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Foreword 

The author studies High order necessary conditions for optimality for an optimal 

control problem via properties of contingent cones to reachable sets along the optimal tra- 

jectory. It is shown that  the adjoint vector of Pontriagin's maximum principle is normal 

to the set of variations of reachable sets. Results are applied to study optimal control 

problems for dynamical systems described by: 

1) Closed loop control systems 

2)  Nonlinear implicit systems 

3) Differential inclusions 

4)  Control systems with jumps. 
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Contingent Cones to Reachable Sets of Control Systems 

Halina Ftankowska * 

1. Introduction 

Consider the following optimal control problem in Rn 

minimize g(z( T))  

over the solutions to  the control system 

z '( t)  = f (z( t ) ,  u(t))  a. e. in [0, TI (1.2) 

u( t )  E U is a measurable selection (1.3) 

Let R ( t , C )  denote its reachable set a t  time t from the set of initial conditions C c Rn 

and TR([! C)(zO) the contingent cone to  R( t ,C)  a t  z0 E Rn. 

If a trajectory z of the control system (1.2) solves the above problem, then the 

derivative g '(z(T)) is non-negative in every tangent direction w E T R ( T I C ) ( ~ ( T ) ) ,  i.e., 

g ' (%(T)) belongs to  the positive polar cone TR(T C l ( z ( ~ ) ) +  of TR(T,C)(%(T)).  This is the 

so-called Fermat rule. We thus obtain necessary conditions allowing t o  test whether a 

given trajectory t is optimal whenever we can characterize this positive polar cone. In 

this paper we study some necessary conditions which can be derived from the above Fer- 

mat rule. In the case of nonlinear system, the best we can hope is to  characterize explicit- 

ly subsets Q of the tangent cone T R ( T , C ) ( ~ ( T ) ) ,  using variations of the solution %(-). 

Then, by duality, gS(z(T))  E T R ( T , C ) ( ~ ( ~ ) ) + ~  Q+ and the inclusion 

gP(z(T))  E Q+ is a necessary condition of optimality. The larger is the set Q, the smaller 

is the set QS, so that  necessary condition become stronger. 



In particular, we prove that  the reachable set a t  time T,  R ~ ( T ) ,  of the following 

linear control system 

(where ii is a control corresponding to  a) is contained in TR( T,c)(z(T)). Hence whenever 

z is optimal, gP(z(T))  E R L ( ~ ) + .  

Such inclusion implies easily the celebrated Pontriagin's maximum principle: the 

solution q of the adjoint system 

ar  
- q ' ( t )  = ( ~ ( t ) ,  i i ( t ) )  *q(t) a.e. in [0, TI a z (1.6) 

satisfies the minimum principle 

< q(t), z'(t) > = min < q ( t ) ,  f (z(t) ,u) > a.e. in [O,T] 
uE u 

and the transversality condition 

The aim of this paper is to  go beyond the maximum principle and to  provide some 

additional properties of the adjoint vector q(.) which can help to eliminate more candi- 

dates for optimality that  the maximum principle does. Let us describe briefly the main 

ideas. 

We introduce the "variations" { W(t,z) : t E [O,T]) of a(.), defined by 

(in particular T R ( t , C ) ( ~ ( t ) )  c W(t ,a)). 

For all 0 < t < t + h < T define the reachable map r(h,t)  : R n  2 Rn of (1.5) by 

r (h , t )< = {w(t+h) : w E w17l(t,t+h) is a solution of (1.5), w(t) = <) 



We shall prove tha t  for all t E [O,T[, r ( T - t ,  t )  maps W(t,z) into TR(T,C)(z(T))  

and,  in particular, 

Thus for all t E [O,T[,g ' (z(T))  E ( r ( T - t , t )  ~ ( t , z ) ) + .  If r ( T - t , t )  was a linear operator, 

we would deduce from the bipolar theorem tha t  gP(z (T) )  E r ( ~ - t , t ) * - ' (  W(t ,z)+),  where 

r ( T - t , t )  * is the transpose of r (T - t , t ) .  But the reachable map  r ( T - t , t )  is not single- 

valued: i t  is positively homogeneous set-valued map (i.e. whose graph is a cone), which 

can also be transposed. We shall then prove two things: first t ha t  for all convex cone 

Q c W(t1.) 

and second tha t  the transpose r ( T - t , t ) *  can be computed in the following way 

where q is a solution t o  the system (1.6), (1.8) satisfying q (T)  = x. By piecing together 

all these informations, we obtain the existence of a solution q of (1.6)-(1.9) satisfying 

q(t)  E w( t , z )+  for all t E [O,T[ (1.13) 

It  also implies the following invariance property of reachable sets: 

This result is of the same nature tha t  a theorem of Waiewski saying tha t  the boundary 

point of reachable set can be reached by only a boundary trajectory. 

The  inclusions (1.12)-(1.13) are an additional information described via reachable 

sets. For nonlinear systems the reachable sets and,  consequently, the set of variations 

W(t,z) are nor a priori known. But  condition (1.13) still allows to  eliminate some candi- 

dates for optimality among those satisfying the maximum principle. Let us emphasize 

tha t  i t  is enough t o  know one element w E W(t,z) such tha t  the solution q of (1.6), (1.7) 

satisfies < q( t ) ,  w > <O t o  deduce tha t  z is not optimal. 

Inclusion (1.13) can also be seen as a higher order optimality condition since i t  deals 

with variations of z( . )  of all orders. High order necessary conditions involving higher ord- 

er derivatives of g are (of course) of an entirely different nature. 



The high order necessary conditions in optimization have two features: 

1) Necessary conditions involving the high order variations of constraints 

2) Calculus of high order variations. 

We shall not divide here any calculus of sets W ( t , z ) .  The  interested reader can find 

in [19] many examples of variation corresponding t o  piecewise Cm-controls. They are  

constructed via Lie brackets of some vector fields. However, because of the Lavrentieff 

phenomenon, one should not expect such regularity from optimal trajectories. Still the 

results of [19] can be used a t  regular enough points of optimal control. T h e  irregular 

points a re  much more difficult t o  address and require further investigations. 

We shall study a more general dynamical system tha t  the parametrized control sys- 

tem (1.2), (1.3), the  so-called differential inclusion 

This is a generalized differential equation and the control system (1.2), (1.3) can be 

reduced t o  i t  by setting F ( z )  = f (z ,  U). When f is continuous, the Filippov theorem (see 

[ I ,  p.911 says tha t  the solutions of (1.15) and (1.2), (1.3) do  coincide. 

In general the set-valued map  F cannot be parametrized in a way t o  reduce the sys- 

tem (1.15) t o  (1.2), (1.3). The  main reason for i t  being the restriction on admissible con- 

trols (1.3). Still this can be done when F has convezcompact images and is continuous in 

the Hausdorff metric. But  even in this case the parametrization would be only continuous 

and therefore not very useful because of the lack of differentiability of f. 

The  differential inclusions beside to  be a description of more general dynamical sys- 

tems provide a mathematical tool t o  carry the study of nonsmooth control systems, closed 

loop control systems: 

and implicit dynamical systems 

We refer t o  [ I ] ,  [9], [22], [6], and bibliographies contained therein for the correspond- 

ing examples of systems whose models are described by (1.16), (1.17) 

Setting F ( z )  = U f(z ,u)  and F ( z )  = {v : f(z,v) = 0) we reduce (1.16) and (1.17) 
UE U(2) 

respectively t o  the differential inclusion (1.15). 



Recall that the dynamical system (1.17) appears in the Lagrange problem (see [28]). 

In 1281 two ways to treat (1.17) are described. One is an unjustified multiplier rule. The 

second is (again) an unjustified assumption that (1.17) can be rewritten as a control sys- 

tem (1.2), (1.3). In this paper we treat (1.17) via differential inclusion techniques. 

Properties of the dynamical system given by (1.15) depend on the graph of the set- 

valued map F .  

