerning (i.e. based on the computed) values of the Stieltjes type func-

tion in (1.6), see e.g. 1111, where it is shown that for real-symmetric

'
data the approximating function is also of Stieltjes type. The roots

of these polynomials provide a minimal atomic solution of the moment
problem (1.6). These roots can be computed by solving an eigenvalue
problem for a symmetric matrix computed from the data (zN,cN) which

is a better way for computing them (as compared to polynomial root fin-
ding). Since this seems to be not known (see e.g. [81) we shortly
describe the algorithm,for details see [21],which is based on the opera-
tor theoretic treatment of Nevanlinna-Pick moment problems first given
in 1241, see also [1]. First one has to compute a factorization of the
Hankel matrix H formed from the moments in (2.5) H=C*C, where Ce¢ Rka
- instead of the Cholesky factorization we propose the symmetric facto-
rization C=C*, since this can be computed by a more stable, fastly con-
vergent iteration. After this we have to recover the matrix A from the
equations (note that A solves the "representation” {ck=<Akeo,eo>})
)i

AC = (oC,v), where (Hv i=1l,...,k

= Ck+isl’ '
here o is the left shift on the columns of matrices. The roots are the
eigenvalues of the symmetric matrix A.

However these roots are very ill conditioned functions of the data

N,cN) (i.e. of the generalized "moments" - which give, in both cases

(2
(1.6) and (1.7), the classical power moments with respect to the weight
(2.7)). This can be explained as the ill conditioning of extrem vertices
of polyhedrons{as function of the parameters of the linear inequalities

forming the polyhedron}). It is to be eéxpected that E(ZN,tN)

as the analy-
tic centre is a more smooth function of the data (i.e. of the generali-
zed moments). Indeed below we shall see that for computing u(zN,cN) we
have only to solve a linear equation with a Toeplitz matrix (in order
to compute an orthogonal polynomial). The fact that for (1.6) - whenever
it has more than one solution - ﬁ(zN,tN) is a rational function which
can be computed in O(Nz) arithmetical operations follows from the next
theorem.

Theorem. The solution of the problem (2.6) is the reciprocal of a
(positive) polynomial of degree not larger than 2k | which exist iff

the moment problem (2.5) has at least 2 solutions and which can be

computed in O(k?2) operations from the data (2.5),

Proof. We use the classical transformation el = (it-1)/(it+1l) from

the real line to the unit circle, see e.g. [8] or [1l6]1 (where-unlike to

[8]1-we need not to assume that p in (1.7) is real symmetric,but only
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that

00

[ (1+s2) i dp(s) < =

—w

which obviously holds for p in (2.6) since the c,-s are assumed to be
finite, to transform the well known maximum entropy interpretation of

the autoregressive" solution of the trigonometric moment problem

u'{s) = |Pk(s_1)|_2, s =
iO)

eio,
where Pn(e is the n-th orthogonal polynomial. Now by the above trans-
formation O-t a trigonometric polynomial of support in [-k,k] is trans-
formed into a polynomial of degree not greater than 2k, while in this
transformation the first @k+1) trigonometric moments (with indices in
[-k,k]1) uniquely determine the first 2k+1 power moments and vice versa,
see [8]. For measures of compact support we could use alternatively the
transformation t = %(z+z—') and the identity ¢k(z)¢k(z")=wk(z+z-1) for
arbitrary k-th degree polynomialﬂand suitable k-th order polynomial Wk'

Notice that the fact that the solution of (2.6) is the reciprocal of
a positive polynomial follows very simply also from the rule of Lagran-
ge multipliers applied to the extremal problem (2.5)).

Recalling the form of the Christoffel function - for the classical
moment problem (2.5) to which the general case can be reduced ~, also
the reciprocal of polynomial of degree 2k - we may expect that the
rational function ﬁ(zN,cN) has similarly good properties of mass re-
production as the Christoffel function (the latter does not solve in an
exact sense the partial moment problem but gives a good recovery, more-
over is very useful for providing bounds,expressions for the maximal
masses and the remaining uncertainties in the values of u{s) and of the

impendance functions Q(z) and h(z),see [2] and below.

3. Sequential methods of node selection for positive real functions

In (19 we already presented algorithms of node selection for the
"discrete time" problem (1.7). Here we concentrate on the "continuous
time" problem (1.6) (and provide also improvements of the results in
£191). First of all : the assumption about the "measurability" (i.e.
accessibility) of the values ¢ in (1.6) as well as in (1.7) is real-
istic at least more realistic than the assumption that we can measure
the impulse response. The values of Imh(z), resp. ReQ(z) may tend to
infinity as z approaches a discontinuity of the measure p (a "resonant
frequency"). By the Schwarz inequality we know that - for measures of
bounded total mass

(lmz!Y-(h(z)I < const, when y21 .
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Therefore it seems to be natural to assume that we can measure (with-
in fixed accuracy €¢o) the values of |Imzlh(z), say for Imz>0, and for
Re z ¢la,31. We remark that in the case of stationary, stochastic pro-
cesses the values of these "associated" functions can be approximately
recovered from a finite length realization of the process by Solving the
linear least square fitting of this data to an ARMA model, whose trans-
mission zeros are fixed to be just Zage a2y Notice that for a real
input output system the measure u is symmetric with respect to zero,
in which case we set o=-f. The bowndedness of u and B correspond to the
fact that in practice we cannot generate very high frequency (energy)
inputs. This assumption points to an important distinction (loss of
analogy) between the discrete and continuous time case: in the latter
the spectral density need not be integrable over R1.

Now we define a countable set of "potential" measurement nodes having
the structure of a binary tree (that of dyadic subintervals of [a,B]

(from which z4,...,2 ) will be selected. To this end consider a dyadic

subinterval Ey,élEEa?B] and the noneuclidean triangle formed by the
three points vy, §, (y+68)/2 as vertices and the half circles (in the
upper half plane) connecting them (as sides). Take an arbitrarily fixed,
inner point o of the "base" triangle corresponding to [a,B] and let
Qi""”ik (where ijé {0,1} j=1,...,k, k=1,2,...) be the points corres-

ponding to 7o, in the noneuclidean transformation Ti ~ corresponding

e u
to an arbitrary element i"""ik of the binary tree B, i.e. the map
transforming the base triangle to the triangle corresponding to the

dyadic interval indexed by i,,...,1 Each point

k* 14
two followers and one ancestor. Let the above system of nodes be denoted

,...,ik has exactly

by Z. The well known "Blaschke condition"

2 -1
L Im Ly eee iy (1417, ) <
(Lrs---sieB k Lypeeerdy
being fulfilled, it follows that the values of [h(ci i ),(i“..”iﬁkm
ooy

uniquely determine (i.e. fix) the function h, see e.g. (6]% By the way

this condition also shows that - for y21 -

[Tull, == sup |Im ¢, .| Tnte, )
Y i1,...,ikéB l1,...,lk l1,...,lk

defines a norm in the space of the impendence functions h, =€t (1.14)
Now we recall the results of the Nevanlinna-Pick theory of the "in-

terpolation” problem (1.6): for fixed values (zN,cN) and an arbitrary

value of z the values of ﬁtz),when p varies over the class K(zN,cN)

belong to (i.e. fill up) a disc whose centre cN(z) and radius r, (z) are

N
2
easily-in O(N ) arithmetical operations - recursively (in N) computable

/.l
functions of (zN,cN,z). In fact, all solutions h(-)=h(N) of (1.6) can
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be parametrised by an arbitrarily chosen,unimodularly bounded (Schur)
function s{.), i.e. an analytic function such that ls(z)1<1, for all =z
with Imz20. The special solution h=h" corresponding to the choice (1.2)
is obtained by taking the“trivialuextension:s(z)EO, (this follows from
theorem 1 and known results for the discrete time case (1.7), see e.qg.
£51).

