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A general model for the generation of traffic is described. It is based on the assumption 
that a traveler tries to maximize the territory he can visit and exploit, by properly allo- 
cating a travel money budget (TMB) and a travel time budget (TTB) among available 
transportation modes (Zahavi, 1979). On the other hand, the evolution of total trafic, 
with constant boundary conditions, is assumed to follow the usual dynamics of human ac- 
tivities, described by systems of logistics contained in time boxes of about 55 years or the 
*called Kondratiev cycles. 

This conceptual frame is applied to  a certain number of cases, where boundary con- 
ditions have changed because natural barriers have been overcome by bridges and tunnels, 
in order to grasp the essential modifications in traffic that follow and their mechanisms. 

The results of these analyses have been applied to the case of the Messina Bridge, in 
order to evaluate its effects on traffic in different circumstances. It appears that the 
greatest impact of such a bridge will be on local traffic, and consequently its greatest po- 
tential utility ought to be found there. It may also stimulate the development of a linear 
metropolis - for instance, along the contiguous coasts of Calabria and Sicily - with de- 
cisive consequences for the structure of human settlements in that region. 

The first part of this paper is dedicated to assembling an efficient model of traffic 
generation, including the effects of geographical impediments and their removal. Part I1 
deals with a number of case studies where the model's validity is tested. Part I11 applies 
the model and analogical experiences to the case of the Messina Bridge, to assess the 
consequences of different configurations. 

This study was supported with a grant from Consiglio Nazionale delle Ricerche, Isti- 
tuto di Ricerche sulle Attivita Terziarie. 
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Building Bridges and Tunnels: 
The Effects on the Evolution of Traffic 

Cesare  Marchett i  

Part I. The Models 

The Territorial Concept of Travel 

In order to forecast, we need some theoretical guidelines, and in the area of trans- 

port many theories compete for that role. Most of them construct from the grass 

root and try to interpret, in a quantitative way, the preferences and utilities of po- 

tential travelers. 

I have somewhat arbitrarily chosen a model originally developed by Zahavi 

(1979) about 20 years ago, when he was working at  the World Bank: the UMOT 

(Unified Mechanism of Travel) model. My choice is based on the affinity of 

Zahavi's assumptions with those embodied within my own systems analyses of so- 

cial behavior, and the fact that  UMOT requires only objective inputs with no need 

for local recalibration. 

Because UMOT does not depend on the classical assumption of a Rational 

Economic Actor, the model has long been opposed by traditional economists. 

Nevertheless, UMOT permits forecasting of physical variables (e.g., pass-km trav- 

eled) through a simple maximization procedure when boundary conditions (such as 

price and speed of competing transport modes) are changed. 

What UMOT essentially asserts is that m a n  i s  a territorial animal and, as a 

consequence, he tr ies t o  mazimize  the terri tory he can explore and exploit under 

certain constraints. The constraints are: 



- Travel  T i m e  Budget ( T T B )  or the mean time traveled per day by an active 

adult. Extensive field tests in the USA, Canada, the UK and Germany have 

shown that  this time budget is remarkably constant a t  least in modern 

Western societies, averaging slightly more than one hour per day (Table 1.1). 

- Travel  Money  Budget ( T M B )  or the money spent for travel, measured in 

terms of disposable income available to  the traveler in question. Field tests 

show that  this quantity, expressed in relative terms, is also constant, 

amounting to  about 13% of disposable income (Table 1.2). 

Within these constraints the traveler allocates T T B  and T M B  among different 

transport modes in such a way as to  mazimire  traveled distance,  i.e., basically the 

size of his territory. 

These concepts do not necessarily contradict the idea of free rational choice. 

They indicate that such choices are made inside a context, a niche, a budget, 

which the "free" actor fills by a continuous search for opportunities. 

The principles of T T B  and TMB, with great conceptual parsimony, organize 

such complex decisions as the the way people choose their residences along a trans- 

portation corridor ending in a center of employment. Take, for example, the case 

of Washington, DC (Figure 1.1). Because this figure incorporates a cross-income 

analysis, it shows the quintessential role of travel t ime  in  the structuring of a hu- 

m a n  sett lement.  The effect of income is shown in Figure 1.2. 

An important detail is the way people divide their total daily travel distance 

into daily tr ips.  Figure 1.3,  which also refers to  two of the Washington "corri- 

dors", is enlightening: in a given environment the number of trips is independent 

of the distance traveled, i.e., speed. 

Clearly, when people gain speed they use it to travel farther and not to  make 

more trips. In other words, most individuals treat their territory the same way, 

regardless of its size. The important parameter in the environment that  changes 



the number of trips is the size of the city. A small city (10' inhabitants) calls for 

five or six trips a day, whereas a large city trims the total to three. 

Table 1.3 shows that ,  with some limited variations, the same principles and 

numbers are valid around the world - an important point, as we will use some of 

the conclusions to deal with our problem, without local calibrations. This stabili- 

ty suggests that  an important pattern of human behavior has been uncovered, re- 

lated to latent instincts that  survive even in our modern age. 

Another observation, related to the TTB,  leads to a functional definition of 

the geographical eztension of a city: the city is that geographical area within 

which one travels during the day, every day, and returns home. The more or less 

universal T T B  of one hour, then, fairly sharply defines the extent of the city and 

links it t o  the speed of the transportation system, public or private. Because the 

different modes of transport - walking, bicycling, bus, car, subway - have different 

speeds but also different costs, the possible allocations of TMB makes the city ap- 

pear to increase in size with increasing income. This effect can be enhanced by 

providing fast and frequent public services, like Metro suburban railways, and by 

properly pricing them. 

Fast transport systems can thus conglomerate strings of preezisting centers 

into single functional units that provide a much wider range of opportunities for 

people living there, in terms ojjobs, housing, services, and entertainment. 

This definition of a city easily accommodates such breakthroughs in transpor- 

tation technology as that  afforded by the airplane. Because available income is in- 

creasing, and consequently TMB, and also because cost in real terms of air trans- 

port is decreasing, ever-larger strata of users can allocate some part of T T B  to  this 

transport mode. 

For example, every day about 3000 passengers fly between Milan and Rome. 

Most of them make a one-day trip. This means a progressive integration of the 



two cities in what Doxiadis and Papaioannou (1974) calls Eperopolis. Similar 

phenomena occur in many countries, sometimes linking a string of cities by air 

shuttles. 

An analysis of air corridors - such as Boston-NY-Washington, San 

Diego-Los Angeles-Sacramento-San Francisco, Tokyo-Osaka, using city rank size 

maps at  a world level - show them emerging as functional single units, even if geo- 

graphically the human settlements appear as dense, separate clots (Figure 1.4). 

This shows the central importance of transport systems, and in particular their 

speed, in defining the extension of the functional city and ultimately the geograph- 

ic evolution of human settlements (Figure 1.5). 

The functional limits of a city can be determined to a point by the mobility 

of the elite who can afford to  use the fastest and usually most expensive form of 

transport. For example, the number of day-trippers between Milan and Rome 

cannot compare to  the number of passengers transported daily in Milan's Metro. 

But money is not the sole constraint, as we have seen. 

Other constraints are time and the number of trips per day, which we can as- 

sume for simplicity to  be about three, as our analysis refers to  fairly large conurba- 

tions. This means that  even making a long trip per day, and two short ones, one 

cannot allocate much more than 30 minutes to the long one. Consequently, the 

area of daily use is limited by the distance covered by the fastest means of tran- 

sport in 15 or 20 minutes. 

Thus, time is of quintessential importance in determining the volume of 

traffic along a transport line, because it discriminates between the population that  

will take it every day more or less, like the Metro in Milan, and those who will use 

i t  only occasionally, like the air commuters between Milan and Rome. The densi- 

ty of traffic differs in the two cases by orders of magnitude, and the switch is clear- 

ly visible when prices remain basically the same but transit times change drasti- 



cally. A typical case is when a slow ferry is replaced by a fast toll bridge, as in 

Lisbon, Istanbul, and Hong Kong, so that  traffic switches from intercity to intraci- 

ty mode. 

UMOT is very useful in perceiving the mechanisms of travel demand forma- 

tion and interpreting counter-intuitive phenomena, such as the fact that  zeroing 

the cost of public transportation actually increases car traffic in the center of a 

city. Because the car is perceived as a faster mode than the public service, it is 

then taken as far as the TMB permits. As public transport prices drop, the money 

saved will go into purchasing gasoline and extending in time the use of the car. 

Perhaps the most important concept introduced by UMOT is that  of the 

fixed TTB. When a manager catches a very expensive plane in order to "save 

time", he actually hides his natural instinct to expand his territory of action. In 

fact, the time he saves will be used to catch anot'her plane, his travel time being 

organized around the best way of spending his'TTB of one hour per day. 

UMOT, however, is not so efficient for grasping long-term trends because it 

requires foreknowledge about the speed of future transport modes and user prices. 

For that  reason we will use a complementary model, saying nothing about 

mechanisms, but giving crisp maps of the evolution of systems over periods as long 

as a century. Because the lifetime of a modern bridge is of that  order of magni- 

tude, a t  least, this i s  the necessary time frame within which we must work. 

Long-Term System Dynamics and the Volterra Model 

The Volterra (1931) model states that  every human activity develops logistically 

over time in a diffusive mode filling a certain potential - a market or a niche. This 

"Darwinian" concept, which uses Volterra-Lotka (1925, 1926) equations as a for- 

mal background, was originally applied to map the dynamics of energy markets 

during the last 100 years (Marchetti and Nakicenovic, 1979). It has been used re- 



cently for an extensive mapping and forecasting of transportation systems in Eu- 

rope for the last 100 years and the next 20 (Marchetti, 1987). Some details of the 

model are given in the Mathematical Appendix. 