Actually the generalized differential equation (1.15) inherits many properties of 

ODE (see [I]) .  The one we exploit the most here is the variational inclusion, which is as 

useful as variational equation arising in ODE. It was extended to variational inclusions in 

[13], 1121 and independently in 1231. Many results concerning inclusions can be found in 

[ I ] ,  191-[16], [18], [23] (see also bibliographies contained therein). 

The maximum principle for differential inclusions was proved in [9], 1101, [12], [18], 

[23L It involves either graphical derivatives of the set-valued map F ( [12], [23]), 

or generalized Jacobians of selections from F [18], or the generalized gradient of Hamil- 

tonian 

H(z,p) = sup { < p , e  > : e E F(z) )  

(191,1101). 

We prefer the "graphical" approach mainly for two reasons: 

1. In general, even for smooth control systems, H is merely Lipschitz. Hence 

one is led to differentiate H in one or another generalized way. There is no yet any 

convenient notion of higher order generalized derivatives of H adequate for our pur- 

poses. Neither is it clear how one can solve the nonsmooth Hamiltonian inclusions. 

We rather deal with convex subcones of tangent cones to graph (F) and the associat- 

ed convex processes. Convex process is a set-valued analogue of linear operator (see 

[25], [2]). In particular the Kalman rank condition can be extended to convex 

processes [3]. 

2. In the examples of applications we provide here, the Hamiltonian maximum 

principle is less powerfull than that involving the adjoint system (see Section 4, Re- 

mark 4.8 for a detailed discussion). 

Tangent vectors to reachable sets are studied via local variations in Section 2. In 

Section 3 we investigate the adjoint of the reachable process, r (T-t , t )* .  The cone 

T ~ ( ~ , ~ ) ( Z ( T ) ) +  is studied in Section 4. Section 5 is devoted to necessary conditions for 

problem (1.1) for the (usual) control system (1.2), (1.3), the closed loop control system 

(1.16) and implicit dynamical system (1.17). In Section 6 we sketch how the same ap- 



proach can be used to study control systems with jumps (deterministic impulse control 

systems). Examples are provided in Section 7. 

We do not present here a thorough study .of high order variation. Many results con- 

cerning smooth cases can be found in [19]. In the more general framework (1.15) one 

deals with the extended notion of Lie bracket for set-valued map. A second order result 

can be found in [14]. However the higher order variations require a further investigation. 



2. T a n g e n t  V e c t o r s  to R e a c h a b l e  Sets 

One of the main tools we use here is the following result due to Filippov [ l l ] .  

Theorem (Fi l ippov) .  Let y :  [a,b] -, R n  be an absolutely continuous function and 

G : [a,b] x R n  -, R n  be a set-valued map with closed images such that  

(i) for all z  E R n ,  the map t  -, G(t,z)  is measurable 

(ii) for some E > 0, k E ~ ' ( a , b )  and all t ,  G(t,.) has nonempty images and is k(t)- 

Lipschitz on ~ ( t )  + E B .  

Set K  = exp (Jk(t)dt) ,  p := Jdist (y'(t),  G(t ,y(t)))dt .  If p < I, then there exists an ab- 
a a K  

solutely continuous function z : [a,b] -, R n  satisfying z(a)  = y(a),  

< Kp and for almost all t  E [a,b] Iz- yIqa ,b)  - 

R e m a r k :  The proof can be found in [ I ]  under an additional assumption that  G is con- 

tinuous in t. In [9, p.115] the above theorem is stated in a weaker form but the proof al- 

lows to deduce the above stronger version. We provide a sketch of such deduction. The 

function z is constructed as the limit of a Cauchy sequence z, E C(a,b; R n )  i = 0,1, ... of 

absolutely continuous functions satisfying zi(a) = y(a) and for almost all t  E [a,b] and all 

i L 1  

Hence for almost all t  E [a,b] also the sequence {z',(t)) is Cauchy. This and Lebesgue's 

dominated convergence theorem yield: the existence of z E C(a,b) such that  for all 

t  E [a,bl 

z ( t )  = z (a )  + lim 2;. (s)ds 
al--+OO 

Hence z is absolutely continuous and we finally obtain that  



Moreover for almost all t  E [a,b] 

Taking the limit we obtain that  for almost all t E [a,b] 

Consider a set-valued map F from Rn to Rn and a differential inclusion 

A function z  E W ' ? ~ ( O , T ) ,  T  > 0  (the Sobolev space) is called a trajectory of (2.1) if for 

almost all t  E [ O , T ] , z ' ( t )  E F ( z ( t ) ) .  We denote by St the set of all trajectories of (2.1) 

defined on the time interval [O,t]. The reachable set of the inclusion (2.1) from a point 

c E Rn a t  time t  > 0  is given by 

We observe that  the reachable sets enjoy the semigroup property: 

R ( t +  h,c)  = R ( t , R ( h , c ) )  for all 1 ,  h  2 0  

R(O70 = c (2.2) 

Let z E ST be a given trajectory. We study in this section tangent vectors to  reach- 

able set R ( T , C )  at  z (  T ) .  We call a set Q c Rn a cone if for all X > 0 ,  X Q c Q. Recall 

first 

Definition 2.1. Let K  be a subset of Rn and z  E K.  The (Bouligand) contingent cone 

to K  a t  z  is given by 

T K ( z )  = { v  E Rn:3h ,+O+,  v,+ v  such that  z  + hivi E K )  

The intermediate tangent cone to K  at  z  is defined by 

I K ( z )  = { v  E Rn: Vh, + 0  + 3vi + v  such that  z  + h,vi E K )  



We refer to [2], [12] for properties of TK(z), IK(z). Throughout the whole paper we as- 

sume that  the set-valued map F in the right-hand side of the differential inclusion (2.1) 

satisfies the following assumption 

Dom F := {z : F(z)  # d) is open 
F has compact images and is Lipschitzian on Dorn F 

Definition 2.2. Let F :  Rn 2 Rn be a set-valued map locally Lipschitzian a t  z and 

y E F(z).  The derivative of F a t  ( 2 , ~ )  is the set-valued map d F ( z , ~ ) :  Rn 2 R n  given 

by: for all u E Rn 

F(z+hu)- y 
v E dF(z,y)u e lim dist(v, 

h 
) = o  

h-o+ 

Observe that  graph dF(z,y) := {(u,v) : v E d F ( ~ , ~ ) u )  is a closed cone equal to the in- 

termediate tangent cone to graph (F) a t  (z,y). We refer to [12]-(141 for some properties 

and applications of the set-valued derivative. 

We denote by co F the convexified set-valued map, i.e. for all z E Rn,  co F(z )  is the 

convex hull of F ( z ) .  

Consider the "linearized inclusion" 

For all h,t > 0, J E Rn define the reachable set r(h, t)  J of (2.3) by 

r (h , t ) J  = {w(t+h) : w E wlyl(l,l+h) satisfies (2.3), w(t) = J )  

Definition 2.3. Let t E [O,TI. Set 

~ ( t , z )  = { v :  3hi > O,pi -+ 0 + such that  lim hi = O,z(t + hi) + piv E R( t  + hi,C) + o(pi)B)  
i-00 

W(t,z) = {v:Vpi -+ 0 + 3hi -+ 0, hi 2 0 such that  z(t + hi) + piv E R( t  + hi,C) + o(pi)B) 

Observe that  W(t,z) and W(t,z) are closed cones. Moreover for all t E (0, TI 

and, in particular, Tc(z(0)) c W(0,z). 

Remark. When for some integer k > 1, pi  = hf, then the vector v can be seen as the 

k-th order variation of R( - )  a t  ( t ,z(t)) .  



Actually, variations of R(. ,C) a t  (t ,z) are mapped by r ( T  - t , t )  into the tangent 

vectors t o  R ( T , C ) .  