Using the equivalence of (1.6) with a partial,polynomial moment prob-
lem (for a modified weight) we can use the well known formulas, see e.g.
their exposition in (23], for the radii of inclusion discs in terms of
the Christoffel functions associated to that moment problem.

Now we can propose the following sequential node selection algorithms.

In them the indices of the selected nodes zj = Ci',...,ik' i=l,...,n
constitute a regular subset Tn of the binary tree B, which means - by
definition - that if Ei,,...,ik belongs t? T regarded as a subset of >
then gi"""ik—l also belongs to Tn' The boundary "of the set T will

be defined as the set of elements in B (but not in T) which are immediate
followers of an element of T.
Algorithm 1. Suppose we have already computed the values of h(z) for

a regular subset z e[z1,...,zn)= Tn of the binary tree. Compute

max{rn(c)|ImL|Y|ce boundary of T } (3.2)

and select z 1= E, a point where the above maximum is realized. The

reasons why 2;15 algorithm is expected to have essentially better per-
formance than other (passive) ones are explained in [171 - [21]. An
important feature of the above system of nodes {(or linear evaluation
functionals of a restricted type) is that they are maximally "separated"
while maintaining the conditions of completeness (3.1). Notice that
rn(g) depends on all previous values (z",c™). A more simple algorithmcan
be proposed - in which only the value of

max{Th ¢lm(h(z) € T} (3.3)

needs to be computed,but-at each step n-two followers of the element T
realizing (3.2) are selected (and Imh evaluated at them) to form T 1"
This second algorithm is based on the similarity of the system of Pois-
son kernels Im(s —z)_1,for z in % ,as s € [a,B],to the system of the
Schauder kernels, see [17], [19]. The latter system of kernels yield an
optimal linear evaluation system for recovering the measures p in the
norm ||.ll2 defined in (1.13). Optimal order seguential algorithms for
recovering p in the norms (1.13) - for arbitrary natural r22 - have been
constructed and proved to be essentially (globally) superior to passive

ones in [18]. Recalling results from [10] showing that functions with
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the singularity of (s—t)f can be very well approximated by rational
functions, we may expect that the above algorithms, analogous of those
in (18] will be of optimal order error for the recovery in the norms
(1.13) (and also in the norms (1.14) or (1.15) since the latter seem
to be equivalent to the previous ones).

Indeed with respect to both norms in the optimal case the uncertain-
ties of the measure over the system dyadic subintervals corresponding
to a regular subset Tn must be equilibrated in the sense of (1.11)
where p uniquely depends on r or on y; for r this has been proved in

t181), for y this can be seen using the Stieltjes inversion formula

Y
w(é) = uly) = lim / [m h“(s+i{)ds )
10 6§

see e.g. [2] or (16]1. A further algorithm can be proposed remembering
that the value of the Christoffel function - at an arbitrary se [a,B]
provides the maximal mass mN(s) that can be placed at that point under
the conditions (1.6). Thus, in order to achieve an equilibration of
the uncertainties according to (1.11) we propose to select the element
to be subdivided - at step n - by computing

max(m (8) + m_(y)) (6—Y)p)(p = (r-1)"" resp. p = (Y—1)*1)
over the"boundarylsubintervals corresponding to Tn'

Finally we describe a sequential method for the recovery problem
(1.8), where the norml|l.|l|2 in (1.13) is considered, and the Schauder
functions SA(') indexed by the elements A€ B: the binary tree of dyadic
subintervals of T, say T = [a,B] are used as evaluation functionals
fk(.) in (1.9), and an algorithm from [181 and [191. In order to recover
(approximately) the values of the Schauder functionals <8, ,H> we have
to solve the continuous linear programming problem: find for each XG.B
min (e4+€2), with respect to the choice »of a, : TR

| f ak(t)eltsdt - SA(S)| < ¢4, for all se s
T

(3.4)
€o J la,(t)]8(¢) < ca .
T

The value of the corresponding Schauder functional will then be ap-
proximated within error €1 + €2 - uniformly over the class of measures

with bounded total mass - by the expression

e, =/ &A(t)c(t)dt.
T
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Notice that the optimal solution of (3.4) (£.,£2,a(-)} depends only
on €o, d{*), T and S. Moreover, the fact that the functions S, have
uniformly over A€ B a bounded Lipschitz constant (having the same "time"
and "magnitude" of discontinuity in their derivatives) indicates that
(presumably) the value (e:+€2) can be exactly majorized in terms of the
values of the values of ¢, and 6(+) alone, i.e. independently of A. Of
course, the selection of new indices A'+l’ thus the algorithm should
be stopped at a step j, for which e4+e,2const:j-2 is first satisfied.
Here we used the ("linear") stability of algorithm in (181, [19]1 based
on sequential evaluation of the Shcauder functionals and the rule: sub-
divide (and compute the 2 new Schauder functionals for) that subinter-
val which gives the largest Schauder functional; here p=1 in (1.11) —
(which in fact is sequential method for evaluation of the succesive
second order divided differences of the function mi(s) at three points
§, (8+y)/2, y of a dyadic subintervals of T, in order to measure the
local uncertainty concerning mg in the uniform metric over this inter-
val)with respect to errors(c - ¢&). Notethat for the approximation (re-
covery) of convex functions m” in the uniform norm based on N evalua-

2
tions of mg,any passive N-step algorithm has a global error larger than

const N~1', while the error of the above N-step sequential algorithm is
smaller than const N—2,
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ABSTRACT: In this paper we model two coordinated robot arms by considering the two
arms (1) working on the same object simultaneously and (2) as a closed kinematic
chain. In both formulations a new dynamic control method is discussed. It is based
on feedback linearization and simultaneous output decoupling. In the first
formulation the control method uses a dynamic coordinator acting on relative
position and velocity task space errors and on relative force-torque errors between
the two arms as sensed at the end effectors. This method is novel because we could
superimpose the position and velocity error feedback with the force-torque error
feedback in the task space simultaneously. In the second formulation the nonlinear
feedback is augmented with optimal error correcting controller, which operates on
the task level. This formulation has the advantage of automatically handling the
coordination and load distribution between two robot arms through the dynamic
equations. By choosing independent generalized coordinates, kinematic and dynamic
constraints have been taken into account in the process of deriving the equations of

motion.

1. INTRODUCTION

It is an easy dally routine to tle up shoelaces by two hands. How can we let
two robot arms tle up shoelaces? Among these necessities such as proper hands,
sensors and so forth, the coordination between two robot arms 1s the key to fulfill
the job.

While tying-shoelace provides a good example of tasks requiring coordination,
our study of coordination is mainly toward industrial applications. As application
of robots on manufacturing floors and elsewhere Iincreases, so does the use of two or
more robots operating in the same work space and cooperating on the same job. The
coordination among robots Is essential in many industrial and other applications,
such as material handling and assembly, servicing and maintenance in remote
hazardous places, etc. The study of coordination problems between two robots doing
a single job is in its infancy, though a two-handed human being is capable of doing
almost all kinds of jobs within his capacity.

The basic research objective of the coordinated control of two arms is to

design a control system which is able to command both arms in such a way that the
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two arms operate in a kinematically and dynamically coordinated fashion and respond
to the working environment without collisions. Although the control problem of two
or multiple arms is complex, some examples of applications, such as a two-arm lathe
loader, a two-arm robot press loader/unloader, and two single-arm robots working
together to handle stamping press loading and unloading, are given by Chimes [1].
In these applications, the problem is solved specifically. The system design is
based on a sollid understanding of the problem.