T o  illustrate the Volterra notion, we describe the evolution of the American 

transport system in terms of its infrastructure growth (Figure 1.6) and passenger 

use (Figure 1.7). In the two figures the actual value a t  a given time (e.g., railway 

track length) is given as a percentage of total infrastructure length (e.g., canals + 
railways + paved roads), expressed in Fisher-Pry notation (see the Mathematical 

Appendix). In the case of passenger-km, we represent a modal split, expressed in 

percentages of total traffic. 

We can thus see tha t ,  apart  from any economic considerations, usually bound 

t o  restricted periods of time, the "physics" of a given system evolves with great 

stability so tha t  surprisingly accurate and long-range forecasts can be made over 

long periods. 

T o  show tha t  this patterns is universal, and not linked to  specific forms of 

economic and social organizations, the same infrastructure growth analysis is re- 

ported for the Soviet Union in Figure 1.8. Unfortunately, da t a  on air pass-km 

were not available, which in a sense robs the analysis of its look into the future. 

The  analysis of Figures 1.6 and 1.8 shows a remarkable periodicity in the in- 

troduction of new modes of transport and their infrastructures. One wonders 

whether some new system is now brewing. The  question is relevant, because even 

if introduced in the near future, the influence of a new transport system would be 

felt during the operation of the Messina bridge, a structure intended t o  serve for 

another century, a t  least. 

The  analysis can be repeated looking a t  each infrastructure separately, as if i t  

grew within its own niche, independent of the other system infrastructure. The 

procedure is not fully defensible, but  i t  gives a clear picture for a t  least the first 



stages of a new technology's penetration. As Figure 1.9 shows, a new mode of 

transport,  as mirrored in its related infrastructure, was introduced every 55 years 

in the USA from 1750 to  1950. 

These 55-year or Kondratiev cycles also emerge from the historical introduc- 

tion of primary energy sources. From the records, one could have predicted the 

peak of nuclear energy use in 1980 (Marchetti, 1981) and can predict the emer- 

gence of fusion energy around 2025. 

A new transport mode should enter the market around the year 2000. As I 

have shown in my analysis on transport systems in Europe (Marchetti, 1987), the 

number one candidate for this technology is the Magnetically Levitated Train 

(Maglev), which may play a central role in the potential traffic on the Messina 

bridge. 

Incidentally, Maglevs have reached technological maturity as basic innova- 

tions. Prototypes have run up to  600 km/hr, and have been designed both for in- 

tercity service, e.g., in the frame of a third 800 km Shinkansen line, and for intra- 

city service, i.e., Metro and suburban lines. Their acceleration, speed, and preci- 

sion of control, not to speak of the absence of noise and vibrations, make them an 

inevitable choice for future Metros. 

T o  my knowledge, about 1500 cases of technology diffusion have been 

analyzed using the Volterra model, mostly by researchers a t  the International In- 

stitute for Applied Systems Analysis (IIASA). The  results are so consistent over 

such a large variety of subjects tha t  we think the model has great descriptive 

power and universality when properly applied to  dynamic social and economic sys- 

tems. For this reason, i t  will be used extensively in mapping the evolution of 

traffic and the effects of "bridges and tunnels" in various test cases. 



Table 1.1. Travel expenditures as percentage of disposable income in selected countries 
and urban areas. 

% of total 
Site Survey period household expenditures 

Nationwide: 
US 1963-1975 13.18 f 0.38 
Canada 1963-1974 13.14 f 0.43 
UK 1972 11.7 
West Germany 1971-1974 11.28 f 0.54 

% of household income in households: 

With cars Carless 

Urban area: 
Washington, DC 1968 11 .O 4.2 
Minneapolis-St . Paul 1970 10.1 3.4 
Nuremberg 1975 11.8 3.5 

a~ource :  Zahavi, 1979. 



Table 1.2. Daily travel time (in hours) per motorized traveler for selected cities, corm- 
lated with selected variables. 

Site Survey date Variable 

High income Low income 
Bogota, Colombia 1.05 1.78 
Santiago, Chile 1.09 1.52 
Singapore 1.14 1.36 

Car travel Transit travel 

Washington, DC 1955 1.09 1.27 
1968 1.11 1.42 

Minneapolis-St. Paul 1958 1.14 1.05 
1970 1.13 1.15 

All USA 1970 1.06 0.99 

St. Louis 1976 Car availability 
0 car 1.06 
1 car 0.99 
2 cars 1.05 
3+ cars 1.06 

average 1.04 

Nuremberg region 1975 Household size 1 car 0 car 
1 1.22 1.41 
2 1.25 1.42 
3 1.28 1.36 

4+ 1.27 1.35 

Munich 1976 Survey day 
day 1 1.15 
day 2 1.16 
day 3 1.16 

Total 

Toronto 1 964 1.09 
Calgary 1971 1.11 
Montreal 1971 1.18 

SOURCE: Zahavi, 1979. 
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Part 11: Case Histories 

Overcoming Natural Barriers 

The two models delineated in Part  I will now be used to analyze and interpret 

what happened in a number of places analogous to  the Messina case. Basically we 

will look a t  the evolution of traffic through barriers of a certain permeability and 

a t  the effects of a sudden increase of permeability by the opening of a bridge or a 

tunnel. 

Barriers to  the exchange of people, goods, and messages have always attract- 

ed the interest of physical geographers and I summarize here their relevant 

findings. 

The effect of a river on the development of a city is perhaps the most com- 

mon example, as shown schematically in Figure 2.1. The city on the left side of 

the river, where the original settlement was located, systematically grows larger 

than the city on the other side. Four North American cities demonstrate the vali- 

dity of this finding: Detroit-Windsor, Cincinnati-Covington, Philadelphia- 

Camden, St. Louis-East St. Louis (Figure 2.2). A river is a strong enough barrier 

for the two parts of a "natural" city to  develop strong separate identities and 

different names. In our case studies, we examine Lisbon-Almade, 

~stanbul- skii id an, and Kowloon-Victoria, among others of this type. Winnipeg's 

expansion across the Red River is shown in Figure 2.3 a t  four different dates, 

between 1884 and 1948, with arrows indicating the actual thrust of growth. 

Human settlements interact not only through the movement of people and 

goods, but also through information transfer. Telephone calls and letters are 

easier t o  measure than people's movements and can be used as proxies. 



The effect of a barrier of some sort is shown schematically in Figure 2.4, 

where the width of the bars represents density of telephone conversations, based 

on a gravitational model in a homogeneous system, from Gossipville to  its en- 

virons and other cities, and divided by an appropriate factor linked t o  the permea- 

bility of the barrier. 

When a lake is the barrier, the communication effect is sketched in Figure 2.5 

t o  visualize the process. The barrier can also be linguistic and cultural, as for the 

French-English boundary in Canada, or political as for Canada-USA. The last 

cases were studied by Ross Mackay (1968), using the gravity model for calibration 

and are reported in Figure 2.6. These figures show amazing results. Calls between 

Montreal and English-speaking Canadian cities are roughly ten t imes more fre- 

quent than for gravitationally equivalent US cities. So much for cultural solidari- 

ty across political barriers! As might be expected, however, calls between Mont- 

real and French-speaking cities were more frequent than for English-speaking cities 

in Canada, varying by a factor up to  ten for small cities, but almost equal for 

large cities. 

Viewing wedlock as  a more intensive form of information transfer, Figure 2.7 

reports on marriages between one town (Spring Mills) and its neighboring com- 

munities in a mountain region of Pennsylvania. Valleys are in white here, and it 

is clear that the tendency for marriages is along the valley, mountain ridges acting 

as quite impermeable barriers. 

The same pattern occurs in the microenvironment of a city, noted by Zipf 

(1972) (Figure 2.8), who counted residential blocks between the prior home ad- 

dresses of newlyweds. The relation is perfectly gravitational. (In two dimensions 

gravity forces appear as l/distance and not as the inverse squares as in three di- 

mensions.) 



These examples emphasize the importance of objective forces (such as physi- 

cal geography) in shaping human behavior - an important reason for choosing ob- 

jective models to  help map and forecast traffic flows. 
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FIGURE 2.3. Diffusion on Winnipeg from site of original settlement on the Red River, 
1884-1948. (Source: Abler at al., 1972). 
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FIGURE 2.6. Quasi gravitational plot of telephone calls from Montreal to Quebec cities 
(upper line) and Ontario cities (lower line). 
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FIGURE 2.7. Marriage ties between Spring Mills, Pennsylvania, and neighboring com- 
munities: valleys are white; mountain areas are shaded. (Source: Abler et al., 1972). 
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FIGURE 2.8. Number of marriages in a city as a function of distance between the 
partners' prior residences. (Source: Zipf, 1972). 



The Bosphorus 

A bridge built across the Bosphorus in 1974 exemplifies the general principles dis- 

cussed above and has direct relevance to  the Messina bridge case. The first Bos- 

phorus bridge was originally conceived as part of an Asia/Europe Motorway, and 

its location was chosen on purely technical grounds - in particular, the fact that  

the Bosphorus is narrowest a t  that  point (Figure 2.9). The motorway basically 

carries trucks and lorries, moving goods between Asian Turkey and the Middle 

East and Europe. 

The consequences of two very important elements seem to  have escaped the 

bridge planners and Freeman Fox-Botek Construction Engineers, who gathered 

traffic data  before and after completion of the project: 

(1) The average ferry crossing, including some waiting time (15 minutes), takes 

about one hour. 

(2) On the Asian side of the Bosphorus, a conglomerate of human settlements 

holds perhaps one million people. 

The one-hour barrier of the Bosphorus kept the settlements on the two shores 

operating as two separate cities, following the T T B  principle. Reducing this trav- 

el time, using a car or a dolmush (taxi van), to  presumably ten minutes or less, 

the two cities have tended to  merge, with all the internal traffic characteristics of 

a megalopolis. The same phenomenon applies to Lisbon and Hong Kong. 