Theorem 2.4. Assume tha t  ( H I )  is verified and let t E (O,T[. Then for all t < T < T 

T o  prove the above theorem, we need a consequence of the Filippov-Waiewski relax- 

ation result (see [ I ] ,  p. 124): 

Consider the convexified inclusion 

Proposition 2.5. Assume tha t  ( H I )  holds true. Then for all t E [O,T] the contingent 

(respectively intermediate) cones t o  the reachable sets of (2.1) and (2.5) a t  time t taken 

a t  the point z( t)  d o  coincide. 

Proof (of Theorem 2.4). By Proposition 2.5, we may assume tha t  F has convex images. 

Fix a solution w of (2.3) and let hi 2 O,p, + O +  ,vi + v = w(t) be such tha t  

lim h, = 0,  z(t + hi) + p;v, E R ( t  + h,,C). For all s E [t + h ; ,~ ]  set 
i 4 m  

and let L > 1 denote the Lipschitz constant of F. Then for almost all s E [ t  + h, T] and all 

large i 

Moreover, 

lim (It),- vl + $ Iw'(p)ldp) = 0 
;-roo i 

and,  by definition of d F ,  for almost all s E [ t  ,TI 



lim dist ( z ' ( s )  + p i w ' ( s ) ,  F ( z ( s )  + p i w ( s ) ) )  / p i  = 0 
i400 

Thus, by the Lebesgue dominated convergence theorem and (2 .6 )  

l im I dist ( y i  ( s ) ,  F ( y i ( s ) ) ) d s  / p i  = 0 
l4Oot+h; 

From the Filippov theorem there exist 

such that  (ri-  Y ~ ( T ) (  = o ( p i ) .  

Since 

lim ( y i ( r )  - z ( r ) )  / p i  = lim (v i  + I w ' ( p ) d p )  = w ( r )  
1 4 0 0  1 4 0 0  i+ h, 

we end the proof. 

Theorem 2.6. Assume that  ( H I )  is verified and let 0 5 t  5 r  < T .  Then the set 

{ ( w ( t ) ,  w ( r ) ) :  w ( t )  E T R ( t , c ) ( z ( t ) ) ,  w E ~ ' , ' ( t , r )  is a trajectory of ( 2 . 3 ) )  

is contained in 

Proof. By the proof of Theorem 2.4 in the case when hi = 0 for all i 2 1 ,  we know that  

there exist vi + v ,  ri E R ( r  - t ,  ~ ( t )  + p , ~ , )  such that  z ( t )  + p,v; E R ( t , C )  and 

1 

lri - z ( r )  - pi(v i  + I w ' ( p ) d p ) l  = o ( p i ) .  Hence 
i 

It was shown in [16] that  under the hypothesis ( H I )  the reachable map R  has the fol- 

lowing (first order) expansion: for all < near z ( t )  and all small h  > 0 

where 

lim l o ( t , h ) l / h  = 0 
h4O+, < 4 z ( t )  



and the equality in (2 .7 )  has t o  be understood in the following way: 

On the other hand, the function z(.)  being absolutely continuous, for almost all t  E [O,T] 

and all h  > 0  we can write z ( t + h )  = z ( t )  + h z ' ( t )  + o ( h ) .  Applying (2 .7 )  with ( = z ( t )  

and using Definition 2.3 we obtain 

We have even a stronger result which we shall use in Theorem 2.9. 

Theorem 2.7. Assume tha t  ( H I )  holds true. Then W ( t , z )  + T R ( i  , C ) ( ~ ( t ) )  c W ( t , z ) ,  

?U( t , z )  + I R ( I , C ) ( ~ ( ~ ) )  =*(t,z). 

Proof. Fix w  E W ( t , z ) ,  v  E T R ( ! , C ) ( ~ ( t ) )  and let pi -+ O+, vi --t v  be such tha t  

z ( t )  + piv ,  E R ( t , C ) .  Fix hi -+ 0+, W i  -+ W ,  Y i  E Si+h, such tha t  

z( t+h,)  + piw,  E R ( h i , z ( t ) ) ,  y i ( t )  = z ( t ) ,  yi(t+h,) = z ( t t h i )  t p,w,. Set yi = y, + piv,. 

Then dist (& ( s ) ,  F ( j j , ( s ) ) )  < dist ( y ;  ( s ) ,  F ( y i ( s ) ) )  + Lpilvil = Lpilvill, where L  denotes 

the Lipschitz constant of F .  This and Filippov's theorem imply the existence of 

zi E S i S h  such tha t  z i ( t )  = jj,(t) = z ( t )  + pivi E R ( t , C ) ,  

Hence, from ( 2 . 2 ) ,  

Definition 2.3 ends the proof of the first statement. The  proof of the second one is analo- 

gous. We omit i t .  

In Section 4 we study "normal" cones to  reachable sets along the trajectory z  via a 

duality technique applied t o  convex subcones of the set W ( t , z ) .  We introduce next an  ex- 

ample of such subcone. 

Definition 2.8. Let t  E [O,T].  A vector v  E R n  is called a smooth variation of order 

k > 0 a t  ( t , z )  if 

lim dist v ,  I h4OS 
t ' - t +  

h k  

The set of all variations of order k is denoted by ~ ~ ( t , z ) .  The closed cone spanned by all 



variations is called the expansion cone of the reachable map a t  ( t , z )  and is denoted by 

R m ( t , z ) :  

The expansion cone a t  a stationary trajectory was introduced in 1141 to  study the 

problem of local controllability a t  a point of equilibrium. Clearly, whenever u  E R k ( t , z )  

then for all pi -+ O+ there exist hi -+ O+ such that z( t+hi)  + p,u E R ( h , ,  z ( t ) )  + o ( p , ) .  

Hence Lemma 2.7 yields T R ( t , C ) ( ~ ( t ) )  + R k ( t , z )  c W ( t , z ) .  Moreover 

Theorem 2.9. Assume that  ( H I )  holds true. Then R m ( t , z )  is a closed convex subcone 

of the cone of variations W ( t , z )  satisfying (2 .9 ) .  

This result is an immediate consequence of the closedness of W ( t , z )  and 

Lemma 2.10. If ( H I )  holds true then 

i )  For all K > k ,  0  E R k ( t , z )  c R K ( t , z )  

ii) For all k  > 0 ,  ( n + l ) - k c o  R k ( t , z )  c R ' ( t , z ) .  

Proof. Clearly for all k  > 0  

Fix K > k  > 0  and observe that  for all u  E Rn ,  t '  E [ O , T [ ,  h  E ] 0 , l [  we have h K I k  < h  

and 

This and Definition 2.8 imply i). To prove ii) fix k > 0 ,  A, > 0 ,  u, E R k ( t  , z ) ,  i = 0  ,..., rn 
m 

satisfying C A, = 1. We claim that  
i=o 

Indeed consider ti -+ t  + , hi -+ O+ . Then 



where lim o ( h > / h f  = 0 .  We proceed by the induction. Assume tha t  we already proved 
J4-= 

t ha t  for some O < s < n and all j 

with lirn o ( h 9 l h f  = 0 .  By Definition 2.8 applied with t '  = t j  + h j k A i ,  h = A8+1hj 
j-+m i=o 

This and the Filippov theorem yield 

Hence (2 .12)  is valid also with s replaced by s + 1. Applying (2 .12)  with s = m we ob- 

tain tha t  

and since { t i )  and { h i )  are arbitrary, Definition 2.8 implies (2 .11) .  On the other hand,  

by the ~ a r a t h e b d o r ~  Theorem for all v E c o ~ ~ ( t , z )  there exist pi > 0 ,  ui E ~ ~ ( t , z )  such 

lim dist 
j+m 

n n n 
k - t ha t  C p i  = 1 and C p i v i  = v .  Observe tha t  C d p i / ( n + l )  < 1. Applying (2 .11)  with 

i=O i=O i=O 

n+ 1 
we obtain tha t  ( n + l ) - k v  = C A:vi E ~ ~ ( t , z ) .  This proves ii) 

i=o 

rn R ( h , , ~ ( t , ) ) - ~ ( t , +  hi) 
C A:ui, 
i=o h f 

= 0 



3. The Adjoint Process r (  T - t ,  t )  * 
Recall that for a subset K of a Banach space E ,  its positive polar cone is given by 

We also recall 

Definition 3.1. A set-valued G :  Rn 2 Rn is called a (closed) convex process if graph 

( G )  is a closed convex cone. 