Coordinated control of two- and multi-robot arms has been studied by many
investigators [2-8]. It appears that the existing coordinated control methods fall
in lack of both systematic synthesis of the control system and full consideration of
robot arm dynamics. We take two approaches to attack the coordination problem.
Based on the force control method, the first approach solves the coordination
problem by monitoring the Interactive forces and moments between the end effectors
of the two robot arms. This {s a rather natural treatment to the coordination
problem since the most information on which people rely to move an object by two
hands 1s the forces felt by the skin of the fingers. Instead of considering each
robot separately, our second approach treats the two robot arms as a closed chain at
the very beginning. This Is the case when two robot arms are holding and
transferring an object from one place to another. Including the object as one of
the links they form a closed chain.

For both approaches, we apply the differential geometric control theory to the
dynamics of robot arms. By appropriate nonlinear feedback and diffeomorphic
transformation, we are able to linearize and decouple the original nonlinear and
coupled dynamic equations. The control algorithms are then designed based on the
theory of linear systems. This method gives a unified approach to feedback design
and extends the control theories and practices to a level where a real-time robot

control system can directly absorb task space commands.

2. CONTROL COORDINATION OF TWO ROBOT ARMS VIA FORCE FEEDBACK

When two robots are located in the same work space and work on the same jobs,
e.g., transfer a heavy workpiece from the convey to the working table, each robot
contribute part of the fotce to lift and to move the workpiece. For loading and
unloading tasks, the coordinated controller 1s to be so designed that the load is
distributed between two robot arms according to their loading abilitlies and that no
forces of the two robots are cancelled because of the opposite direction of forces,
that i{s, we do not want two people to push or pull a door at the same time from the

two sides.
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Force control of robot arms has been studied by many researchers [9-24]}.
Recently, a dynamic hybrid control method is developed by Yoshikawa [25]). In this
method, constraints on the end effectors are formulated by a set of hypersurfaces.
In contrast with the previous hybrid control methods, manipulator dynamics is
rigorously taken into the derivation of control law. The method can be applied to
manipulators with six or more degrees of freedom. However the control law derived
in the paper is task dependent.

We presented a new dynamic control strategy for force feedback in [26]. It is
conceptually much clearer than those existed in the literature and appears
implementable. We now use the framework described in [26] on force feedback to
obtain a coordinated strategy for two robot arms working on the same object. We
first incorporate the mass of the object into the dynamic projection parameters of

one of the two robot arms, say robot ‘a’. Let p(qa) be the position and/or

orientation of the object, and let F be the force and/or torque sensed at the end
effector of robot 'b’, The dynamic equation of motion for robot 'b’ |is

Pplap) ap + Eplay, p) + Jplay) F=ry
and the dynamic equation of motion for robot ‘a’ |is
Dalag) a9, + E (9, q) - Jg (Q)F =7 .

Considering the enlarged output equation of the form

p(a,)
v- [ e

we apply the feedback linearization and decoupling method to the above system such

that the inputs Ta will only regulate the outputs p(qa) and the inputs will

™
only regulate the output F. Note that the soclution of this problem has application
in cases where the second robot arm has to support dynamically the actions of the
first robot arm which are defined in geometric terms.

In the design of coordinated control of two robot arms, as presented in our
paper [27], we have used the master/slave mode to obtain an optimal coordinator
(loop 1 in Figure 2, [27]). This dynamic coordinator is acting on relative position
and velocity errors between the two arms. In future study we would like to
investigate the use of indistinguished mode as shown by loop 3 in figure 2 of [27].
With the force feedback strategy outlined above we would like to Investigate the
combination of optimal coordinator with force feedback (loop 1 plus loop 2 in Figure
2, [27]) and of optimal error corrector with force feedback (loop 3 plus loop 2 in
Figure 2, {27]).

In [33], Leahy, Nugent, Valavanis and Saridis pointed out the requirement of

better dynamic models on real-time closed loop robot arm control. In the
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development of force feedback strategy as presented here the robot arm dynamics has

been taken into account rigorously.

3. COORDINATED CONTROL OF TWO ROBOT ARMS: CLOSED CHAIN APPROACH

In those robot applications where two robot arms transfer an object by holding
it from the two ends, a closed chain is formed by the two robot arms and the object
through the ground. To describe the dynamic behavior of the whole mechanical
system, we will establish equations of motion by considering the system as a closed
chain from the beginning.

Now we consider two robot arms holding an object which can move gently between
the tips of the end effectors. We assume that the object and the end effectors are
mechanically locked and that each robot arm has six links. The closed chain has 13
links and 14 joints (m=14). Those two joints connecting the object and the end
effectors have no actuators. From Gruebler’s equation [28], the degrees of freedom
of the two-arm chain is n = m-3 = 14-3 = 11.

We denote the joint variables of the two-arm chain by

6= [0) 0y .0 0,00, 6y, ... 85,)

where 01, v 06 are the original joint variables of the first robot (or robot
a'), 07 is the joint angle of the joint connecting the object and the end effector

of robot ‘a’'. [ have the same meaning for the second robot (robot ‘b’').

1’ 7'
The joint driving torque (or force) vector is denoted by F = [Fl' F2, N FlA]'
In case that a joint has no actuator, the corresponding component of the force
vector F 1s assigned to be zero. Choosing the generalized coordinates in the

following way
q = lq; 95 93 9,4 95 94 | 97 4g 99 9y 9971’

§ [ [

W05 0 | 010 050 030 0, 05,1

then we can easily get # = 8(q) from the geometric arrangement of the two robot

A
- [01 6y 03 §

arms.

Suppose that a world coordinate frame has been located in the work space and
that one coordinate frame has been assigned to each link of the closed chain. 1In
the process of expressing the energy, we will describe the energy of the object in
terms of 07 instead of 07,. Using homogeneous coordinates together with the

Denavit-Hartenberg four-parameter representation of robot arm kinematics, and using
the Lagrangian formulation of kinetics, the dynamic model of the closed-chain is as
follows:
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D(a)q + E(q,d) + G(q) = Jg F

~ Dy, (@) .. D1,11(q)
where D(q) = Jé D(8(q)) J8 - . :
Dy (@) --v Dpy (@
j. 28
8 4dq'
Dy 17 W
P71 by
Beo) - Dy oo Dyge O
O D6']_' D1'6' 0
0 0 0
), ]
a° 8 — -
., 1 ., , 1
q 7 4 q' Jg D
aq
E(q,q) = Jg D(e(a)) : + 38 . URR
. 32 840 . 7
q' 2 q' Jg D
dq . - -
VAN

Note that Bij(q) is the inertial load projection function to joint "{i"
related to acceleration at joint "j", Dijk(q) is the centripetal (j=k) or

Coriolis (j=k) force projection function to joint "i" related to velocities
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joints "j" and "k", and Di(q) is the gravity load at joint "i". The general

function definitions of the D Bij and Dijk dynamic projection functions can be

i
found in (29, 30].

For transferring tasks we take output equations to be the position and
orientation of the object in the world coordinate frame. More specifically, the

outputs can be described by a 6-dimensional vector

b (a)
h, (q)
y -~ : (2)
hg (@)
in terms of the generalized coordinate gq. The first three components hl' h2 and
h3 of y represent the position and the last three components hA' h5 and h6

represent the orlentation of the object.

To perform linearization and output block decoupling for the system (1) with
output equation (2), we can now use the algorithm developed by us in [31, 32] to
find the required nonlinear feedback and the required nonlinear coordinate
transformation. The control problem of the two arm closed chain is then simplified
to a design problem of linear systems.

Note that the obtained linear system consists of six independent subsystems.
Since each subsystem is controllable, we may locate the poles of each subsystem by
adding a constant feedback. As we have done for one arm control system [32], an
optimal correction loop may also be designed to reduce the tracking error and to
improve the robustness against model uncertainties.