Transit  t ime reduction triggered a quantum jump i n  cross-Bosphorus t r a f i c ,  

owing to  the preezistence of a poorly connected, but structured sett lement ready to  

ezploit the removal of a natural ( t ime)  barrier. The effects are due to  appear rela- 

tively quickly, as compared with opening a fast link between Istanbul and an e m p  

ty Asian territory, which could have fostered new urbanization. 



For cost-conscious long-distance truckers, the difference between the bridge 

to1.l and the ferry fare is more important than saving half an hour or so. Conse- 

quently, we should not expect great changes in the number of trucks carried by 

ferries, nor in the trends of truck traffic. 

The dynamic trend of the situation is shown in Figure 2.10, where truck 

crossings over the Bosphorus by bridge and ferry are reported and estimated. Ac- 

cording to  the logistic saturation point traffic will be 4.5 million crossings per year 

around 1995. The time constant of 24 years shows the effect of a Kondratiev 

wave. To be more orthodox, the exercise should be repeated subtracting the 1940 

saturation of ferry traffic, but it is likely to  have been very small in comparison to  

the 4.5 million to  be reached in 1995. 

What comes out clearly from this analysis, imperfect in many ways, is that  

the opening of the bridge has not influenced truck traffic much during the last ten 

years. The increase can be completely attributed to  normal economic development 

and evolution of the motorway interchange. 

We can cross-check this finding by observing that a time constant of 24 years 

means a growth by a factor of ten in 24 years, which amounts to  a mean growth of 

10% per year. Looking a t  Turkey as a whole, truck traffic (ton-km) increased dur- 

ing the same period by a mean of about 9% per year. Thanks to  the inevitable im- 

precision of these statistics, the coincidence is strikingly good. 

With respect to  total vehicular traffic over the bridge, we have a completely 

different picture (Figure 2.11). Traffic rushed onto i t  from its opening and sa- 

turated a t  29 million vehicles per year in just five years. Part  of this traffic came 

out of the ferries - about 4.5 million vehicles (Figure 2.12). The rest was "creat- 

ed-. 

In 1974 the bridge carried 11.8 million vehicles of which only 3.75 million 

were taken from the ferries (projected minus actual traffic). The traffic created 



was then 8.0 million vehicular transit in a year and a half of operation. Four years 

after its opening, the bridge was technically saturated. The trucks that had 

motivated its construction can use the bridge only at night, with no great advan- 

tage over ferry transport. 

At saturation around 1978, the traffic created can be estimated by subtract- 

ing the saturation point of the ferries from that  of the bridge, i.e., 19 million vehic- 

ular transits. This happened in only four years. 

The most important observation here is that  cost reduction was not the 

motivating force. Ferries are cheaper than this tolled bridge. But traffic on them 

has reduced from a little above 5.0 million transits in 1972 t o  something around 

0.8 million in 1976, and it is now oscillating around 0.6 million. Moreover, the fer- 

ries land near densely populated areas and should thus, in principle, be more con- 

venient for truck deliveries. 

The fact the bridge saturated before the end of the Kondratiev cycle in 1995 

points to  an explanation outside the general development trend, no doubt merely 

of technical origin. Demand for more capacity is, in fact, so evident that  a second 

bridge has already been constructed, and the construction of a third one should 

start  soon. 

It would have been very interesting t o  analyze also passenger traffic, on vehi- 

cles and on foot, but data  were not available. As in Hong Kong, where such 

analysis could be done, the next successful infrastructure would be a Metro line, 

providing fast transit between Istanbul city center and the area of 

~ s k i i d a r - ~ a d i k o ~ ,  at the moment connected only by slow ferries. Using the r u l e  

of-thumb method described later, this Metro line could shuffle across the Bos- 

phorus half a billion passengers a year. 
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FIGURE 2.9. Location of the Bosphorus bridge (1974) and ferry routes between Euro- 
pean and Asian shores of Istanbul. 
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Hong Kong 

Hong Kong is an especially interesting case because it has many analogies with the 

Messina-Reggio problem, although on a much larger scale. As in Italy, two cities 

are separated by a stretch of water - in this case, the Hong Kong harbor channel, 

which separates the Kowloon Peninsula (Kowloon) from Hong Kong Island (Vic- 

toria). The channel or harbor separating them is a couple of kilometers wide. Of 

the total population (around 6.0 million) about 1.5 million live on Hong Kong Is- 

land, about 2.0 million in Kowloon proper, and the rest on Kowloon Peninsula, 

islets and in the New Territories (Figure 2.13). 

Until 1972, all traffic between Hong Kong Island and the mainland was by 

sea, through a network of very efficient ferries. A road tunnel was then construct- 

ed under the harbor channel with the intention of facilitating the transport of 

goods, a motivation curiously similar to  that  behind the construction of the Bos- 

phorus bridge. With two large cities facing each other, this fast connecting infras- 

tructure, as in the case of Istanbul, was rapidly invaded by passenger traffic using 

cars, informal vehicles similar to  Turkish collective dolmushes, and (franchised) 

buses. 

In order to  relieve the pressure of this passenger traffic, a second tunnel was 

opened in 1980, incorporating a mass transit railway, with ramifications on both 

sides of the territory - essentially, a Metro system. 

Let us look first a t  the vehicular traffic. Figure 2.14 shows its evolution be- 

fore the construction of the first tunnel, when ferries were the only means of tran- 

sport. The saturation point can be estimated to  be 13 million vehicles per year, 

around 1990. It appears then to  have followed a normal development, under ezist- 

ing constraints, with an appropriate 26year time constant and saturation around 

the end of the Kondratiev cycle. 



The first tunnel took about 3.0 million vehicles away from (the natural logis- 

tic evolution of) ferry traffic within a couple of years (Figures 2.15 and 2.16), and 

it created additional trafic of about 11 million vehicles. The time constant for the 

traffic expansion in the tunnel is very short - 12 years - and is estimated to reach 

saturation at the beginning of the 1990s. 

If we compare the saturation point of the evolution of vehicular traffic in fer- 

ries (13 million vehicles per year) and that of the tunnel (45 million vehicles per 

year), we can conclude that the tunnel-created trafic totals 32 million vehicles per 

year, and that peak tunnel traffic will be about 41 million as the ferries seem to 

have stabilized at about 4.0 million. 

The situation changes somewhat if we look at  passenger, rather than vehicu- 

lar, traffic. Taking all the harbor-crossing modes together (Figure 2.17), one could 

say that traffic did follow its natural trend, and that the opening of the two tun- 

nels was only a technical means to accommodate this increase. Incidentally, the 

saturation point is about 800 million transits annually, or more than two million 

crossings per day, which gives an idea of the size of the harbor-transit operations. 

Figure 2.17 is flawed in that the traffic in 1940 should have been subtracted, 

but this figure was not available. Projecting the line back to 1940 suggests, how- 

ever, that this traffic was probably only a small percentage (w 5%) of the present 

volume. This omission has a slight influence in the determination of the time con- 

stant, which in fact appears a little too high (40 years). However, the data 

correctly estimate saturation around the year 1995. 

It is useful to  examine the details of the whole operation to  better understand 

the mechanisms at  play. First, we can look at the substitution process whereby 

sea links are replaced by land links (Figure 2.18). This evolution unfolds accord- 

ing to the prescriptives of Darwinian substitution. Already during the first year of 

opening, the road tunnel captured 50% of the ferry passengers, who now travel by 

private car, minibus and franchised bus. 



The time constant of the substitution is 24 years and the share of the ferries, 

which was 100% of the total traffic in 1971, will be reduced to  about 10% in 1989. 

The substitution is perfectly smooth, even in reaction t o  the opening of the Mass 

Transit Railway, which in my opinion indicates a natural and timely response to  

the qualitative and quantitative increase in the demand. 

That quality of service (i.e., transit time) was involved comes from a finer 

analysis of the situation. The ferries operate a t  about 30% of their capacity, and 

in rush hours their frequency is measured in terms of minutes. To give another 

glimpse of the intensity of intracity traffic in this area, the tramways of Victoria, 

established in 1900 and still running some original cars, have frequencies of 30 

seconds. 

Looking a t  the "winning" transit technologies, we see that the road tunnel 

opened in 1975 and expanded its traffic with great elan, the time constant being 

only nine years, and the perceived saturation point 450 million passengers per year 

(Figure 2.19). The opening of the Mass Transit Railway in 1980 (Figure 2.20), 

when the calculated traffic should have been 410 million passengers, wooed 78 

million road tunnel passengers, most of them from franchised buses. 

This is shown in Figure 2.21, where ground traffic on public services, i.e., 

franchised buses plus Mass Transit Railway, follows a good logistic growth path 

with no perturbation when the Mass Transit Railway was introduced. Incidental- 

ly, a time constant of 18 years, with 1981 as middle point, will bring also this sys- 

tem t o  saturation around 1995. 

It must be clear that  these saturation points around the end of a Kondratiev 

cycle are functional and are not necessarily related to  technical capacity, which 

can be very large - e.g., in the case of the underutilized ferries. 



Looking into the pace of the 'losing' technology, Hong Kong Yaumati Fer- 

ries, the larger company, follows a normal evolution in terms of passengers carried, 

with a virtual saturation point of 350 million passengers per year (Figure 2.22). 

The opening of the tunnel deducted 100 million passengers from the expected 215, 

as early as 1975, less than three years after the opening. The Mass Transit Rail- 

way bled away more passengers such that  the total in 1986 was only 20% of what 

one could have expected from a logistic growth of Yaumati's service. 

The case of Star Ferries, the smaller company, is slightly different (Figure 

2.23). The company seemed near saturation (62 million passengers per year) in 

the second half of the 1960s, oscillating around 90% of saturation, as some times 

happens. The tunnel had no drastic effect, merely leveling off of the passengers 

carried. The Mass Transit Railway, on the contrary, drained away 12 million 

passengers in one year, and apparently in a stable form. 