We refer to  Rockafellar [25] who introduced and studied this notion and t o  Aubin- 

Ekeland [2] for further properties. 

Definition 3.2. Let G :  Rn 2 Rn be a set-valued map. The adjoint map 

G * :  Rn 2 Rn is given by p E G*(q) if and only if for all (z,y) E graph(G), 

<p,z> < <q,y>.  In other words p E G*(q) * (-p,q) E graph (G)'. 

Observe that the adjoint G* is a closed convex process. 

Let {A(s ) :  s E [O,T]) be a given family of closed convex processes from Rn t o  Rn 

satisfying 

i) For all w E Rn the map s --, A (s)  w is measurable 

ii) For all s E [O,T], the map w --, A(s)w is k(s) -Lipschihian, where k E Lm(O,T) 

For all 0 _< t 5 r < T,  we investigate the adjoint r ( r -  t ,  t )  * by studying the inclu- 

sions 

w'(s) E A (s)  w(s) a.e. (3.1) 

and 

in the case when 

( H 3 )  graph (A (s)) c graph (dco F(z(s) ,  ~ ' ( s ) ) )  a.e. in [O,T] 

For a subset Q C Rn we denote by rQ(r-  t ,  t )  the restriction of r to  Q,  i.e. 

( ; ( r - t , t ) z r h e n  z L Q 
rQ(r-  t ,  t ) ~  = otherwise 

The main result of this section is 

Theorem 3.3 If a family {A (s)  : s E [0, TI) of closed convex processes from R t o  Rn 



satisfies (H2) and (H3) then for all b E R n ,  convex cone Q c R n  and 0 5 t 5 r < T 

a) r ( r -  t ,  t )  *b c {q(t) : q E ~ ' ~ ~ ( t , r )  satisfies (3.2), q(r) = b)  

b) rQ(r - t ,  t )  *b c {q(t) : q E wltW(t ,r) satisfies (3.2), q(r) = b )  - Q+ 

c) ( r ( r -  t ,  t )Q)+ C {q(r) : q E ~ ' * ~ ( t , r )  satisfies (3.2), q ( t )  E Qt)  

To prove the above theorem we associate with all 0 < t < r < T the convex process 

F(r- t , t ) :  R n  2 R n  defined by : for all ( E R n  

F(r-t,t)( = {w(r) : w satisfies (3.1) on[t,r], w(t) = () (3.3) 

Therefore, by the definition of the adjoint map, for all b E R n  

Theorem 3.3 follows from the above inclusions and the following two lemmas. 

Lemma 3.4. If (H2) holds true then for all 0 5 t 5 r < T and b E R n  

F(r-t,t) *b = {q(t) : q E w1jW(t,r) satisfies (3.2), q(r) = b )  . (3.7) 

Lemma 3.5. If (H2) holds true then for all convex cone Q c R n  and b E Domi(r-t,t) * 

and 

Proof of Lemma 3.4. Fix 0 5 t < r 5 T. Let us set 

X = w'l2(t ,r), Y = L2(t ,r) X L2(t,r) 

L = {(z,y) E Y: y ( s )  E A(s)z(s) a.e. in [t,r]) 

D, the differential operator on X, Dz = z' 

7, the trace operator on X, $2) = (z(t),z(r)). 

Observe that L is a closed convex cone and, by the measurable selection theorem 

(see 12611, 



We claim tha t  

T o  prove i t  we have t o  verify tha t  for all ( u , v )  E Y  there exists z  E X  satisfying 

Fix ( u , v ) E Y  and observe tha t ,  by ( H 2 ) ,  the set-valued map  

[t ,r]  x Rn 3 ( s , z )  --+ A ( s )  ( z - u ( s ) )  + v ( s )  is measurable in s  and for almost all s  i t  is 

Lipschitzian in z  with the Lipschitz constant k ( s ) .  Moreover 

dist(0,A ( s )  ( - u ( s ) )  + v ( s ) )  5 k ( s )  l u ( s ) l +  lv (s ) I .  By the Filippov theorem there exist 

M >_ 0  and z  E ~ ' ~ ' ( t , r )  satisfying (3.11) and such tha t  

Thus 12'1 E ~ ~ ( t , r )  and,  therefore z  E X .  Hence we proved (3.10).  By [3,  Lemma 1.31 and 

(3.10) we obtain tha t  

Clearly 7 ( ( l  x D)-' L )  c graph( f (r - t , t ) )  and by (3.12),  rtgraph ( f ( r - t , t ) ) +  

c ( ( 1  x D ) - ' L ) +  = ( 1  x D)  * ( L S ) .  Hence for all ( a , b )  E graph f ( r -  t , t )+ there exists 

( -p ,q )  E L+ such tha t  

This implies t ha t  for all w E w; j2( t , r ) ,  

Thus q  E w112(t,r) and q' = - p .  By (3 .9) ,  -q ' ( s )  E ~ ( s )  *q(s)  a.e. in It,?]. From 13, 

Proposition 1.7b] we deduce tha t  q  E ~ ' j ~ ( t , r ) .  Moreover by (3.13) for all 

z  E X ,  < ( a , b ) , ( z ( t ) , z ( r ) ) >  = < ( Q ' , Q )  , ( z , z ' )> = Q ( T ) Z ( T )  - q ( t ) z ( t ) .  Hence 

(- a,b)  = ( q ( t ) ,  q ( r ) ) .  and q ( t )  E f ( r -  t , t )  *Q(T) .  We proved tha t  for all 

b  E Rn, f ( r -  t , t )  *b is contained in the right-hand side of (3.7). On the other hand if q  

satisfies (3.2) then for all solution w of (3.1) 

This yields t ha t  q ( t )  E r ( r -  t , t )  *q(r) and ends the proof. 



T o  prove Lemma 3.5 we apply some results from [2,  pp. 142-1431 concerning closed 

convex processes. Since in general f ( r -  t , t )  is not closed we need the following 

Lemma 3.6. If ( H z )  holds t rue then f ( r  - t , t )  is Lipschitzian on Rn and the set-valued 

map cl F ( T -  t , t )  defined by : for all u  E Rn, cl f ( r -  t , t ) u  = F ( T  - t , t ) u  is a Lipschitzian on 

R n  closed convex process. Moreover (cl  F ( T -  t , t ) )  * = f ( r  - t , t )  * is an upper semicontinu- 

ous set-valued map  with compact images mapping bounded sets t o  bounded sets and 

Dom f ( r -  t , t )  * = f ( r  - t , t ) (0)+.  