This formulation has the advantage of automatically handling the coordination
and load distribution between two robot arms through the dynamic equations. By
choosing independent generalized coordinates, kinematic and dynamic constraints have

been taken into account in the process of deriving the equations of motion.

4. CONCLUSIONS

Our approaches to the design of coordinated control of two robot arms are
motivated by the desire of making rigorous use of the dynamics of two robot arms in
contrast to the existing two arm control algorithms in which kinematic constraints
are considered only.

Using the results from differential geometric system theory, we are able to
linearize and to decouple the complicated dynamic equations of two robot arms

including the object held by the two arms. Independent of the approach being taken,
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we eventually deal with a linear, decoupled system. Thus we can have a unified
design technique for coordinated control of two robot arms.

Our presentation In this paper 1s for the feedback system design of two
coordinated robot arms. However our approaches can easily be extended to multi-
robot arms.

It should be noted that both methods used in this paper are systematic and are
robot arm independent, The most important feature is that the control algorithms
are task independent, that is, there is no need to change the structure of the
controller or even the parameters of the controller from task to task. As natural
as would be, the change of tasks only causes the adjustment of the input command
which is conveniently given in the task space rather than in the joint space. The
two control methods can be used in slightly different situations., For example, if
the two robot arms are loosely connected through the object, the force control
approach is preferable; if the two robot arms are mechanically locked while
transferring the object, the closed-chain approach is more likely a solution.

The new dynamic control method proposed here also brings the feedback
implementation closer to "intelligent control" of robot arms. By definition,
"intelligent control” operates on the task level, and it is being manifested through
robot performance in the task space relative to task space commands and task space
variables. The new dynamic feedback method described in this paper transforms the
robot arm control problems to the task space and performs robot serving or
regulation in terms of task space variables within a linear system frame, allowing
also the use of powerful techniques from optimal control of linear systems. Since
the new dynamlc feedback method establishes a direct control response to task space
commands, it renders the control "intelligent" in the sense of the above definition

of intelligent control.
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Abstract

T'he subject of study in this paper is an adaptive control problem involving uncertaintics. It is a
special case of Lhe one considered in the paper by Kurzhanski [1], in the present volume. The sys-
tem is described by differential inclusions and, accordingly, its solution, a feedback control ensur-
ing that certain feasibility constraints be fullilled, is sought in the form of a sel valued map. We
apply recent results of ellipsoidal calculus Lo develop an easily implementable algorithm that
gives approximaltions Lo the known exact fortnulae. The paper is therefore an attempt to carry

out the program proposed in the above mentioned article.

1. Introduction

General convex sets are dilficult to handle because their analylical description involves an
infinite number of scalar parameters. In contrast to this, the family of ellipsoids can be identified
by the coordinates of their center and a positive definite matrix representing their “shape”. Ellip-
soids are well suited for using as approximates of compact convex sets for the reason that many
operations over convex scts can be followed in a relatively easy way by operations over their
estimating ellipsoids. 'The idea was [irst used in the late sixties for estimating the propagation of
numerical errors by Faddeev and Faddeeva [2]| and in the study of uncertain dynamical systems
by Schweppe |3|. After a decade without much activity in the ficld, new results have been
obtained by Kurzhanski, Chernousko and others, an indication of renewed interest. Now, in addi-
tion to the known ellipsoidal approximations for the reachable sets of nonconstrained linear sys-
tems [4], |5], |6], |7], analogous results for both rcachable sets and viable domains are available in

the constrained case.

As indicated in the abstract, the solution of the problemn that we shall consider is known, i.
e. formulae are given for the computation of the support function of the control at each instant.
The calculations involved are, however, very complex. (See also Kurzhanski and Nikonov [8]).
Our aim here is to obtain an approximate solution in a simpler, and more constructive way. T'his
is done through two steps. The [irst is to change to a surrogate problem in order to get rid of

infinite operations involved in the original construction, and the second is to approximate the
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solution of this problem with the intersection of a finite number of ellipsoids.

Accordingly, we consider the dilferential inclusion
PO=COPW) 1u(t)  teT=[tot)] (1)
with the initial eondition
p(to)eP© (1.2)
and the constraint on the controls of the form
u(t)ev(e) teT .
Additionally, we require first that a viability condition of the form
p(t) tQJUcK() teT* (1.3)
is met, with T*C'T being finite, i. e.
T* = { 1,cT : i€1,r }

and QUCR™, €T consisting of all the values g(t)€ R™ that are compatible with incoming

measured information represented by the function
y: T - R™.
As information arrive in real time, at the instant {€T, only the function

v et - R™

yi(r)=y(7)
is available. The variable g is defined by:
g)eA() ()1 P(t) teT (1.4)
4(ty)eQ© (15)
y(1)eG(t)q(t) tR(t)  teT. (1.6)

The family of measurements y(t)eR™, tcT that are compatible with the system (1.4), (1.5) and
(1.6) will be denoted by Y.

Second, we also want that the trajectory arrives to a given set at the final instant:
p(t)eEM. (1.7)
We suppose that the mappings

C:T — 1™*»
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V:T — convln
K:T* - convR®
A:T - R™"
P:T — convR™
G:T — R™M™™
R:T — convR™
are continuous. The sets P, M €convR™ and Q) cconvR™ are nonvoid elements of the

metric space of convex, compact sets defined by the Ilausdor(l metric A.

The next section deals with ellipsoidal calculus, that is, among others gives some cllipsoidal
estimates of the Minkowski sum, the geometric dilference and linally the Riemannian integral of
cllipsoids. Later these results are applied to lind ellipsoidal estimates for the reachable set and
viable domain of constrained linear systems. I‘inally, we return to the above problem, giving an
exact definition of the control problem, and then we use the results of preceeding sections to con-
struct a solution. Prools of the stalements are generally omitted, because of limited space,

except for the main theorem. A comprehensive publication about the subject is forthcoming.

The author would like to express his gratitude to Academician A. 3. Kurzhanski for his gui-

dance and encourageiment.

2. Ellipsoidal calculus

We start with a briefl overview of the most important notions and facts that we shall rely on.

We represent ellipsoids delining them through their support function, (Rockafellar |9]). The
support function of the convex set HEconvRR"™ will be denoted by p(.|H) and the distance func-

tion by d(.,H). We shall also use the seminorm of sets in convR"™ defined as
HE]] = [lo(-H) oo -

S(0,e)C ™ denotes the closed unit ball and C(T’,RR™*") the family of continuous, matrix valued
functions over the set T'CT. lor other notions related to set valued functions the book by Cas-

taing and Valadier [10] can be used as a reference.



364

Definition 2.1.

Let a€R™ stand for the center, and a symmetric positive semidefinite matrix, QCR"*",

represent the ’shape’ of the ellipsoid E=E(q,Q), i. e.

1
p(LIE) = <ad> + <@QLI>%  V Icn®

E(a,Q)= { z6 R" : <z,0> < p(I|E),V leR")

For fixed positive definite matrices @, and @y, A,, {€1,n will denote the eigenvalues of the pencil
ol matrices Q- AQ, i. e. the set of solutions of the equation det(Q,—AQ,)-0. A, and A €R
will stand for the minimal and maximal cigenvalue. We refer the reader to Gantmacher |10 for

these notions and the properties ol pencils ol matrices.
The basic operations over ellipsoids that will be considered are the following.

The first is the Minkowski-sum of sets given by the formula
H, +Hy={h +hyeR":hic H, hyc H,}.