It is noteworthy that  the sum of the passengers carried by both lines and 

compared with the total traffic (Figure 2.18) declines in a perfectly smooth 

fashion. 

The Hong Kong case, with its impeccable documentation, permits an insight 

into the mechanisms of traffic evolution and substitution of unparallel quality that  

is invaluable when applied to  the Messina case. 
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Lisbon 

The center of the city of Lisbon is located on the northern side of the Tago River 

estuary (Figure 2.24). As happens when any natural barrier is not too impervious, 

and independent city developed on the southern side. The estuary is relatively 

wide, a couple of kilometers a t  the neck, more or less like the harbor channel 

between Hong Kong Island and Kowloon. Because the ferries have transit times, 

inclusive access and waiting times, above the critical half an hour, the two cities 

behaved independently, i.e., ferry t r a f i c  could be considered as in terc i ty  t r a f i c .  

As in the case of Istanbul, the decision to build a bridge had no connection 

with the idea of easing local traffic. The bridge was to  be part of a motorway sys- 

tem, intended to  shorten the route linking the north and the south of the country. 

The very visible location near the capital was probably chosen for political rea- 

sons: the bridge symbolized the creative capacity of the regime. 

While their purpose differed, in part, the Lisbon and Istanbul bridges affected 

their urban areas in the same way. The cities on the southern bank (primarily, 

Almade and Seixal) were linked to central Lisbon by ferries carrying people and 

vehicles. As in Istanbul, waiting, loading, unloading, and transit takes about 40 

minutes, which our T T B  model defines as an intercity trip. As in the case of Is- 

tanbul, the construction of a bridge bringing transit times below the twenty- 

minute threshold for daily commuting created an explosion of new traffic, as the 

two urban areas merged functionally into one, with traffic levels characteristic of 

intracity traffic. 

The evolution of the ferry trafic across the Tago is shown in Figure 2.25 for 

vehicular traffic. Here we have some pre-1940 data,  which permits us t o  pinpoint 

a previous saturation level of 0.4 million vehicles a year around 1940. During the 

present Kondratiev cycle, traffic has developed along normal lines, although with a 

fairly short time constant, 16 years, pointing to some sort of technical saturation 



of the ferry system. The saturation point can be estimated a t  2.0 million vehicles 

per year plus the carryover of 0.4 million from the previous Kondratiev cycle. 

The opening of the bridge in August 1966 instantly reduced this ferry vehicu- 

lar traffic by 1.0 million vehicles in comparison with expected growth in 1967. 

The loss still totaled 1.0 million in 1971 owing t o  a certain recovery of ferry traffic. 

After that ,  the traffic appears t o  smooth out with a time constant of 24 years. It 

should be 0.24 million in 1988, or 10% of the saturation point (2.0 million + 0.4 

million from the previous K-cycle). 

If we look a t  the bridge per se  (Figure 2.26), vehicular traffic began a t  about 

2.6 million a year and increased logistically with a saturation point of 26 million 

vehicles due to  be reached in the first half of the 1990s. The time constant of 20 

years is the correct one to match saturation with the end of the K-cycle. This sa- 

turation is neatly t en  t imes  larger than in the case of the ferry taken in isolation. 

As vehicular traffic on the ferry is smoothly disappearing, we can conclude that  the 

bridge has created 23.6 million annual vehicle transits .  

We can also look a t  the vehicular traffic, ferry plus bridge, using the same 26 

million vehicles per year as the only saturation point (Figure 2.27). This pro- 

cedure is not strictly correct, but i t  can be justified because ferry vehicular traffic 

is already fading and the chart is intended only to give a vue d'ensemble.  

For passenger traffic, i t  is not possible to make a general map, because the 

data  for the bridge are not available. They can only be roughly estimated as the 

traffic is a mixture of cars, buses, and trucks. For that  reason, the ferry traffic of 

pmsengers must be analyzed per ee .  As shown in Figure 2.28, passenger traffic on 

ferries saturated a t  around 10.0 million per year a t  the end of the K-wave in 1940, 

and should grow by another 40 million for this current wave. Although some in- 

stabilities appeared between 1974 and 1980, they seem unrelated to the opening of 

the bridge in 1966, because for six years traffic kept growing as usual. The time 



constant of 26 years is correct for a process starting a t  the beginning of a K-cycle 

and ending with it. 

Overall, there was an obvious breakthrough in the volume of traffic due to  

the opening of the bridge - an order-of-magnitude increase, in comparison with the 

preceding context, if we look a t  the bare saturation levels. Following the princi- 

ples of traffic generation, this should be local traffic, stimulated by the shortening 

of transit times below the critical level. 

This hypothesis was confirmed by a 1979 inquiry on origin-destination of 

vehicles crossing the river. Most of the traffic is of urban-suburban character, 

linked t o  the urban development of the southern bank. Because urban develop 

ments and city growth have time constants much longer than the 20 years predict- 

ed for the development of traffic on the bridge, one should expect another pulse of 

expansion after 1995, i.e., for the next Kondratiev cycle. 

Saturation of the technical capacity of the bridge (2 x 2 lanes) occurred in 

1977, and saturation of the reinforced capacity (2 x 3 lanes) is expected t o  occur in 

1989 (Ferreira, 1987). This is not far from the logistic saturation of 26 x lo6, and 

corresponds on the logistic to  25.3 x lo6 vehicles per year. 

Obviously, the bridge cannot accommodate the next growth pulse, and this is 

a very important point to  be considered for the Messina bridge. As these struc- 

tures are meant t o  last for 100 years and more, they should be conceived from the 

beginning in such a way that  expansion of the capacity is possible without rethink- 

ing their whole structure (as in Hong Kong) or without building more bridges (as 

in Istanbul). A second bridge is, in fact, being considered also in Lisbon. 













The Mersey Tunnels 

This Britain case is methodologically interesting because it shows very clearly 

what happens when capacity is added without substantially modifying transit 

times. Traffic data have been gathered only for the tunnels, and apparently no 

study documents the traffic between the regions before the tunnels were construct- 

ed, eo we have to  limit our analysis to the point quoted above. 

The first tunnel, Queensway, opened in 1935, appears to  have attracted a 

rush of experimenting travelers during its early years (Figure 2.29). The flow sta- 

bilized after World War I1 on a logistic path with a central point in 1958 and a 

AT of 31 years, meaning that traffic grew at an annual rate of 7.3% over that 31- 

year period. The center point date and the AT are appropriate for a saturation at 

the end of a K-cycle, if slightly early. 

The traffic saturation point is 21 million vehicles per year, but technically the 

Queensway began to be clogged by traffic in the mid-1960s, and a second tunnel, 

Kingsway, was opened in 1973. Traffic split between the two, but not 50/50 

between the two equivalent tunnels, as one might expect. It took commuters 

about four years to adjust to the new access route. At present, the Queensway 

share is not half of the current traffic, but ezactly half of the saturation trafic for 

the logistic of growth. As I found no physical reason for this peculiar split, the 

reason might be metaphysical. The conclusion here is that a logistic of traffic 

growth is not perturbed when extra capacity is introduced. A factor of ten in- 

crease in traffic during a K-cycle of 55 years is equivalent to a mean growth of 

4.2% per year, which can be considered in line with GNP growth in real terms, 

and general traffic growth (ton-km or pass-km) which typically increases a little 

faster. 





The English Channel 

Although the famous Channel Tunnel has not yet been built and one can only 

speculate about its effects, it may be interesting to examine the evolution of the 

traffic there in connection with our models. 

Tr&c between Great Britain and the Continent has intensified over the cen- 

turies, stimulated by the increased number, activity levels, and mobility of the po- 

pulations on the two sides of the Channel. The number of air passengers between 

London and Paris and London and Amsterdam ranks a t  the top for traffic between 

cities in Europe. 

Looking a t  population densities, one sees a single megalopolis developing in 

the Brussels-Amsterdam-Ruhrgebiet area with tails toward Paris and Frankfurt. 

On the British side, a London-Manchester "corridor" is in the making. These two 

conurbations, holding perhaps 50 million people, will inevitably develop their own 

fast transportation networks, with the Channel becoming the barrier to  be made 

porous. 

Airplanes will not be adequate to handle the massive traffic that will want to 

cross that  barrier in the next 50 years; the only viable solution appears to  be a 

Maglev train, running a t  1000 km/h or so, presumably in a tunnel of appropriate 

topography (Marchetti, 1987). 

However, Channel entrepreneurs (it will be privately financed!), like old gen- 

erals, try to  win the next war using the weapons and the strategies of the last one. 

The problem is that  current and advanced train technology with rails and wheels 

will not be capable of providing sufficient speed and/or perhaps even capacity to  

satisfy the demand of the year 2050. This is an obvious time horizon for an infra- 

structure of the size and complexity of the tunnel under the British Channel. 

The evolution of passenger, car, and truck traffic across the Channel in the 

last 50 years is mapped in Figures 2.30 and 2.31. Car traffic will reach its satura- 



tion point in the 1990s, with 4.0 million carslyear carried on the ferries - a very 

modest figure if we compare it with, say, the 26 million crossovers of the Lisbon 

bridge or the 29 million of the Bosphorus bridge (which represent more the limits 

on their technical capacity than a measure of future demand). 

Thus, Channel traffic is intercity, interregional traffic and not very sensitive 

to  relatively small changes in transit times. Nor is i t  sensit ive t o  large change8 i n  

capacity,  as the Mersey tunnels case has shown. 

The number of trucks is also relatively modest: 1.25 million per year with a 

saturation point that  will come, as usual, around 1995. The time constant is 

correct, and the mean growth over the central half of the Kondratiev cycle is com- 

parable to  the mean growth of European economy during that  period. The only 

hint of a breakthrough is that  the opening of the economic frontiers in  1992 will 

make the political boundaries more  permeable. 