Proof of Lemma 3.6. Since 0  E f ( r -  t , t)O, the set f ( r -  t,t)O is nonempty. Fix any 

u  E Rn  such tha t  i ( r  - t , t ) u  # a  and let w  be a solution of (3.1) on [t,r] satisfying 

w ( t )  = u.  Pick v  E Rn and set y ( - )  = w(.) + v  - u .  Then dist ( y ' ( s ) ,  A ( s ) y ( s ) )  

= d i s t (w ' ( s ) ,  A  ( s ) ( w ( s )  + v  - u ) )  < k ( s ) l v  - ul. This and the Filippov theorem imply 

the existence of a solution 6 of (3.1) defined on [t,r] and satisfying 

6 ( t )  = y ( t )  = w ( t )  + v  - u  = v  

where M  does not depend on v,u.  Thus  f ( r  - t , t ) v  # @ and 

i.e., f ( r -  t , t )  is Lipschitz on Rn with the constant M +  1. Pick any 

u,u l  E R n , v €  c l f ( r -  t , t ) u  and consider v, --+ v , v ,  E i ( r - t , t ) u .  By the Lipschitz con- 

tinuity of i ( r -  t , t )  for some wi E f ( r -  t , t ) u l ,  Iwi - v,l < ( M  + 1)Iu - ull .  Taking a subse- 

quence and keeping the same notations we may assume tha t  wi converges t o  some 

w  E cl f ( r -  t , t ) u l .  Then Iw - vl < ( M  + 1)Iu - ull and this yields the Lipschitz continuity 

of cf  ? ( T -  t , t ) .  Let ( u , , ~ , )  E graph ( f ( r -  t , t ) )  be a sequence converging t o  some ( u , v ) .  

Then v, E f ( r  - t , t ) u ,  and, by Lipschitz continuity, for some w, E f ( r  - t , t ) u  we have 

Iwi - v,l 5 ( M  + 1)lu - u,,. Hence wi --+ v  and v  E cl f ( r -  t , t ) u .  This implies t ha t  

graph ( f  ( r  - t  , t ) )  = graph (el  f ( r  - t  , t ) )  (3.14) 

and therefore graph (e l  i ( r  - t , t ) )  is a closed convex cone. Hence cl f ( r  - t , t )  is a closed 

convex process and 

graph ( f  ( r  - t , t ) )+  = graph (cl f ( r -  t , t ) ) +  

From Definition 3.2 we deduce tha t  f ( r -  t , t )  * = (cl  f ( r -  t , t ) )  *. The  last s tatements  fol- 

low from [3,  Proposition 1.71. 



Proof of Lemma 3.5. We prove first tha t  

Indeed fix ui E Q ,  v, E i ( r -  t , t ) u i  such tha t  l im (ui,vi) = ( u , v ) .  Then u  E Q and 
1+00 

( u , v )  E graph( i ( r -  t , t ) )  = (by  (3.14))  graph (cl  i ( r -  t , t ) ) .  Hence v  E cl i q ( r -  t , t )  and 

we proved tha t  graph(iQ(r-  t , t ) )  = graph (cl  i a ( r -  t , t ) ) .  This yields (3.15). We also 

know tha t  Dom (e l  F ( ~ -  t , t ) )  = Rn. Hence using 12, pp. 142-1431 we obtain (3.8). 

T o  prove the second statement we observe tha t  the Lipschitz continuity of 

cl i ( r -  t  , t )  yields 

Hence ( i ( r -  t , t ) Q ) +  = (c l  F ( T -  t , t ) Q ) +  = (cl  i ( r -  t , t ) Q ) +  = ( b y  [2,pp.142-143]) 

cl i ( r -  t , t )  * - l (Q+)  = (by  Lemma 3.6) i ( r -  t , t )  *- ' (Q+).  The  proof is complete. 



4. The Cone T R ( T , C ) ( ~ ( 3 ) + .  

In this section we assume that  ( H I )  holds true and that  there exists a family of 

closed convex processes { A ( S ) ) , , - ~ ~ , T I  satisfying ( H 2 )  and (H3) .  

Observe that  the dual form of Theorem 2.4 is : for all 0  < t  < r < T  

T ~ ( ~ , ~ ) ( z ( r ) ) +  ( r ( r -  t , t )  w ( t , z ) )+  (4.1) 

Hence we can 'estimaten T R ( T , C ) ( ~ ( ~ ) ) +  using the set ( r ( r  t )  ( t , ~ ) ) .  We study this 

last set via a duality technique. 

Consider again the adjoint differential inclusion 

- Q ' ( s )  E A ( s )  *q(s)  a.e. (4.2) 

Theorem 4.1. Assume that  ( H I ) ,  ( H 2 ) ,  (H3) hold true. Let Q ( t )  c W ( t , z )  be a family 

of convex cones such that  for all 0  < t  5 t l  5 T , f ( t l  - t , t ) Q ( t )  c Q ( t l ) .  Then for all 

r  E [O,Tl 

T R ( T , C ) ( ~ ( r ) ) +  c { q ( r )  : q  E w1."(0,r) satisfies (4.2),  q ( t )  E ~ ( t ) '  on [O,r[) 

Consider next the differential inclusion 

Theorem 4.2. Assume that  (H1) , (H2) , (H3)  hold true and let Q ( t )  c W ( t , z )  be any fam- 

ily of convex cones. Then for all r  E (0 ,  TI 

T R ( T , C ) ( ~ ( ~ ) +  c {q(r ) :q  E W ~ ~ " ( O , T )  satisfies (4.3), q ( t )  E Q ( t ) +  on [O,r[) 

In particular 

~ ~ ( ~ , ~ ) ( z ( r ) ) +  c {q(r ) :q  E W ' . ~ ( O , ~ )  satisfies (4.3), q ( t )  E R" 

Observe that  the statements of the above theorems depend on the choice of { A ( s ) )  and 

{ Q ( s ) ) .  From (4.1) and Theorem 3 . 3 ~ )  we obtain 

Lemma 4.3. If ( H 1 ) , ( H 2 ) , ( H 3 )  hold true, then for any 0  5 t  < r < T  and any convex 

cone Q  c W ( t , z )  

T ~ ( ~ , ~ ) ) (  z(r))+ c { q ( r )  : q  E w1?"(t,r) satisfies (4.2), q ( t )  E Q+) . 



Proof of Theorem 4.1. We shall apply the above lemma. Fix T E  ]O,T] and + 
T ~ ( r , ~ ) ( z ( r ) ) .  

Step 1. Fix any 0 < t l  < . . . < t, < r. We first prove the existence of q E W ~ * ~ ( O , T )  

satisfying (4.2) such that 

By the assumptions of theorem, inclusion (4.5) implies that 

We proceed by the induction. By Lemma 4.3 there exists q E w1ym(trn,~) satisfying (4.2) 

(4.4), (4.5) with 2 = m. Assume that we already know that for some 2 < j < m there ex- 

ists q E w1?"(tj,r) such that (4.2), (4.4), (4.5) hold true with i > j. From (4.6) we 

deduce that q(ti) E ( i ( t j  - tj-l,tj-l) ~ ( t , - ~ ) ) + .  Applying Lemmas 3.4, 3.5 with r = ti, 

b = g( t j )  and t = tj-l we prove the existence of ( E ~ ' ~ ~ ( t , - ~ , t , )  satisfying (4.2) such 

that ((ti) = q(t,),  ((tj-l) E Q(tjP1) +. Setting 

q(s) when s E [tj,r] 

((s)  when s E (tj-l,tj] 

we end the proof of Step 1 

Step 2.. Let t, E [O,r], i = 1,2,. . . be a dense subset of [O,r]. Set 

L = {(z,y) E L2(0,r) x L2(0,r) : z(s) E A (s)  * y(s) a.e.) 

since A(s )*  are closed convex processes, by Mazur's lemma, L is weakly closed in 

L2(0,r) x L2(0,r). By Step 1, for all j > 1 there exists q, E W ' ? ~ ( O , ~ )  satisfying (4.2) and 

such that qj(r) = b and for all 1 < i 5 j 

By [3, Proposition 1.6 b)] for all j and almost all s E (O,r],lq; (s)l  5 k(s)lq,(s)l. This and 

Gronwall's lemma imply that {qj)  is bounded in w1v2(0,r) and, by reflexivity, it has a 

weak cluster point q. Since L is weakly closed, q satisfies (4.2) and, by (4.7), for all 

i,q(t,) E ~ ( t ; ) + .  Fix t E [O,r], w E Q(t)  and let {tit) be a subsequence converging to t 

from the right. Since {A(s))  satisfy (Hz), by the Filippov theorem, there exist 



wt E r'(t,k--t,t)w converging t o  w. Moreover for all k, <q(tik),  wk> >. 0. Therefore, tak- 

ing the limit, we get q(t)  E ~ ( t ) +  for all t E [O,r]. This ends the proof. 