Besides this, we shall have to deal with the difference of sets. The family of canvex sets not being
closed under forming dilferences, we need the following definitions (Pontriagin [12], Nurminski

and Uriasiev {13]) for an “internal” and an “external” operation:
Definstion 2.2.
Consider the convex sets H |, II,c R" and suppose that there exists a A€ R" such that
{h}+ H, DH,.
We define the geometric {or internal) difference H,~H,C R" as
H =1, = { hcR™: h | Ayl V hycH, b

The result of the other (external) operation is not unique: The family © consisting of sets in R",

is an external difference, if
inf { p(1[11) € R:H €O } = p(I,|H;) - p(!,|Hy) VvV leR"
One exarmple of such an external difference is the following:

O, {HCR": i, OH, HCconvR™ },

We want to construet internally estimating ellipsoids for the geometric diflference of the
ellipsosds 150 Efay Q) and B, Ela, Q,), and externally estimating ellipsoids for some of their
ceternal dilterence Keeping i mind the essentially diflerent meaning of the word “dilference” for
wternal and external estimates, we shall e the following definition and teeminology for ellip

sobdal estitatens.
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Definition 2.8,
The ellipsoid E, is an external estimate of the difference of E;=E{a,Q,) and E,=E(a,,Q,), if
E, + E; D E; and the cllipsoid E_ is an internal estimate, if E_ + E, C E,.

This definition means, in terms of general sets on one hand, that E_ can be a member of a
family of sets that form an external difference for E| and E, and, on the other hand, that E_ is a
subset of the geometric diflerence.

In relation to continuous systems we shall have to consider the continuous sum of a family
of ellipsoids, i. e. their integral. '

Definition 2.4.
Let us consider the family of ellipsoids E(a(t),Q(t))c R", tcT. the ellipsoid E(agy,Q,)¢ R™ and
suppose that the functions a: T — R", Q : T — R"*" are Riemann-integrable. The integral
X(t,)CR" of the above ellipsoids is defined as

4

X(t) ={zeRr": z:z[t0)+!u(t]dt, z(ty)CE(ag,Qy), u(t)c E(a(t),Q(t)), teT } .

As is well known, X(t;)CR" is the limit, in the metrics of llausdorfl-distance &, of the sets
corresponding to the Riemannian approximating sums, or in other words, sums of a finite

number of ellipsoids. This means the pointwise convergence of the respective support functions.

That is

t 14 1S
p(L, X (t))=<agd>+ [<a(t)i> dt+<Quld>2 + [<Q(t)Ii>? dt  V IER™.
to ty

Finally we recall the way ellipsoids are transformed by afline transformations:

z€E(a,Q) if and only if Az+beE(Aa+b,AQA").

Now we state a simple symmetry related property of internally and externally estimating ellip-
soids.
Proposition 2.1.
Suppose that for the convex set HC R" we have H=—H. Then HCE(q,Q) implies HCE(0,Q)
and HDOE(q,Q) implies HOE(0,Q).

Let us introduce now some simple formulae for estimating the Minkowski sum and the
“difference” of two ellipsoids from both sides.
Proposition 2.2.
Let us consider the ellipsoids E;=E(q,Q) and E;=E(a,Q,) and use the following notation:

Q=11 1@ 1 (14 1)@, peR\{0} .
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Then for any u¢(0,00),
(a) the ellipsoid E«~E(a, a5,Q(it)) is an external ellipsoidal approximation of the Minkowski-
sum E 1 E,, i e.

EOE +E, V pe(0,00)

and if we select

_ Trri(Ql)

1
2
Tr(Q,)
then this value delines the ellipsoid containing the surn that has minimal trace, or, sum of
squares of serniaxes.

(b) if we suppose that int(E(0,Q,)) I2(0,Q,) holds then E=E(a;-a,,Q(—#)} is an internal ellip-

soidal approximation of the difference of E, and E,, i. e.

E+4E,CE, V uell,x

r1¢i1||

where the choice of

1

|12 (Q)
§ = min ~]&»,/\

T'E(Q'z)

min

produces the ellipsoid of maximal trace contained in the difference.

Proposition 2.3.
1 1
(a) The ellipsoid E(a, az,[QlE+ Q25|2) is an internal estimate of the Minkowski-sum E,+E,.
1 1
(b) Suppose that int(E;)DE, holds. Then the ellipsoid E(a;—a5,[Q,2—Q,2%|%) is an external
estimate of the difference of E; and E,.

Let us consider now the problem of finding external ellipsoidal estimates for the sum of
more than two ellipsoids. This will serve as the basis lor handling the integral i. e. the continuous
sum of an infinite number of ellipsoids.

Let the ellipsoids, E,=E(q,,Q,), v€1,r be given and denote their Minkowski-sum by
S(r)CR". Let us, in addition, consider the family of ellipsoids E(b(t),F(t))CR", te T, the ellip-
soid E(bg,F,)C. R™ and their integral, denoted by X(¢;)JCR". Here we suppose that the func-

tionsb: T - R", F: T — R" " are Riemann-integrable.
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Definition 2.5.

r
The family ¥(r) is called the set of linear external approximations of the set S(r)= Y] E;, where
1=1

<

E(r) = { E=E(a,Q)CR" : a= é a;, Q=
=]

It

z; é —'f, £;€(0,00), viel,r }
The ellipsoid E=E(&,Q)cX(r) is a linear trace-minimal external estimate of the sum S(r)CR",
if Tr(@)<Tr(Q), lor each E=E(a,Q)c(r), and it is a linear trace-minimal external estimate of
the integral X(¢,)CR" if it is a limit of linear trace-minimal external estimates, in Ilausdorff dis-
tance, of the Riemannian approximating sums, if this limit exists.
Ilere we should like to point out that there are simple examples even for r=3 showing that

the family £(r) does not contain all the inclusion minimal external ellipsoidal estimates of the
sum S(r)C ™.

Proposition 2.4.
Let E(e,Q)CR"™ be the linecar trace-minimal estimate of the Minkowski-sum S(r)CR", where
ac R™ and Q€ R™*™ are defined by (2.2) and (2.3). Then for the parameters z,€(0,00), i€1,r

we have, up to a constant multiplier,

1

5=Tr?(Q,) kcl,r .
Theorem 2.1.

Suppose that the functions b :T - R", F: T - R™*" are Ricmann-integrable. Let further
90€(0,00) and the function g : T — R be defined with

1
Tr2 Ky

i

90

and

g(t) = Tr[F(1)]

Then the linear Tr-minimal external estimate of the integral X(¢;)CR" is well defined and is
an external estimate. It is of the form E(a(¢,),Q(t))CR" where
4
a(ty)=bo+ [b(t)dt ,

L)
IR IR
Fo +F@)
- dsl| 01 ¥
Q(t) go+;{)g(s) 26 +;I; o0 dt
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Proposstion 2.5.

Let
8(r)= 259
i1
and
1 ro 1
Q(zr): Dy Q12
1=1
then

8(r) > E(a(,),Q,))-

Based on the Cauchy formula, the internal and external estimates for the Minkowski-sum

and the integral can be used to obtain such estimates for the rcachable sets of linear dillerential

inclusions. These estimates are not the best, i. e. least external or greatest internal, but, as their

parameters can be defined as solutions of some nonlinear differential equations, retain the serni-

group property. Of these we formulate one, that relies on PProposition 2.3. together with a simple

limit argument.
Theorem 2.2.

Consider the problem
()eA() () 1 E(p(),P(t)) teT
with the initial condition
z(ty) ¢ E(2°, X°)

where the mappings A(.), P(.) and 5(.) are Riemann integrable.