However, nobody seems to have explored to date the t ime  constant for a sys- 

tem t o  react t o  the suppression of a political barrier. Our analysis of intracity 

processes indicate time constants in the range of 10-20 years, at  the national level. 

The time constants for international adjustments may well take one or two Kon- 

dratiev cycles. 

The conclusion that  can be safely drawn is that  the tunnel, which will only 

marginally reduce long-range tr ipt ime, &ll not "create" new traffic. New traffic 

will be generated only when the tunnel hosts a very fast transportation system, 

joining the megaclusters of populations on the two sides of the Channel, with tran- 

sit times comparable to those in the single city context. Then the traffic will 

w i t c h  from an intercity to  an intracity mode, increasing between one and two 

orders of magnitude, following the pattern of the Istanbul and Lisbon cases. 







Part 111: The Messina Case 

The Strait of Messina not only separates the continent from a large island (Sicily) 

with about five million inhabitants, but also constitutes the gap in a conurbation 

basin estimated to  contain a couple of million people, counting cities and com- 

munes from Catania to  Patt i  on the Sicilian side and from Reggio to  Vibo Valen- 

tia on the Calabrian side. According to  Doxiadis and Papaioannou (1974), the 

coastal strips will host part of a megalopolis that  can be expected to  develop pro- 

gressively during the next 100 years (Figure 3.1). 

During its technical lifetime of a t  least 100 years, the Messina bridge must 

therefore serve two different classes of demand - the one coming from the interac- 

tion of Sicily with the continent, and the second coming from internal movements 

in the megalopolis. Because the two classes of demand have different characteris- 

tics and dynamics, they will be analyzed separately. 

T h e  Sici ly-Calabria Connec t ion  

Sicily and Calabria are marginal regions in comparison with the activity cores in 

central-northern Italy and in central-northern Europe. This is well shown in a 

study sponsored by the Commission of the European Communities (Keeble e t  al., 

1982)) in which a gravitational model was applied to productive activity and tran- 

sport in Europe t o  construct a connection intensity or access ib i l i t y  m a p  (Figure 

3.2). Interpreting from the map, the marginality index of Sicily and Calabria is 

about five times that  of Bavaria. In this situation air traffic can indicate the 

demand from the subsystem for a higher connectivity with the larger system. In- 

cidentally, rrs our studies on global traffic in Europe show, air transport of goods is 

growing rapidly as goods of ever-low specific value are accepted. 



Passenger traffic trends for the airports of Catania, Palermo, and Reggio are 

analyzed using the logistic growth model and reported in Figures 3.3 and 3.4. 

Palermo airport has a saturation point of 1.1 million passengers (in and out), to be 

reached around 1995 with a time constant of 38 years. This implies a mean 

growth rate for the 38 years (around the central point in 1970) of about 5% per 

year. Catania has a saturation point of 1.6 million passengers, a time constant of 

50 years, and a mean growth rate for the 50 years around the central point of 4.5% 

per year. The central point (50% of saturation) for Palermo is in 1967, and for 

Catania in 1976, showing a later development for Catania which was predestined 

to become, due to  the higher saturation point, the busiest airport in Sicily. Ca- 

tania airport passenger traffic overtook Palermo's actually in 1985. Reggio airport 

plays a much less important role in the area, with traffic about 20% that  of Ca- 

tania. 

Looking a t  the situation in mainland Italy, as a point of comparison (Figure 

3.5), we find a central point for Italy in 1970, more or less in tune with Palermo, 

but with a time constant of only 20 years, i.e., a growth rate for the 20 years 

around 1970 of 12% pear year. Looking a t  the saturation points, however, 34 mil- 

lion passengers for Italy and 2.6 million for Sicily, we find a ratio of 8%) which 

corresponds to  the ratio of the population. 

In other words, the isolation of Sicily stimulated some early air traffic, which 

grew a t  a slower pace than in Italy as a whole, but which will reach the all-Italy 

level around the end of the century in terms of passengers per population. Lower 

income levels in Sicily seem exactly to  compensate the greater advantage to  take a 

flight to  central or northern Italy. 

As a European transport study shows (Marchetti, 1987), air traffic should in- 

crease by a factor of 20, a t  least during the next Kondratiev cycle, i.e., up to  2050 



worldwide. It is not reasonable to expect in this period that  any surface connec- 

tion to  the continent, up to  Rome and Milan, could compete with the one- to  two- 

hour transit time of the airplane. Consequently, one should not expect new long- 

range passenger traffic to be channeled through a bridge. 

The next step is to  look a t  freight movement through the Strait of Messina. 

Much freight goes by truck nowadays, and the dynamic of the situation is reported 

in Figure 3.6, in which one can aee a neat pulse of growth, saturating a t  1.0 mil- 

lion annual transits (both ways) in the 1990s. The central point in 1975 and the 

time constant of 10 years shows this to  be a recent and very rapid phenomenon 

(mean growth rate between 1970 and 1980 of 25% per year). 

The switch from transporting goods by railway to  road, a process that  start- 

ed all over Europe in the 1960s) will reduce railways to carrying only the cheapest 

goods - and not large amounts of it. This is a typical process when a new tran- 

sport technology supersedes an old one. The phenomenon can be studied from the 

beginning to  completion, e.g., in the case of steamships versus sailing ships, and 

runs identically down to details. 

At the national level ton-kms carried by railways have been basically level 

during the last 50 years, with strong oscillations around the mean. Traffic grew (in 

two 50-year Kondratiev pulses) during the last century and a half, up  t o  the 1930s. 

In the ecology of large systems, two cycles up, one steady and the next down, is 

the normal pattern; thus, we may expect railways to  lose ground in absolute terms 

from the beginning of the next cycle in the 1990s. 

How the railway lost traffic to  the road is reported for Italy in terms of mark- 

e t  shares in Figure 3.7. In 1985, 90% of the total ton-kms were transported on 

trucks. Although the data  often miss the logistic a t  the end of a cycle, one can 

forecast a market share of 1% for the Italian railways as a whole in 2010. The si- 

tuation differs somewhat from country to country, but the figures for Europe and 



the USA are in the same ballpark. Even a railway revival there could not be ex- 

pected to affect the Italian situation. 

As for freight car movement across the Strait of Messina (loaded and empty, 

one-way), as Figure 3.8 shows, the trend is downward, and with a relatively short 

time constant of 36 years. A cross-check with loaded cars (Figure 3.9) yields simi- 

lar results. The 33-year time constant means that  traffic, totaling about 150,000 

cars in 1978, will drop to  30,000 in 1995 and 3000 in 2010, when the bridge will 

presumably be in full operation. It is not improbable that  railways will have given 

up by these dates. In any case, such a diminished level of t r a f i c  might be well ac- 

commodated  by the ezisting ferries. A loss of transit time that  can be estimated in 

tens of minutes certainly makes no significant difference for freight cars that  take 

days and weeks to complete their journey. 

It is apparent then that  freight trains will not be a customer of the bridge. 

This statement alone merits deeper research, because the absence of freight t ra ins  

may well simplify the design of the bridge. On the other hand, constructing a 

stronger bridge that  might some day accommodate trains, just in case, could be a 

way to  provide the recommended expandable capacity, which will inevitably be 

needed if the system is intended to  facilitate the formation of a prozimal megalopo- 

l is .  

According t o  the rules of Volterra substitution, road transport, being the 

most recent to develop, will dominate the freight transport market during the next 

Kondratiev, completely absorbing railway traffic and possibly even diverting 

traffic from ships. Clearly, the bridge must  take care o j  truck traffic, and an effort 

should be made to prognosticate its volume how it will look like during the next 

century . 

The last-plus-one technology of freight transport is airplanes, which will be- 

come more important in terms of value of goods transported. The highest-value- 



freight entering by that mode may well be fruits and vegetables. Off-season fruits 

from South Africa are already on North European markets, a t  prices comparable 

to Italian fruits in season. This may not influence substantially the tons of trafFic 

through the bridge, but it will substantially reduce the rush traffic of brief shelflife 

products, such as fruits and especially of vegetables. 

The situation is more variegated if we look at  passenger traffic across the 

Strait. Total traffic can be perfectly matched by a logistic from 1950 to 1983, and 

a central point in 1969, with a time constant of 54 years -just  one Kondratiev cy- 

cle. The mean growth rate for the central 54 years is about 4.2% per year, moving 

at  a pace similar to that of the global economy (Figure 3.10). A saturation point 

of 20 million passenger transits per year, estimated to be reached at the end of the 

cycle (1995), may constitute a good basis for considering a bridge. The number 

looks puny, of course, in comparison with the 800 million passenger crossings of 

the harbor channel in Hong Kong. But transit times across the Hong Kong harbor 

make the two sides a single city! 

Let us look at this traffic in some detail. Figure 3.10 shows that Aliscafi's 

share of total traffic went up and down, reaching its maximum around 1969. This 

may be simply due to the fact that the system served a special submarket that be- 

came saturated at  that time. Looking at Aliscafi traffic in isolation (Figure 3.11), 

we see in fact a regular development, fitted with a logistic with center point in 

1965, time constant of 16 years, and saturation point at 0.9 million passenger 

transits. Traffic levels became very scattered thereafter, and focusing on that par- 

ticular subsystem may help us to understand local mechanisms. 

When we look a t  ferry passenger traffic from a different angle - that of 

private versus public services, such as railway ferries - we find private firms mak- 

ing inroads into the public, but saturating for the moment being at  around 60% of 

the total (Figure 3.12). 