T o  prove Theorem 4.2 we need two lemmas. 

The  next one shows how a given family {A(s) )  can be "increased" t o  a larger family 

of closed convex processes still satisfying (Hz), (H,). 

Lemma 4.4. For all s E [O,T] such tha t  z'(s) E F (z ( s ) )  and for all z E R n  set  

and set G(s)  = A(s) for all other s .  Then { G ( S ) ) ~ ~ ~ ~ , T J  are closed convex processes satis- 

fying (Hz),  ( H , )  and A (s) c G(s) .  Moreover for almost all s E [0, TI and all q E R n  

*q when q E (F(z(s ) )  - z'(s))+ 
G(s)  *q = otherwise 

Proof. From the definition of G(s) ,  exactly as in the proof of Lemma 3.6, we deduce 

tha t  G(s) ( . )  is k(s)  - Lipschitz on R n .  By [12, Lemma 2.81 we know tha t  {G(s ) )  satisfy 

(H,). Since G(s)( . )  is continuous and has closed images, graph (G(s ) )  is closed. It  is also 

clear tha t  graph (G(s ) )  is a cone. T o  prove its convexity it is enough t o  consider only 

those s E [o,T] t ha t  satisfy z'(s) E F(z(s ) ) .  Fix such s and u,v E R n .  Since A(s)  is a 

convex process and TcoF(z(s))(z'(s)) is a convex cone we obtain 

A(s)u  + T ~ ~ ~ ( ~ ( ~ ) ) ( z ' ( s ) )  + A(s )v  + T c o ~ ( ~ ( ~ ) ) ( z ' ( s ) )  C A ( s ) ( u + v )  + T ~ o ~ ( z ( ~ ) ) ( z ' ( s ) )  

This  yields t ha t  

G(s)u  + G(s)v  c A (s) ( U  + V) + T c O F ( i ( s ) ) ( ~ ' ( ~ ) )  = G(s) ( U  + V) 

Hence G(s)  is a closed convex process. Moreover, by [25], for all q E R n ,  

A (3) '9 when E Tco~(z(s))(z ' (s))+ 
G(s)  *q = otherwise 

Since co F(z(s ) )  is a convex set we also have 

and therefore 



Using (4.9) we deduce from the last equality t ha t  for almost all s E [O,T], (4.8) holds 

true. T o  end the proof i t  remains t o  show tha t  for all z E R n ,  the map  s + G(s)z  is 

measurable. Since the map s + F(z(s))  is continuous i t  is also measurable. By 

Castaing's representation theorem [8] and the assumption (H2)i)  there exist measurable 

selections 

such tha t  for all s 

Hence, using (4.10) we obtain 

Since the functions s + g,(s) + i ( fn(s)  - z'(s)) are measurable the last equality and 

Castaing's theorem imply tha t  s + G(s )z  is a measurable set-valued map.  

In Theorem 4.1 we deal with convex cones Q( t )  c W(t,z) which have the invariance 

property: 

The  next result shows how such cones can be constructed. 

Lemma 4.5 Let { A ( s ) ) , ~ ~ ~ , ~ I  be any family of closed convex processes satisfying 

(H2),(H2) and ~ ( t )  c W(t,z) be convex cones. Then there exist donvex cones 

Q( t )  > ~ ( t )  satisfying (4.11). 

Proof. For all 0 <_ t1 i ...I t, < T define recursively cones 

P ( t l )  = Q(t1) + i ( t l , O ) ~ ( 0 )  , . . . ,P(tl , . . . , t i+l) = Q(t,+i) + - t i , t i )p( t l , - , t i )  BY 

Theorems 2.4, 2.7 using an induction argument we prove tha t  for all 

i 2 1,  P ( t l  ,..., t,) c W(t,z). Set 

Clearly Q ( t )  is a cone containing ~ ( t )  and, by definition of Q( t ) ,  for all 

0 <_ t i t1 < T ,  r ( t l  - t , t )Q( t )  c Q(t l ) .  It  remains t o  prove tha t  Q( t )  is convex, i.e. we 

have tocheck tha t  for all 0 i t l  <_ - i t,= t,O i t i  5 .  - - 5 t i  = t 



We proceed by the induction with respect to m + k .  Observe that for all 

t  E [O,T],  P ( t )  is a convex cone. Fix t  E [O,T]. Assume that for some j > 2  and all 

m > 1,k > 1,O < t l <  - - a <  t ,  = t ,  0  < t i  < .  . . < t i  = t  satisfying m + k  < j  the rela- 

tion (4.12) holds true. Fix 0  < t l  < . - . < tm+l = t ,  0  5 t i  5 - . 5 t i  = t  such that 

m + k  = j ,  tk-l < t,. Then P ( t l , -  .,t,) + P ( t i  ,. - . , t i p l ,  t  , ) c Q(t,). Moreover by 

definition of P ( . ) ,  using that i is a convex process we obtain 

This and definition of Q ( t )  imply: 

P ( t l  ,..., tm+l)  + P ( t ;  , . . . , t i  ) = ~ ( t )  + f ( t  - t,,t,)P(tl ,..., t,) 

Proof of Theorem 4.2 By Lemma 4.4 we replace the family { A  ( s ) )  by the new family 

{ G ( s ) )  satisfying ( H 2 ) , ( H 3 )  and (4.8). From Lemma 4.5 ot is not restrictive to assume 

that the family { Q ( s ) )  satisfies (4.11). Theorem 4.1 applied with { G ( s ) )  yields the 

result . 

Corollary 4.6. Assume that ( H I ) ,  ( H z ) ,  ( H 3 )  hold true and let Q  be a convex subcone of 

T C ( z ( 0 ) ) .  Then for all r E  [O,T] 

T R ( r , C ) ( ~ ( ? ) ) +  c {q( r )  : q  E w1ym(0,r) satisfies (4 .3) ,  q(0)  E Q + )  

Proof. Setting Q ( t )  = i ( t ,O)Q and applying Theorem 4.1 with closed convex processes 

{ G ( s ) )  of Lemma 4.4 we deduce from (4.8) our statement. 

Theorem 4.7. Assume that ( H l ) ,  ( H z ) ,  ( H 3 )  hold true and that for any 

t  E  [0,  T] ,q l ,q2 ,  E w1prn(~, t )  satisfying (4.3) and equal at t  we have ql / lq l l  = q2/Iq21 on 

[O,t]. Then for all r  E [ 0 , T ]  

T ~ ( r . c )  ( z ( r ) ) +  c { q ( r )  : q  E w1sm(0,r) satisfies (4.3) and q ( t )  E w ( t , z ) +  on [0 ,r ( )  , 



In particular the above happens when for almost all s  E [0 ,  T I ,  the adjoint A  ( s )  * is single 

valued on its domain of definition. 

Proof .  Fix r  E [0 ,  T I ,  b E T R ( , , c l ( ~ ( ~ ) + ,  t  E [O,r[, c  E W ( t , z ) .  By Theorem 4.1 applied 

with the family of closed convex processes { G ( s ) )  and convex cones 

for s  < t  
for s  = t  

[ i ( s  - t , t ) ~ ( t )  for s > t 

using ( 4 . 8 )  we prove the existence of q  E wlym(O,r) satisfying (4 .3 )  such that 

q ( r )  = b ,  <q( t ) , c>  2 0,  Since c  E W ( t , z )  and t E [O,r[ are arbitrary, by the assumptions 

of theorem q ( t )  E ~ ( t , z ) +  on [O,r[. 