(2.1)

Then the trajectory of ellipsoids E(e(t),Q(¢))CI™ is an internal estimate of the reachable set

X[t|c R™, for cach t¢ T where the parameters of the ellipsoids are defined by the initial value

problern

a(ty)=2°
11 11
QN=A()Q1 QAWM +Q*(P2()+P2(1)Q? (1) teT

Q(t)=X°

and, consequently, for each s<! we also have

!
E(a(1),Q(1)CX(t,5)E(a(s),Q(s)) + [ X (LEE(B(E), P(£))dE .
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llere X[.,.} denoles the fundamental system associatled to {2.1).

Finally let us quote a formula for the ellipsoid containing the intersection of a finile number

of ellipsoids. (Exercise 5.13. in Schweppe |2[).

Proposition 2.6.

E(a,Q) > N E(q,,Q,)CR" : ic1,r }

where
1. v 1
, _
Q =3 aQ,
1=1
1, v 1
Q “a=3 0,0 g
=1
and
r
Eai:l, a|>0
1=1

3. Dynamical systems with phase constraints

In this section we deal with such continuous dynamical systemns where a restriction on the
solution trajectories is added. We shall study the reachable sets an the viable domains for such

systems. These results are dillerent [rom those mentioned in the introduction.

We shall consider the differential inclusion

H)CA(x(t) 1 P() kT (3.1)
with the initial condition
(L) X9 (3.2)
or the final condition
ot ) X" (3.3)

and we shall require that, additionally, the so called viability condition is met

y()cG()z{) I R(L), teT’ (3.9)
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where T'CTz[to,tl] is a Borel measurable set and the mappings
A:T > R"™"
P:T - convR"
G:T — R"™™
R:T - convR™

. t .
are continuous and X%, X '€ convR™ nonvoid.

Let us fix €20, and consider the attainability set defined by the e-viable trajectories of the form
X (s)= { z(s)e R":
Z(t)e A(t)z(t)+D (1), t€|tg,s],
y(1)eG(t)z(t)+R(L)+8(0,e), t€T'N|Lg,s],
()X} .

The special case € =0 gives us the usual notion of attainability set, X o(s}=Xp-(s). To denote

the reachable set in the absence of viability constraints we shall write X (s).

We deline viable domains in a similar way:
X g (s)= { z(s)e R™:
(t)eA()z(t)1 P(t), tes,t,],
y()eG(t)z(t) L R(t) 1 5(0,e), teT' N[5,
2t )eX"}.
For e=0 we obtain the usual notion of viable set, X - o(s]=X7p-(s). In the absence of phase

constraints we shall use the notation X~ ,(s)CR".

We start with a formula describing the reachable set X.p(¢) quoting a slight modification of
Lemma 2.1. and Theorem 5.1. from the paper by Kurzhanski and Filippova [14]|. [This means

that now the case T'=T is under study.)
Theorem 3.1.

Using the above notations, the following inclusion is true
X)) c N {H(LM)CR® : MeC(T,R™*") }.

where
4 t
H(t,M)=Hy (4,80) X0+ [ Hyg (¢ )P (2)de + [ M(2)[y(t) R (t)]dt
[/ ¢

0 0
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[}
IIM(tl,t):X(tl,t)—_{M(s)G(s)X(s,t)ds
and X(.,.) is the fundamental matrix associated to the system (3.1), (3.2). Or, alternatively,
H(t M) =7(t,,L)
where Z(t,L)CIR" is the reachable set of the unconstrained system defined by (3.2) and
£(1) € [A()- LGOI +PO+LO-RO)]  teT (35)
with
L(0)~ lyg™ (bt M)

and here it is suflicient to consider only those M-s, where the above formula is well defined.

The above theorein can be combined directly with the results related to the integral of ellip-
soids to produce an estimate of the reachable set Xp[t)CR"™ of the form of intersection of ellip-

soids.
Theorem 3.2.

Let us suppose that the sets appearing in the definition of the system (3.1), (3.2) and (3.4) are

ellipsoids:
XO=E(a,Q%
P()=E{p(),P(1)) teT
and
R()=E(F(t),R(t)) teT
and introduce the notations:
Fo=Hp(t1,t0) @ Hyy (£ 1,00)
Fi(O)=Hy (L )P Hy (tst)  teT
and
Fo(t)=M()R()M'(t) teT

Then for the linear trace-minimal external ellipsoidal estimate E{ap(¢;),Qp(t,))CR" of the set
H(t;,M)CR" we have the following equations:
J

aM(tl):HM[ll,to)aO-i-![IIM(tl,t)ﬁ[t]+M[t]F(t]|dt



372
and

1 a1 1
Quilty)=|Tr2 (Fo)+ [| Tr2|F\(s)] 1 T2
ty

Fy(s)||ds ]FO 4] F( + }:Z(t) dt

Tr 2 (Fy) POl Tr2 R0

U

And so
Xy(t) € N { E(ap(t),@u(t))CR™ : MEC(T,R™>") }.

The analogous resulls related Lo viable domains are based on Lemma 5.1. and Theorem 6.1.

of Kurzhanski and Filippova [14] that we quole again:

Theorem 3.3.

'I'(l()) cn { H 7(‘()1N)C“," . N(ic('l‘,l{mxyn) }

where
1 4
H(tg,N) = 11~ (Lot )X -fuy (to,t)P(t)dt——jN(t)ly(t) R()|dt
by ty
I N (tost) =X (tget) jN( X(s,t)ds

and X(.,.) is the same as above. Or, allernatively,
Ili(IO)N) - z(t(h[’)

where Z(ty,L)C R" is the reachable set of the unconstrained system defined by inclusion (3.5)

and final condition (3.3) with

L' ()= §) " '(t,Lg) N(t)
and here again it is sullicient to consider only those N-s, where the above formula is well defined.
In the sequel we shall consider only the case when T” T*, i. e. is the finite set of Section 1.
By this restriction we are able Lo apply compaciness arguments and reduce to a finite family the
sels that are to be intersected in the formulae for the reachable sets or viable domains. The
results of Kurzhanski and Filippova quoted in Theorems 3.1. and 3.3. clearly remain valid in
Lhis case and Lherefore the staltements related Lo ellipsoidal estimales, as well. Now the integrals

over the set T* turn into finite sums.

Corollary 3.1.
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Xops(ty)) € N {H{M)CRe : MeC(T*, RRmxn) }.
where

ty ,
Bt M) =y (t,80) X0 I{IIM(tl,l)P(t)dt b EIM(T,-)[y(r,]-R(r,-)] (3.6)

Hy(t,0)=X(tt) - Y M(r)G(r) X (r,.t)
Tl{ltitll

Corollary 3.2.

X paltg) ¢ N {H (1, N)CR : NeC(T*, ™ ") }.

where
t
H oM< pbot )X~ [ 1Mt P~ 55 Ws)ly(s)-R)

™ y(tg:t) =X (to,t) - .e% ”N(T.)C(T.')X(T.'J)

For this special case we develop a formula that approximates the sets Xp+(¢)CR”™ and
X r«(t)CR"™, in some scnse, with a finite intersection of ellipsoids. Our first proposition
describes a larger set, XT.|£(t)Cll" from the inside, with bounds imposed on the norm of the
function M, or NEC(T*,R™*").

Proposition 3.1.

If we keep the notations of Corollary 3.1. then the following inclusion is true:
XT.,((t) DN {HEM)C R : MCC(T*, R™*"), [[M]],,<C }
where

o 2 X0
€

Proposition 3.2.
The mapping
H((,.) : C(T*,R™*") - convR"

defined by equality (3.6) is continuous.