To examine car transport by the ferries, we have statistics from three 

different sources that do not match well. Nevertheless, they are to give an approx- 

imate idea of the situation. The results are reported in Figure 3.13 for the total 

traffic, saturating at about 1.3 million transits per year (both ways). The sharp 

increase of 0.62 million cars (transported by private ferries) between 1981 and 

1980 - almost doubling their number in one year - seems improbable. Therefore, 

we omitted the figures for 1981, 1982, and 1983. In any event, the difference 

between one or two million does not change the conclusion that the traffic is small 

and comparable with that of Lisbon before the Tago River bridge was built. The 

builders of the Messina bridge should be encouraged by the facts that the Tago 

River bridge is already saturated at 26 million transits per year and the Bosphorus 

bridge more or less at the same level. 

Car transits over F.S. Ferries were reasonably smooth until the private fer- 

ries began operating in 1965 (Figure 3.14). Although F.S. traffic continued to in- 

crease until 1973, it then started oscillating and now seems stabilized at  the level 

it had in 1965, i.e., about 0.4 million transits per year both ways. 

Conclusions 

A posteriori application of the models to  various case studies shows them to be a 

sharp lens for inspecting the details of what happens when a new infrastructure 

changes the boundary constraints of a given traffic milieu. The models also pro- 

vide a tool for forecasting inside a Kondratiev cycle. (Forecasting over longer 

periods of time is possible, but reliable statistics over a couple of cycles, i.e., in the 

range of 100 years, are necessary. The exercise has been done a t  IIASA for France 

and the United States.) 

A bridge across the Strait of Messina will probably not modify long-range 

freight traffic. This freight will be carried primarily by trucks that will take the 

bridge for simplicity's sake, even if the gain in time is not significant. 



F.S. trains are bound to have a decreasing importance, and consequently it 

may not pay to have them on the bridge. The capacity of the F.S. ferries, which is 

now sufficient, will be redundant in the near future. A revival of F.S. function, 

providing 'gliding auto routes' east-west in northern Italy, and north-south for 

the rest of the country, although very interesting conceptually, will not penetrate 

the institutional barriers, in my opinion. 

Passenger traffic is the real plum because the number of transits can easily 

switch from the present estimated saturation point of 20 million to PO0 million, if 

the appropriate time formula is found. If the link to another conurbation requires 

a transit time, say, of 40 minutes, like the ferries in Istanbul, plus some waiting 

time, then the two conurbations are time-separated and operate as independent 

units with traffic typical of intercity traffic. If the link to the other conurbation 

becomes a fast one, requiring a few minutes for the connection, then the conurba- 

tions become time-connected and the traffic becomes typical of intracity traffic. 

The definition of the latter notion means each person has a chance more or less 

daily to 'cross the straits" - which psychologically becomes equivalent to crossing 

the street - and do all business, jobs, shopping on both sides. 

An idea of the intensity of intracity traffic is given by Hong Kong, where the 

1.5 million people living in Victoria interact freely with the 2.0 million living in 

Kowloon, generating roughly 800 million trips per year across the harbor. This 

roughly accounts for one crossing (one way) per person per day. 

A useful rule of thumb is to  imagine every citizen making three trips per day 

outside the home - one of them longer. This longer trip will 'cross the river' if 

the transit time is not larger than 20 minutes or so. In the Messina situation, the 

number of transits per day would be roughly equal to the current population of the 

smaller city, Reggio Calabria, beyond the strait: 200 million transits per year. 

The rule works for Hong Kong and Lisbon. 



The Messina bridge should be made the link that functionally fuses Reggio 

Calabria and Messina first, and later a chain of smaller ci t ies down to  Catania .  

This could be done by a fast transport ,  organized as a Metro ,  with short, very fre- 

quent (minutes) trains. The new technologies of magnetic len't at ion,  already com- 

mercially available, offer superb comfort, speed and complete automatization. T o  

fuse Reggio and beyond to Messina and Catania into a single functional unit, these 

Metro trains should be capable of a t  least 200 km/h and have very good accelera- 

tion, both characteristics easy to obtain with Maglevs. 

This infrastructure would also create the preconditions for a linear city along 

which the inevitable emigration from inland will condense in urban conditions 

more desirable than the blobs of central cities. Such necklaces of urban "beads" 

are appearing around the world, often referred to  as "corridors", unified by air 

shuttles. The most gigantic of them, the Tokyo-Osaka "Shinkansen" corridor will 

be unified (one-our transit time!) most probably by a Maglev line. As the evolu- 

tion of this megalopolis-corridor is nearly complete, a short description may be 

useful in considering the shape of the Messina system. 

Messina-Reggio a s  the Nuc leus  of  a Megalopol is?  

The emerging Japanese megalopolis may provide useful analogies for the planned 

Messina project. In 1966, the year of consolidation into one continuous unit from 

Tokyo t o  Yahato, its population was 69.2 million, its area 76,000 km2, and its po- 

pulation density was 900 inh./km2 (Doxiadis and Papaioannu, 1974). It had four 

main centers (see again Figure 1.5). 

The backbone of the transportation system along this strip has been the 

train, in particular the famous 'bullet train'. The bullet train covers the distance 

between Tokyo and Osaka, the more densely populated stretch of the megalopolis, 



in about three and a half hours. This time is a t  the limit for an eperopolis, where 

one goes, occasionally, from A to B to do business and comes back to A the same 

day. The time strain is well manifested by the increasing number of passengers 

flying along the corridor, as is done with the famous "shuttle" flights in the US 

east and west corridors. 

The high density of the demand can be satisfied only by misusing large plans, 

often Jumbo 747s designed for long-range service, in the absence of shorerange 

planes (2OOCL3000 km) of appropriate size. This caused a major accident. There 

is growing need for a high-density mode having the same speed characteristics of a 

plane. Japan, in fact, has been developing its own brand of Maglev for the past 20 

years. 

This train is planned to cover the distance Tokyo-Osaka (about 600 km) in 

one hour. (Incidentally, the mean speed of an airplane, taking into account tak- 

eoff, landing and ceiling times, is about 600 km/h.) Because Japan is a hilly and 

mountainous country and the track of this fast train must run almost straight, 

about 50% of the track will be in tunnels. 

Complete enclosure of the track in a "pipeline" would eliminate aerodynamic 

noise and the bangs when the train enters or leaves a tunnel. A buried pipeline 

would also solve the problem of expensive rights of way in Japan. With complete 

enclosure, moreover, air pressure inside the tube can be reduced, permitting much 

higher speeds a t  reduced drag, as for airplanes flying a t  high altitude. 

Although these developments may take another 20 years t o  be incorporated 

into an operating project, they promise bulkhead t o  bulkhead transit times in the 

range of 20 minutes, welding the megalopolis into a single unit, where people may 

travel in an "intracity spirit", with a couple of trips per day per person to  any des- 

tination inside the city range. Of course, this will be possible only if the travel 

cost is aligned with the disposable income of the local population. These trains 



could then carry on the order of 100 million passengers per day - the potential 

demand in the Japanese corridor if the TTB and TMB are appropriately met. 

The technologies to manage such fluxes of passengers at the stations have yet to  

be invented however. 

Coming to the much more modest, but conceptually identical, case of the 

Catania-Meeeina-Reggio megalopolis, we observe that the "attraction of the sea' 

and the 'repulsion from the mainland" led to a rapid increase in the population of 

a necklace of cities located along the eastern coast of Sicily. 

The three provinces in the strip have almost equal area and about a couple of 

million of inhabitants. It is not too difficult to calculate the order of magnitude of 

the potential traffic across an arbitrary line, e.g., the bridge. One has to know, 

however, speed and cost of the main transport system, plus disposable income of 

the population. The first two parameters can, to a point, be controlled by the 

planners: the third can be estimated from the secular trends. 

Trip rate is one of the measurements more thoroughly analyzed as generator 

of urban traffic, and shows good regularities. To simplify to the bone, the average 

active adult makes about three trips per day. Extended field measurements show 

that when the system provides more speed, e.g., through highways, the distance 

traveled increases accordingly, but the number of trips remains basically constant. 

This means a large territory is treated like a small one, size providing only a 

better choice of facilities, i-e., travel objectives. Available speed being different in 

different directions, these movement fields (territories) tend to  be elliptic, with the 

long axis pointing toward the center of the nearest city, as transportation infra- 

structures usually radiate from it. 

Assuming that any city developing out of the link between Catania and Reg- 

gio with a superfast public transport will be linear, and further postulating a 

Maglev subway taking 20 minutee for the whole stretch, we can estimate the con- 

ceptually mazimum flow of passengers across the bridge. 



The 60 minutes of TTB can be allocated to one long trip taking 10 + 10 

minutes Maglev and 10 + 10 minutes walking, and two short trips taking 5 + 5 

minutes by car each. Ln this scenario every traveler living in the area of Reggio 

will cross the bridge (two ways) every day. Roughly half the population travels; 

this means the crossings (one way) originated from Reggio will roughly correspond 

to  its population. 

Assuming the targets of the trips would be distributed in proportion to  the 

population in a certain area, then the incoming traffic will be roughly the same. In 

other words, the population on the smaller side of the linear ci ty linked by the 

bridge i s  the direct indicator for the number of crossings. 

If this simple, but intuitive and visual, way of reasoning seems completely 

unrealistic, we can check it against some real case, e.g., Hong Kong, where Vic -  

toria,  the city on the island, has about one million inhabitants. Kowloon and the 

mainland are linked by a number of ferry lines and two fast tunnels - one for road 

traffic and the other for a subway. Most passengers (80%) are carried through the 

tunnels. As shown in the logistic analysis of the development of this cross-harbor 

traffic, the saturation point will be about 8 x lo8 single crossings per year, es- 

timated to be reached toward the end of the century. This corresponds to about 

one million double crossings per day.  In 1986 the traffic had already reached 70% 

of the saturation point, i.e., 0.7 million. 

In the case of the Tago estuary crossing in Lisbon, ferries will saturate with 

50 x lo6 passengers per year and the bridge with 26 x lo6 vehicles per year. As 

these vehicles include buses, one can roughly add 5 0  x lo6 passengers per year. 