Corol lary  4.8 Assume that ( H I )  holds true and that there exist linear operators 

A ( s )  E L ( R n , R n )  satisfying ( H z ) ,  ( H 3 ) .  Then for all r  E [0 ,  T ]  

t 

T ( z ( ) )  c { q )  : - ( ' ( 3 )  = A  ( s )  * q ( ~ ) ,  < q(3) , z1(3)  = min <q(s ) , e> ,q ( s )  E W(s .2 )  in (O,r]) 
e ~ F ( z ( 3 ) )  

Proof .  The transposed linear operator A ( s ) *  is equal to the adjoint process in the sense 

of Definition 3.1 (see Rockafellar 1251). Since for all b E T R ( , , C ) ( ~ ( ~ ) ) f ,  the solution of 

the linear equation - q ' ( s )  = A ( s )  * q ( s ) ;  q(r)  = b is unique the proof follows from 

Theorem 4.7. 

T h e o r e m  4.9. Let R C ( T , . )  denote the restriction of a reachable map R ( T , - )  to the set 

C. Then for every convex cone Q  C T C ( z ( 0 ) )  

Proof .  By Theorem 2.6 

We replace closed convex processes { A ( s ) )  by { G ( s ) )  from Lemma 4.4 and keep the same 

notation f for the reachable map of the inclusion 

Then by (3 .4 ) ,  (4.13) we obtain 



and from Lemma 3.5 we deduce that  for all (p ,q )  E TgraphR(:(~,.)(~(0),t(~))+ we have 

p  + i (  T,O) *q E Q+. Lemma 3.4 ends the proof. 

Remark 4.10. (On the Hamiltonian inclusions): 

For all z,p E Rn the Hamiltonian of F  is defined by 

If ( H I )  holds true, then H  is locally Lipschitz on Dom F x Rn (see for example [ 9 ] ) .  Let 

us assume that  for all s ,  Dom A ( s )  * is a subspace of Rn and A ( s )  * is linear on Dom 

A ( s )  *. 

Consider an absolutely continuous solution q  of (4.3) defined on the time interval 

10, TI. Pick any s E ]O,1[ such that  

<q(s ) , z ' ( s )>  = min <q(s) ,e>,-q ' (s )  = A ( s )  *q(s) .  Set ij = -q and fix any u .  Let 
e ~ F ( z ( 3 ) )  

v  = A  ( s ) u  and vh 4 v  (when h-O+) be such that  t ' ( s )  + huh E coF(z ( s )  + h u ) .  Then 

for all w  E Rn we have 

H ( t ( s )  + hu,  ~ ( s )  + hw) - H(z ( s ) ,q ( s ) )  lim sup 
h  2 

h+O+ 

< q ( s )  + hw,z ' ( s )  + huh> - < q ( ~ ) , z ' ( ~ ) >  
lim sup = < w , z f ( s )  > + < T(s ) , v  > = 
h+O+ h  

In particular this yields that  

where aH denotes the generalized gradient of H  (see [9] ) .  Hence in this particular case 

every solution of (4.3) is also a solution of the Hamiltonian inclusion (4.14). It may h a p  

pen that  for a family of closed convex processes satisfying ( H 2 ) ,  ( H 3 )  the only solution of 

(4.3) is q  - 0 and in the same time the Hamiltonian inclusion (4.14) has solutions 

different from zero (see the example from [18]) .  Hence in this particular case it is more 

convenient to  use the adjoint inclusion (4.3) that  the Hamiltonian inclusion (4.14) to  esti- 

mate the cone T R ( T , C ) ( ~ ( ~ ) ) + .  In a more general case i t  is not known how t o  compare 

solutions of (4.3) and (4.14). 



5. Application: High Order Maximum Principles 

1) Minimization with respect to the final state 

Let U  be a compact metric space and f :  Rn x U  -+ Rn be a continuous function, 

g : Rn -+ R,  C c Rn. Consider the following optimal control problem 

minimize g ( z ( 1 ) )  (5 .1)  

Over the  solutions of the  control system 

I z ' ( t )  = f ( z ( t ) ,  u ( t ) )  a.e in [0,1] 
z ( 0 )  E C u ( t )  E U  is measurable. (5.2)  

Set F ( z )  = f (  z , U )  for all z  E Rn. By the Filippov Theorem (1 ,  p. 911 solutions of 

the control system (5.2)  and the  differential inclusion 

do  coincide. 

Theorem 5.1. Assume tha t  a trajectory control pair ( z , ~ )  solves the above problem and 

for a constant L and all u  E U ,  f ( - , u )  is L-Lipschitzian on a neighborhood of z ( [0 ,1 ] ) .  If g 

is differentiable a t  z ( 1 )  and for almost all t ,  f ( . , u ( t ) )  is differentiable a t  z ( t )  then there ex- 

ists q  E ~ ' ~ " ( 0 ~ 1 )  such t h a t  

q ( t )  E W ( t , z ) +  for all t  E [0,1.[ . (5 .6)  

Proof. By the  assumptions, the  set-valued map F  defined above satisfies ( H I ) .  Moreover 

a 
for almost all s  E [O,l] ,  - f ( z ( s ) ,  ~ ( s ) )  c d F ( z ( s ) ,  z ' ( s ) )  c d  c o F ( z ( s ) ,  ~ ' ( s ) ) .  Set a 

a 
A ( s )  = - f ( z ( s ) ,  E ( s ) ) .  Since I A ( s ) (  5 L, A ( s )  is L-Lipschitz. Hence ( H z ) ,  ( H 3 )  hold a z 

true. On the other hand for every solution z  of (5.3)  we have g ( z ( 1 ) )  - g ( z ( 1 ) )  2 0  and 

this yields 



Corollary 4.8 ends the proof. 

Corollary 5.2. Under all assumptions of Theorem 5.1, assume that  for some 

t  E [0 ,1[ ,  W ( t , z ) +  = ( 0 ) .  Then z ( 1 )  is a critical point of g  and if g is locally C 2  a t  z ( 1 )  

then g" ( z (1 ) )  2 0  on T R ( l , C ) ( ~ ( l ) ) .  In particular this happens when T ~ ( Z ( O ) ) +  = ( 0 ) .  

Proof. Let q  be as in Theorem 5.1 and t  be such that  ~ ( t , z ) +  = ( 0 ) .  Then q ( t )  = 0  

and, by the uniqueness of q, q ( 1 )  = 0 .  Hence, by ( 5 . 5 ) ,  g ' ( z ( l ) )  = 0 .  Assume next that  g  

is locally C Z  and fix w E T R ( l , c ) ( ~ ( l ) ) .  Then for some 

hi + 0+, w,  + w ,  z ( 1 )  + h,wi E R ( 1 , C )  and since z  solves the problem (5 .1 ) ,  (5 .2)  

1  
g ( z ( 1 )  + hiwi) - g ( z ( 1 ) )  = -g"(z( l ) )wiwih,? + o(h,?) > 0 .  Taking the limit we end the 

2  

proof. 

2) Minimization with respect to  the both end points 

Let j, U be as in example 1)  and p :  R~~ + R be a given function. Consider the 

problem 

minimize p ( z ( 0 )  , z ( l ) )  ( 5 . 7 )  

over the solutions of the control system (5 .2) .  If a trajectory-control pair ( z , i i )  solves the 

problem ( 5 . 7 ) ,  (5 .2)  and g is differentiable a t  ( z ( O ) , z ( l ) )  then 

i.e. p ' ( z (O) ,  z ( l ) )  is in the positive polar of the tangent cone. Let W ( t , z )  denote the cone 

of variations of reachable sets R( . , z (O)) .  