In particular,

R(H (¢, M), (L, My)) < ¢ - |[M=Mq||,
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where
e=1X°] |-;':1 166 X(roto et [ PO ;1 G X (1) oot ;':l RG] (37)

Theorem 3.4.
Let us use the notations ol Theorem 3.2. and Corollary 3.1. then for cach €>0 there exists a finite

set of functions

Mj :T* — R™X1, jGJ:_](

such that
XT‘,((tl) ’rS(O,() 2 m{H(tlrM]')CR" : ]6-’}
where the set of functions {MJ- 1 j€J} is an €/c-net in the set:

2- |1 Xq(t) ]

{ MEC(T* R™*) ¢ ||M|],o< ;

}

and c€R is given by (3.7).

An analogous statement is valid for the viable domain, that we shall formulate in comnbina-

tion with Theorem 2.2.;
Theorem 3.5.

Let us use the notations of Theorein 3.4. and Corollary 3.2., then for each ¢>0 there exists a

finite set of functions
N;: T* — R™*", jeJ=J,
such that
X7 e (8g)18(0,0) > N{H (o, V) R™ : jeJ}

where the set of functions {N,€C(T*,R™*") : jeJ} is an €/c-net in

(vec(remen) ; ()] < 2P,
and
= 1P 51Xt oot [P0 151160 X (08 oot 35 1IR() -
IFurther

X e [(to) +5(0,6) O N{E(a;{t0),Q;{to))CR™ : jeJ}

where the parameters of the ellipsoids are defined by the solutions to the problem
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§;(0=A(0)-L,()GO]a(0) +p) + LW 7] teT
a(t)=a"
Q,(1)=14()~L,() G0]Q;()+ @ ([A W)~ L (1) G(A)] +
FQF OIPP O+ (LOROL ) P O+ 0RO 10F 1) ter
Q,(t)=Q"
with the set of generalized [unctions (distributions)

Li:T— ™" jed
defined by
r

{L,'(s)ﬂo(s)ds =Y (IFNJ-)_l(‘oJi)N,‘(T.‘)SO(T.') .

1=1

4. Adaptive control

The formal definition for the control can be given as follows. Given the set MCR" we look

for admissible controls, i. e. [unetions
U: TxR"XY — convR"

U(t,p,y)CV(t) teT

that are measurable in ¢t€T for each fixed p€ R™ and upper sernicontinuous with respect to p.

These controls have to meet [for almost all t¢T

as well as (1.3) and (1.7).

Instead of the above problem, we shall deal with a restriction, where the condition (1.3) is
substituted by a stronger one. This is the blunt [1], or raw [8|, case. We shall also need the fol-

lowing:

Condition 4.1.
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There exists an admissible control u(t)eV(t), teT such that for the corresponding trajectory
p(t)eR", LT, (1.3) and (1.7) holds simnultaneously for each measurement yeY.

Denote further
Wlt]=Wy(Ly,M)C R
the viable domain at te€T of the system constituted by (1.1), (1.7) and the inclusion
p(s)EK (5 ]1) (4.1)
holding for each sc|t,t;]T* where

K (s ]t)=K(s)=Q*(5 [t.Q(L,y [t Q™)) sc[t,ty] - (4.2)

Here Q(t,y,]ty,Q®))CR™ denotes the reachable set of the system (1.4), (1.5) and (1.6) at t€T,
and Q*(s|t,Q)C R" the reachable set of the unconstrained system (1.4), at s€[t,¢,], started from
the initial condition ¢(t)cQ.
If we fix some t€T, then we clearly have that (1.3) holds, as obviously

(s]t)+ Q[s]CK[s] V€T,
that is usually a proper inclusion. Therefore, if we are able to ensure that (4.1) holds over all
s€T*, then the original constraint (1.3) also holds.
According to Leruna 4. and Theoremn 2. of Kurzhanski and Nikonov [8], we have:
Theorem 4§.1.

If Condition 4.1. is valid, then the sels Wy, (¢,y,,M)€convR", LET are not void, the mapping
Wb(t,yt,M], teT is measureable in t€T and is upper semicontinuous from below in the variable
peER™.

Further, if we suppose that
Pto)EWy,(Lo,y ;M)
and define the control Uy [t|=Uy(t,p,y,) with the relation

dp(l,[V(t)), with l€dd(p |W(t,y,,M)), if pg W (¢,y,,M)

Un(tpowe)= V(t), if peWy(ty,M) (13)

then it will be adinissible, and for any corresponding trajectory p(t)e R", t€T and any admissi-

ble measurement y€Y, the relation
p()EW(t,y, M) teT (4.4)

holds, i. e. the control solves the problem.
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Let us now describe the procedure, relying on our ellipsoidal calculus, that yields a set
W, (t,y,,M)CR" such that for each ¢ T,

W (t,y,,M)C Wy, (L,y,,M) +S(0,¢) . (4.5)

The construction follows the definition of the set Wy, (t,y,,M)€convR" ensuring at cach step
that the appropriate type of inclusion be valid. We shall suppose that the sets delining the prob-
lemn are ellipsoids, that mcans no restriclion, as original sels can be substituted by their ellip-

soidal estimates. Accordingly we use the following notations:
V(t)=E(o(t),V(t)) t€T
M=L(n,M)
P(1)=E(p(1),P(t))  teT
R(t) - E(F(2),R(1)) 1T
QW-£E(7”,g")
K()=E(k(t),K(t)) tcT*

(1) External ellipsotdal estimate for the set Q*(s|t,Q(t,y, |t0,Q(0)))C R"

By the definition of Q*(s[t,Q(t,y, [tO,Q(”)))LR" and Theorem 3.2. we have for an arbitrary set
of MeC({ty,t],R™ "), ie J, that

Q1. 110.Q™) € M { Elapy (1), Qar (D) R - MeClJ1gul|, R™"), ic J )

where
t t
apg(t) Hpg(to)@ D1 [ 1y (s)p(s)ds 1 [ M(s)|u(s) F(s)|ds
ty L
and
Qumlt)=
1 ¢ 1 ¢ 1 \ ] . t s
L L > F F(s k.
Tr2 (B 1 [ 12 Ry (s)lds 1 [ 2 [yfods]| 0 [ gy
to ty D gy LU o, 90,
TI'r*(Fy) Tre|F(s)] Tr = Fy(s)]
t
yi(5) - Xy(t,5)-- [ M(E) G (8) X,(€,5)deE
i
and

Fy- ”M(lu)Q(O)”M'(‘())
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Fi(s)=Hy(s)P(s)Hy (s)  seltgt]
Fo(s)=M(s)R(s)M'(s)  s€|tyt] .

Iiere the function X, : TxT — R"*" is the fundamental system associated to (1.4).

Let us follow the evolution of each ellipsoid obtained in this way, now without constraints. Then

we obtain

Q* (5[, Q(4y [t Q™) € N { Eapg(s]1), @y, (s 1)) R™ s Mc C(|tg,t|,R™7), 5¢J; }

where
apg(s |t)=Xy(s |t) apl( l)*fx 6)B(€)dE
and
Qulst)=
1 s 1

Tr ¥ 1Xa(s:t) Qult) Xy (0,04 [ 1r ¥ X, (.8) PO Xy () e

X,y(5,) Que(t) Xy (s0t) }__ Xa(s.6)P(§) X, (5,8)

T
lrzlxz(s,t)QM(t)Xz(st)l Tr | X,(5,6) P(€) X, (5,6)]

Let us use now P’roposition 2.8. to give an external ellipsoidal estimate for the intersection.

According to this, if

Y a,=1

icl,
a,>0
then the ellipsoid E{a(s [t),Q(s [t))C RR™ defined by

Qs 107! = 53 el Qu (o101

i,

1Q(s[6)] ta(s 1)~ 35 o Qay, (s 11)] Py (5 t)

i Jy
contains the intersection of E(e,(s]t),Q,(s{t))c R", 1¢ J;. llence using Proposition 2.2., we have
Q*(s[6.Q(t, 1t Q™)) 1 S(0,6)C E(a*(s [1),Q¢(5 |1)) (46)

where
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ac(s|t)=a(s|t)

1 1
Q(s |l):lTr 2Q(sft)+es?