These lo8 pass/yr point to  a city of about 140,000 people on the south bank of the 

estuary, which is approximately its actual size. 



Considerations o n  t h e  Transpor t  of Goods 

Because the Messina bridge should be useful and appropriate for its technical life, 

the technologies for transport of goods, as well as passengers, should be seen in a 

similar time perspective - say, 100 years. As always, it is instructive to look at 

their evolution in historical context, in order to assess the rules of the game. 

First, the most expensive goods tend to move by the fastest and more reliable 

means of transport. When they first appeared, steamers were much more expen- 

sive than sailing ships, in terms of capital investment and their profligate use of 

fuel. Their coal, in fact, was carried to their bunker points around the world by 

the much cheaper sailboats! But steamships had two important advantages: they 

were not merely faster, they could keep schedules. So the most important items 

carried then were mail and human flesh. Achievements in machinery performance 

and general design made steamships progressively more competitive, in ton/km 

cost terms, and in a mere 100 years sail-powered ships no longer carried freight 

(Figure 3.15). 

A similar story can be told for railways, which at the beginning also trans- 

ported essentially mail and people, and successively higher-value goods. At their 

zenith in many parts of the world, trains carried almost everything. Now they 

haul almost only low-value goods. Taking away coal and grain, very little busi- 

ness would be left on American railway systems, in its heyday the most powerful 

network of the world. Similarly, when the Italian railways want to deliver goods 

on the mainland, e.g., from Milan to Rome, with appropriate speed and reliability, 

they use lorries. This indicates the point in their trajectories they have reached 

now, and leaves little hope for the next 100 years, unless they are drastically 

reconfigured. 

The most advanced technology now is the airplane. Airplanes started their 

commercial career carrying mail, especially in the USA, during the heroic 1920s. 



In the 1930s they began carrying a significant number of passengers. During the 

last 20 years, progress in machine performance, size and general design has made 

them increasingly competitive for the transport of goods. 

Dedicated Jumbo 747s now carry ripe pineapple from Honolulu to  New York 

and the East Coast, or auto bodies from Turin to  Detroit. The cutoff line for the 

value of the goods that can profit from the characteristics of the air system - speed 

and efficient handling - becomes progressively lower. Fresh summer fruits from 

South Africa sell in winter in Vienna at  prices not significantly different from the 

same fruits in summer, coming from Italy or Spain. 

This means that vegetables and fruits from Sicily which now are in search of 

speed in order to  reach the markets of northern Italy and Northern Europe in per- 

fect condition, may take to the air, shunning progressively all other means of 

transport. Contrary to many critics, then, the construction of the Messina bridge 

will probably have no consequences in this field. 

Freight now accounts for only 15% of the air transport traffic (ton-km), 

worldwide. Most goods are actually transported using the extra capacity of 

passenger flights and, in few cases, using airplanes originally designed for 

passenger traffic and adapted for freight. The largest, the 747, carries about 100 

tons. With the growth in traffic, a variety of planes specifically designed for 

freight will emerge, and technically 1000 ton freighters may be possible. As in the 

case of all-freight steamers, euch air freight carriers may revolutionize the trans- 

port of goods, reducing the role of the road to retailing operations. The time hor- 

izon for such a process is about 50 years, within the next Kondratiev cycle. 

From a functional point of view a solution for the possible revival of the Itali- 

an railways would be to provide "gliding auto routes" for the competing road vehi- 

cles - thus, sharing their success if only in a subordinate way. This would be con- 

sistent with the general trends of tr&c in Europe described in Marchetti (1987). 



One of several proposals would reduce operated track to  one line east-west in 

northern Italy, and two lines north-south along the shores. Railways would 

operate train platforms a t  a mean  speed attractive for road traffic (150 km/h) 

with embarking-disembarking points every 200 km or so. These points should be 

chosen to  facilitate the final retailing by major auto route, and have no strict con- 

nections with the cities and their centers, where railway stations are usually locat- 

ed and which do not usually constitute divergence points for freight traffic. All 

railway crossings would overfly road traffic, so that  trains and road do not in- 

teract. The frequency of these platform trains should be in the 10-minute range, if 

a sizable fraction of the long-range road traffic is to be absorbed by such mode of 

transport. 

A similar situation occurred when steamships began to replace unpredictable, 

and consequently unscheduled, sailships, for carrying passengers, mail, and valu- 

able cargo. These steamers, which required large amounts of coal, had to  refuel a t  

convenient places along their routes. All the coal to service these bunker points 

was transported by sailships, providing brisk business for a good 50 years. 

This is the only configuration I can imagine to resurrect the railway system 

and produce consistent  long-range t ra in  t r a f i c  for the bridge during the nez t  50 

years. But institutional resistance makes its implementation very improbable. 
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FIGURE 3.1. Contiguous urban development in Europe, in 2100. (Source: Doxiadis and 
Papaioannou, 1974.) 









F -
 

1 -
F

 

10
' 

lo
o -

- --
 

10
-1

- --
 

lo
-2

_-
1%

 

--
 F 

--
 90

%
 

--
 50

%
 

10
%

 

1 
I 

I 
I 

1 
I 

1 
I 

I 
1 

;+
 

19
40

 
19

50
 

19
60

 
19

70
 

19
80

 
19

90
 

20
00

 

F
I
G
U
R
E
 3

.5
. 

T
re

nd
 i

n 
pa

ss
en

ge
rs

 (
lo

6
) i

n 
an

d 
ou

t 
of

 m
ai

nl
an

d 
It

al
ia

n 
ai

rp
or

ts
. 

(B
as

ed
 

on
 d

at
a 

pr
ov

id
ed

 b
y 

A
nn

ua
ri

o 
S

ta
ti

st
ic

0 
It

al
ia

n
o,

 v
ar

io
us

 y
ea

rs
.)

 























References a n d  Related Publ icat ions 

Abler, R., J.S. Adarns, and P. Gould (1972), Spatial Organization. The Geographer's 
View of the World. London: Prentice Hall International, h c .  

Annuario Statietico Italiano. Various years. Rome: Istituto Centrale di Statistica. 

Beckmann, M.J., T.F. Golob, and Y. Zahavi (1983), Travel probability fields and urban 
epatial structure: empirical tests. Environment and Planning A 15727-738. 

Blackman, Jr,  Wade A. (1972), A mathematical model for trend forecasts, Technological 
Forecasting and Social Change, 2441-452). 

Bossert, R. W. (1977), The logistic curve revived, programmed, and applied to  electric 
utility forecasting, Technological Forecasting and Social Change, 1&357. 

Debecker, A. and T. Modis (1986), Determination of the Uncertainties in S-Curve Logistic 
Fits. Geneva: Digital Equipment Corporation. 

Doxiadis, C.A. and J.G. Papaioannou (1974), Ecumenopolis. The Inevitalbe City  of the 
Fugure. Athens: Athens Publishing Center. 

Ekistics (1980), HUCO: the human community in Athens. Ekistics 283, July/August, 
pp. 232-263. 

Ettlinger, N. and J.C. Archer (1987), City-size distributions and the world urban system 
in the twentieth century. Environment and Planning A 19(9):1161-1174. 

Fisher, J.C. and R.H. Pry (1970), A simple substitution model of technological change. 
Technological Forecasting and Social Change 375-88. 

Ferreira, V.M. (1987), The "25th of April" Bridge and SocieUrbanistic Transformation 
South of the Tagus River. Lisbon: hsti tuto Superior de Ciencias do Trabalho e da  
Empresa. 

Freeman Fox-Botek Consulting Engineers (1985), KGM - Second Bosphorus Road Cross- 
ing. Feasibility Report. Istanbul. 

Grubler, A. (1987), Aufstieg und Fall von hfrastrukturen. Technikergeschichte (forth- 
coming). 

Haldane, J.B.S. (1924), The mathematical theory of natural and artificial selection, 
Transactions, Cambridge Philosophical Society, 23:1441. 

Hong Kong Government Transport Department (1987). Personal communication. 
Hupkes, G. (1982), The law of constant travel time and trip rates. FUTURES, February, 

pp. 38-46. 
Kondratiev, N.D. (1926), Die langen Wellen der Konjunktur , A rchiv fur Son'al&sen- 

nchafi und Son'alpolitik, Band 56. Tiibingen. 
Kondratiev, N.D. (1928), Die Preisdynamik der induetriellen und landwirtschaftlichen 

Waren (zum Problem der relativen Dynamik und Konjunktur), Archiv fur Sozi- 
al&senschafi und Son'alpolitik, Band 60, Tiibingen. 

Keeble, D., P.L. Owens, and C. Thompson (1982), Regional accessibility and economic 
potential in the European Community. Regional Studies 6(6):4 14432. 

Lotka, A.J. (1925), Elements of Physical Biology. Baltimore: Williams and Wilkins. 

Lotka, A.J. (1956), Elements of Mathematical Biology. New York: Dover Publications, 
h c .  



Mackay J.R. (1968), The interactance hypothesis and boundaries in Canada: a prelim- 
inary study. In Spatial Analysis, B.J.L. Berry and D.F. Marble, eds. Englewood 
Cliffs, New Jersey: Prentice-Hall, Inc. 

Marchetti, C. (1981), Society as a Learning System: Discovery, Invention and Innovation 
Cycles Revisited. Research Report RR-81-29. Laxenburg, Austria: International 
Institute for Applied Systems Analysis. 

Marchetti, C. (1987), O n  Transport i n  Europe: The Last 50 Years and the Nezt 20. 
Invited paper, First Forum on Future European Transport, jointly organized by the 
Ludwig-Elkow Stiftung and Cesta, held at the Universitat der Bundeswehr 
Miinchen, September 1416, 1987 (forthcoming proceedings). 

Marchetti, C. and N. Nakicenovic (1979), The Dynamics of Energy Systems and the Logis- 
tic Substitution Model. Research Report RR-79-13. Laxenburg, Austria: Interna- 
tional Institute for Applied Systems Analysis. 

Mogridge, M. (1986). Personal communication. London: University College, Depart- 
ment of Civil and Municipal Engineering. 

Montroll, E.W. and N.S. Goel (1971), On the Volterra and other nonlinear models of 
interacting populations, Rev.  Mod. Phys., /3(2):231. 

Nagashima C. and T. Doi (1972), Megalopolis in Japan. Ekistics 33(199) :470-473. 
Nakicenovic, N. (1979), Software Package for the Logistic Substitution Model. Research 

Report RR-79-12. Laxenburg, Austria: International Institute for Applied Systems 
Analysis. 

Nakicenovic, N. (1986), Patterns of Change: Technological Substitution and Long Waves 
in the United States. Working Paper WP-86-13. Laxenburg, Austria: Lnternational 
Institute for Applied Systems Analysis. 

Nakicenovic, N. (1987), Transportation and Energy Systems in the US. Working Paper 
WP-87-01. Laxenburg, Austria: International Institute for Applied Systems 
Analysis. 

Oliver, F.R. (1964), Methods of estimating the logistic growth function, Applied Statis- 
tics, 1357-66. 

Papaioannou J.G. and M. Antonopoulou-Bogdanou (1972), Ecumenopolis and megalopol- 
ises in Europe. Ekistics 33(199) :474477. 

Pappas P. and J .  Virirakis (1982), Resident's activities and journeys to work. Ekistics 
53(199) :492-499. 

Pearl, R. (1924), Studies in Human Biology. Baltimore: Williams and Wilkins Co. 

Peschel, M. and W. Mende (1986), The Predator-Prey Model. Springer Verlag: Berlin- 
Heidelberg-New York. 

Peterka, V. (1977), Macrodynamics of Technological Change - Market Penetration by New 
Technologies. Research Report RR-77-22. Laxenburg, Austria: International Insti- 
tute for Applied Systems Analysis. 

Roth, G.J. and Y. Zahavi (1981), Travel time 'budgets" in developing countries. 
Transpn. Res.  15A, pp. 87-95. 

SOMEA (1985), Analisi costi-benefici relativi alla realizzazione di un progetto per un col- 
legamento stabile t ra  la Sicilia ed il Continente. Parte 1: Sistema di trasporto in 
Sicilia e Calabria. Roma: Societ per la Matematica e 1'Economia Applicate SpA 
(SOMEA). 

Szalai, A. (ed.) (1972), The Use of Time.  Paris: Mouton & Co. 
U.K. Department of Transport (1982), Fized Channel Link. Report of UK/French Study 

Group. London: Her Majesty's Stationery Office. 



Valleri, M.A. (1986), Pendolarismo e sistema portuale: l'area dello Stretto. University of 
Bari, Italy. 

Verhulst, P.F. (1845), in Nouveauz Memoires de I'Academie Royale des Sciences, des Let- 
tres et des Beauz-Arts de  Belgique 18:l-38. 

Virirakis, J. (1971), Population density as the determinant of resident's use of local 
centers. Ekistics 187:388406. 

Virirakis, J. (1972), The minimizatin of energy as determinant of the grouping of com- 
munity facilities. Ekistics 99(199):503-511. 

Volterra, V. (1931), Lecon sur la Theorie Mathematique de la Lutte Pour la Vie. Paris: 
Gauthier-Villars. 

Zahavi, Y. (1976), Travel Characteristics in Cities of Developing and Developed Countries. 
World Bank Staff Working Paper No. 230. Washington, DC: World Bank. 

Zahavi, Y. (1979), The " U M O T  Project. Report No. DOT-RSPA-DPB-2-79-3, U.S. 
Department of Transport, Washington, D.C. 

Zahavi, Y. e t  al. (1981.), The " UMOT/Urban Interactions. DOT/RSPA/DPB-10/7. 
Washington, D.C.: U.S. Department of Transportation. 

Zipf, E. (1972), Human Behavior and the Principle of Least Eflort. New York: Haffner. 



MATHEMATICAL APPENDIX 

The equations for dealing with different cases are reducible to the general 

Volterra-Lotka equations 

where Ni is the number of individuale in species i, and a, B, and K are constants. 

The equation says a species grows (or decays) exponentially, but for the interactions 

with other species. A general treatment of these equations can be found in Montroll 

and Goel (1971) and Peschel and Mende (1986). Since closed solutions exist only for 

the case of one or two competitors, these treatments mainly deal with the general 

properties of the solutions. 

In order to keep the analysis a t  a physically intuitive level, I use the original 

treatment of Verhulst (1845) for the population in a niche (Malthusian) and that of 

Haldane (1924) for the competition between two genes of different fit. For the mul- 

tiple competition, we have developed a computer package which works perfectly for 

actual cases (Marchetti and Nakicenovic, 1979), but whose identity with the Vol- 

terra equations is not fully proven (Nakicenovic, 1979). 

Most of the results are presented using the coordinates for the linear transform 

of a logistic equation originally introduced by Fisher and Pry (1970). 

The Malthueian Case 

This modeling of the dynamics of population systems started with Verhulst in 

1845, who quantified the Malthusian caw. A physically very intuitive example is 

given by a population of bacteria growing in a bottle of broth. Bacteria can be seen 

as machinery t o  transform a set of chemicals in the broth into bacteria. The rate of 

this transformation, eoeterie paribw (e.g., temperature), can be seen ss proportional 

to the number of bacteria (the transforming machinery) and the concentration of the 

transformable chemicals. 

Since all transformable chemicals will be transformed finally into bacterial 

bodies, t o  use homogeneous units one can measure broth chemicals in terms of bac- 

terial bodies. So N(t) is the number of bacteria a t  time t, and R is the amount of 



transformable chemicals a t  time 0, before multiplication starts. The Verhulst equa- 

tion can then be written 

whose solution is 

with b an integration constant, sometimes written as to, i.e., time at  time 0; a is a 

rate constant which we assume to be independent of the size of the population. This 

means that there is no 'proximity feedback'. If we normalize to  the final size of the 

system, R, and explicate the linear expression, we can write equation (2) in the form 

suggested by Fisher and Pry (1970). 

F N 
log i q F  = at  + b , where F = - . 
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Most of the charts are presented in this form. R is often called the niche, and the 

growth of a population is given as the fraction of the niche it fills. It is obvious that 

this analysis has been made with the assumption that there are no competitors. A 

single species grows to match the resources (R) in a Malthusian fashion. 

The fitting of empirical data requires calculation of the three parameters R, a, 

and b, for which there are various recipes (Oliver, 1964; Blackman, 1972; Bossert, 

1977). The problem is to  choose the physically more significant representation and 

procedure. 

I pereonally prefer to work with the Fisher and Pry transform, because i t  

operates on ratios (e.g., of the size of two populations), and ratios eeem to me more 

important than absolute values, both in biology and in social systema. 

The calculation of is usually of great interest, especially in economics. How- 

ever, the value of is very aeneitive to the value of the data, i.e., t o  their errors, 

especially a t  the beginning of the growth. The problem of assessing the error on FI 

has been studied by Debecker and Modis (1986), using numerical simulation. 



The Malthusian logistic must be used with great precaution because it contains 

implicitly some important hypothesis: 

- That there are no competitora in sight. 

- That the size of a niche remains constant. 

- That the species and its boundary conditions (e.g., temperature for the bac- 

teria) stay the same. 

The fact that in multiple competition the starts are always logistic may lead to  

the presumption that the system is Malthusian. When the transition period starts 

there is no way of patching up the logistic fit. 

The fact that the niches keep changing, due t o  the introduction of new techn* 

logies, makes this treatment, generally speaking, unfit for dealing with the growth of 

human populations, a subject where Pearl (1924) first applied logistics. Since the 

treatment sometimes works and sometimes not, one can find much faith and disillu- 

sionment among demographers. 

One-to-one Competition 

The case was studied by Haldane for the penetration of a mutant or of a 

variety having some advantage in respect to  the preexisting ones. These cases can 

be described quantitatively by saying that variety (1) has a reproductive advantage 

of k, over variety (2). Thus, for every generation the ratio of the number of indivi- 

duals in the two varieties will be changed by . If n is the number of genera- 
(1 - k) 

tions, starting from n = 0, then we can write 

N 1 - - - R, Nl , where Ro = - a t t = O  . 
N2 (1 - k)n N2 

If k is small, M it u s u d y  is in biology (typically lo-=), we can write 

We are then formally back to  square one, i.e., to  the Malthusian case, except for the 

very favorable fact that we have an initial condition (R,) instead of a final condition 

(R). This means that in relative terms the evolution of the system is not sensitive t o  



the size of the niche, a property that ie extremely useful for forecasting in multiple 

competition cases. Since the generations can be assumed equally spaced, n is actu- 

ally equivalent to time. 

Aa for the biological case, i t  ie difficult to  prove that the 'reproductive advan- 

tage' remains conatant in time, especially when competition lasts for tens of years 

and the technology of the competitors keeps changing, not to  speak of the eocial and 

organizational context. But the analyaia of hundreds of cases ahowa that ayatems 

behave exactly aa if. 

Multiple Competition 

Multiple competition ie dealt using a computer package originally developed by 

Nakicenovic (1979). A aimplified description says that all the competitors atart in a 

logistic mode and phase out in a logistic mode. They undergo a transition from a 

logistic-in to  a logistic-out during which they are calculated ae 'residuals', i.e., as 

the difference between the size of the niche and the sum of all the ins and ouk.  The 

details of the rules are found in Nakicenovic (1979). Thie package has been used to 

treat about one hundred empirical cases, all of which always ahowed an excellent 

match with reality. 

An attempt to  link this kind of treatment to current views in economics has 

been made by Peterka (1977). 