[ty , E
1 1|
Tr2Q(s|t) es?
(i) Internal ellipsoidal estimate for the set K (s [t)CR"
Condition 4.2.
Suppose that for each t€T and s>t
int(E(k(s),K(s))DE(a*(s]1),Q(s |t)) .
By formulae (4.1), (4.2), (4.6) and Proposition 2.2. we have that under the above condition
K (s [t) DE(k (s]t), K (s]t)) +5(0,¢)
where
k\(s1t)=k{s)—a‘(s 1)
Ry(s[)=(1-x"")K(s) - (1-,) Q(s |t)
1
V2R
K=min —Z:—M—,z\m‘h(s t)
Tr?[Q(s|t)]
and A, (s]¢)€(0,00) is the minimal eigenvalue of the pencil of matrices K(s)—AQ(s|¢).
(1i5) The construction for Lthe set W [,y M)CR"

Our task now is to find an internal estimate for the viable domain W (¢,y,,M)CR" of the sys-
tern (1.1), (4.1), (4.2) and (1.7). The previous construction ensures that Theorem 3.5. can be
applied here. In addition to the requirements of the theorem, the f[inite set
{ N;eC(T*,R" ") : jeJ; } can be chosen in such a way that:

(i) It does not depend on the actual value of teT.

(i) 1f it contains the function NeC(T*,R"*") then it also contains all the functions of the form
NBeC(T*,R"*"), icl,r where

; 0 if j<i
N()(Tj); N(rj) il j>i

(iii) For the functions obtained in the above procedure we have

det [ p(8,€)l #0  VLET, £gft,ty] .
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The parameters of the ellipsoids at the instant t€T are defined by the value at t€T of the solu-
tions to the problem
i (s)=[C(s)~L(s)]ar (s)+ 0(s) +Ls)ky (s [t)  s€(t,t)]

ay(t)=p"

Qp(8)=[C(s)-L(8)]QL(s) + QL(s)[C(s) - L(s]|+

1 1

1 1 1 1
+QE()P2(s)14 (L(s) Ry (s 1)L () 21+ P2 ()4 (L(s) K (s )L (5)) 2 1QF (5)  se[tity]
Qut)=@".
Here L is one of the generalized functions (distributions)
Li: T — R™",  jeJ,.

defined by

r

4‘Lj’(s)go(s)ds = E(II‘NJ_)"(to,ri)NJ[rl-)go(u) .

Completing the construction for the set W (¢,y,,M)CR" we are able to formulate the main
result of the paper, where we deline a control that keeps the trajectories within this set. This
means that, although the trajectories will not meet condition (4.1), but as a consequence of (4.5),

the relation
dip(t).K[{]=Q[t]) <€, VieT*

will hold.

Of course, it may happen that certain trajectories are not approximated by the above construc-
tion. Our technique allows us, however, to do this, as well. Namely, its converse can be given in
the special case when (1.4) is substituted with the corresponding difference equation over the set
{toe}UT* C T. Then, instead of the e-internal estimate in (4.5), we can obtain e-external esti-

mates, i. e. a mapping with the property
We(¢,y,, M} +S(0,e) DWW (t,y,,M)

In that case, an analogously defined control will keep the trajectories within the sets
We(t,y,,M)CR", teT.

Condition 4.3.

There exists an ¢>0 and an admissible control u(t)€V(t), t€T such that for the corresponding

trajectory p(t)eR", teT, the relation

p(DEB(E,(t]0).K,(t]) vV tcT*
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and (1.7) holds simultaneously for cach measurement y€Y.
Theorem §.2.
Let us suppose that Conditions 4.2. and 4.3. hold. Then the sets W (t,y,, M)CR", (€T are not

void and the corresponding mapping is measureable in t€ T and is upper semicontinuous from

below in the variable pe R".

If we suppose that
p(L)EW (L5, M)

and define the control U,{t,y,,M) with forinula (41.3) after a substitution of W [¢,y,,M)CR" by
W_(t,y,M)CR™ then it will be admissible, and for any corresponding trajectory p(t)cR",

te T and any admissible measurement yeY, the relation
p(t) € W (t,y,M) C Wy |t[+-S(0,¢) teT

holds, i. e. the control approximately solves the problem.
Proof.

The proof of admissibility for the control U, is identical with that of Lemma 4. in Kurzhanski
and Nikonov |8].

In the sequel, we shall use the following notations:
wel‘|:we(‘1yt:M)
U,[t]=Ug(t,y,M)
and Xpg(.,.) is the solution of the matrix differential equation
Xp(t,to) = B(t)Xg(t,tg) €T
Xp(toto)=E .

If there is a t*€T such that p|t*|¢ W [t¥], then it is easy to see that there is even an inter-

val (1,,7;)CT such that

pls]lgWo(s)  se(rry) .

Now, again by the delinition of the distance function and that of subgradient, this implies that

over all this interval, we shall have
<lu|s|> = p(I,|W [s]) (4.7)
and

uls| € V(s).
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for the control u that produced the trajectory p.
We shall estimate the increment of the distance
Ad|t] = d|t-+-At-d|t], |t,t+At|C(r),m)
with
dlt] = d(plt|, W[} -
Let us have
Adlt] = Aj+A,
Ay =d(p[t1 At W[t +AL]) — d(Xp(t-+ALL)p[t],X(t1 AL,t)W [t])
Ay = d(Xp(t4+-ALt)p|t],Xp(t+ At L)W [t]) — d(p[t], W [t])
Let us denote now by {=1,, the vector that defines the distance in the first term of A|. Then

Lt AL
Ay < <LXp(t+ant)plt]> + [ <LXp(t+At,8ulg]>dE — p(I,|W [e+AL]) —
L

—<L,Xc(ttAplt]> + pl, | Xol(td At,t)W [t FAL])

t+AL
A< [ <L Xp(td AtEulg>dE + Ap
3

As the sets W are a finite intersection of ellipsoids, their support function is the minimum of the
supports of those ellipsoids. Let us select now the [unction L in such a way that this minimum is
achieved in the second term of Ap, and extend it to the interval |¢,t +At|CT with zero values.
We selected the set of functions { N;€C(T*,R"*") : jcJ, } in such a way that this is possible.
Then:

Ap < P(IYIE(GL(t+At),QL(t+At))) - »(l, IXC(t+Atat)E(aL(t+At)1QL(t+At)))

By the semigroup property of the ellipsoidal estimates stated in Theorem 2.2., and the special

form of L, we have:

Ap < pU),XC—L(“'"A‘J)E(“LU):QLU))) -

L1 At
- { <L, Xo_(t+ALE) V(&) >dE — p(l, | X (t+AL)E(a;(t),Q,(1)))

Again by the special form of L, we have that the two fundamental systems coincide over the

interval [¢,t+At|CT, and so we obtain that

t+AL
Adjt] < [ <=1L,X¢(t+ALE) V()>dE -
[
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Lt AL
[ <=LXo(t+ALE)ulé]>de + || Xo(t+Att)—E] | d|t] .
t

Hence, using formula (4.7),
Adt] <C-d|t]-At+o(AtL) .
This, together with the easy to see relation
Ad[t] <C,-AL, LT,

ensure that the function d|.] decreases over each interval where it has positive values, and so, the
proofl is complete.

We should like to point out here that the definition of U, involves finding the nearest point
map for a finite intersection of ellipsoids that is nothing else than the wellknown optimization

problem of minimizing a quadratic function under a finite number of quadratic constraints.
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