Theorem 5.3. Assume that  a trajectory-control pair ( z , i i )  solves the above problem, f 

satisfies all the assumptions of Theorem 5.1 and p  is differentiable a t  ( z ( O ) , z ( l ) ) .  Then 

there exists q  E w1lW(0 ,1)  satisfying (5 .4 ) ,  (5.6) and such that  

a Proof. By the proof of Theorem 5.1 the family of maps A ( s )  = -- j ( z ( s ) , i i ( s ) ) ,  s E [0,1] a z 

satisfies ( H z ) ,  ( H 3 ) .  We already know that  p ' ( z ( O ) , z ( l ) )  E TgrxphRc( l , . ) (  z ( o ) , z ( ~ ) ) + .  Fix 

b  E T C ( z ( 0 ) ) .  Applying Theorem 4.9 with Q = R + b  we deduce that  the solution q  of 



a (5.4) satisfying q(1)  = -p ( z (O) , z ( l ) )  verifies 
822 

a 
Hence < q(0)  + -cp(z(O),z( l )) ,  b >  2 0 .  Since q  does not depend on b we obtain that 

a21 

a 
q (0 )  + -p ( z (O) , z ( l ) )  E T C ( z ( 0 ) ) +  It remains to  show that  q  satisfies (5.6) .  Set 

821 
a 

g ( z )  = cp(z(O),z). Then g ' ( z (1 ) )  = -cp(z(O),z(l)).  Clearly, ( z , ~ )  is an optimal soh-  
322 

tion of problem (5 .1) ,  (5.2) with C = ( ~ ( 0 ) ) .  Applying Theorem 5.1 with C = ( ~ ( 0 ) )  we 

end the proof. 

Corollary 5.4. Under all assumptions of Theorem 5.3 assume that  for some 

a 
t  E [0,1.[, ~ ( t , z ) +  = ( 0 ) .  Then -p ( z (O) , z ( l ) )  E T C ( z ( 0 ) ) + .  Moreover if 

821 

T c ( z ( 0 ) ) +  = ( 0 )  then ( z ( O ) , z ( l ) )  is a critical point of cp and if cp is locally c2 a t  

( z ( o ) , z ( l ) ) ,  then g " ( z ( o ) , z ( l ) )  O On Tgraph  ~ , : ( l , . ) ( ~ ( O ) , ~ ( l ) ) .  

The proof follows by the same arguments as in Corollary 5.2. 

3) Closed loop control systems. 

Let U :  R n  2 R m  be a set-valued map with compact nonempty images, C be a 

nonempty subset of R n  and j :  R n  x R m  -+ R  be a locally Lipschitzian function, 

g : R n  4 R .  Consider the following control problem 

minimize g ( z ( 1 ) )  (5.8)  

over trajectories of the control system 

I z ' ( t )  = j ( z ( t ) , u ( t ) )  a.e. in [0,1] 
~ ( 0 )  E C ~ ( t )  E U ( z ( t ) )  is measurable (5.9)  

Set F ( z )  = { j ( z , u )  : u  E U ( z ) ) .  It is clear that  every trajectory of (5 .9)  is a trajecto- 

ry of the differential inclusion 

Lemma 5.5. If U is upper semicontinuous then the set of trajectories of the closed loop 

control system (5.9)  do coincide with the set of trajectories of the differential inclusion 



Proof. We have t o  show that  with every trajectory z  E ~ ~ * ~ ( 0 , 1 )  of the inclusion (5.10)  

we can associate a measurable function u  : [O,l] + Rm satisfying 

For all t  E [O,l] set f i ( t )  = { u  E U ( z ( t ) )  : z ' ( t )  = f ( z ( t ) , u ) ) .  Then for almost all 

t  E [0,1],  f i ( t )  is a closed, nonempty set. We claim that  f i  is a measurable set-valued 

map. Indeed fix a closed subset d c Rm and observe that  the set 

D := { ( t ,  f ( z ( t ) , u ) )  : t  E [o , I ] ,  u E U ( z ( t ) )  n d )  

is closed. Moreover 

Thus { t  : f i ( t )  n d f g )  is a Lebesgue measurable set and, since d is an arbitrary closed 

subset of Rm, we proved that  f i  is measurable. From the measurable selection theorem 

(see for example [26] )  follows the existence of a measurable selection 

u ( t )  E f i ( z ( t ) ) ,  t  E [0,1].  The very definition of the map f i  ends the proof. 

In the theorem below we assume that  f ( z , U ( z ) )  is regular in the following sense: If 

for some z  and ii E U ( z ) ,  q  # ql f 0  we have 

then for some X > 0 q  = Xql. Geometrically this means that  every boundary point of 

co f ( z ,  U ( z ) )  has a t  most one normalized outer normal 

Theorem 5.6. Assume that  a trajectory control pair ( z , ~ )  solves the above problem, 

that f is differentiable a t  ( z ( t ) , i i ( t ) ) ,  g is differentiable a t  z ( l ) ,  U  is Lipschitzian on a 

neighborhood of z ( [ 0 , 1 ] )  and f ( z , U ( z ) )  is regular. Further assume that  there exist closed 

convex processes B ( s )  c d U ( z ( s ) , i i ( s ) )  satisfying ( H z ) .  Then there exists a solution 

q  E ~ ~ ~ ~ ( 0 , l )  of the inclusion 

satisfying (5 .5) ,  (5.6)  and the minimum principle 

< q ( t ) , z S ( t )  > = min < q ( t ) ,  f ( z ( t ) , u ) >  a.e. 
U E  " ( z ( t ) )  



Proof. From differentiability of f a t  ( z ( t ) , i i ( t ) )  we deduce tha t  for almost all t  and for 

all w  E Rn 

Hence closed convex processes 

satisfy ( H a ) ,  (HJ). Since z  is the minimizing trajectory for all 

w  ~ T ~ ( l , c ) ( z ( l ) ) ,  q ' ( z ( 1 ) ) ~  t 0 .  Thus  q ' ( z (1 ) )  E T R ( , , C ) ( ~ ( ~ ) ) + .  We apply Theorem 

4.7. Let q1,q2 be two solutions of (4.3) such tha t  q l ( t )  = q 2 ( t )  # 0 .  Then q, # 0  on [O,t] 

and 

< q l ( s ) ,  z ' ( s )>  = min <ql ( s ) , e>  a.e. 
e E F ( z ( s ) )  

< q2( s ) ,  z ' ( s )  > = min < q2(s) ,e> a.e. 
e E F ( z ( 3 ) )  

91(s) - 
- a . e  in [0,1] and,  by continuity of ( ( 0 )  we ob- Since f ( z ,  U ( z ) )  is regular ------ --- 

191 ( s ) l  1qz(s)l 

tain ql / lq l l  = q2/)q21. Hence the result will follow from Theorem 4.7 if we show tha t  

a f  a f A  ( t )  * c - ( ~ ( t ) ) i i ( t ) )  * + B ( t )  * x ( z ( t ) , c ( t ) )  * a z  

Fix p E A ( t ) * q .  Then for all w  E Rn,  v  ~ B ( t ) w  

and therefore 

a f a f <p - - ( ~ ( t ) , i i ( t ) )  *g,w> 5 <-- (z ( t ) , i i ( t ) )  *q,v> a z  au  

By the definition of the adjoint process 

a f a f 
P - a , ( z ( t ) , i i ( t ) )  *9 E  B ( t )  * z ( z ( t ) , ~ ( t ) ) * 9  

and we finally obtain 

a f a f  
P E z ( z ( t ) , i i ( t ) )  *9 + B ( t )  * ;7 ; ( z ( t ) , i i ( t ) )  $9 

The  proof is complete. 



The next result is an extension of the main theorem from [22] .  

Theorem 5.7. Assume that  a trajectory control pair ( z , & )  solves the above problem, 

that  f  is differentiable a t  ( z ( t ) , & ( t ) ) ,  g  is differentiable a t  z ( 1 )  and U  is Lipschitzian on a 

neighborhood of z ( [ 0 , 1 ] ) .  Further assume that  for almost all t  there exists a differentiable 

a t  z ( t )  selection u t ( z )  E U ( z )  satisfying u t ( z ( t ) )  = ~ ( t ) .  Then there exists a solution 

q E W ~ ~ ~ ~ ( O , I . )  of the equation 

satisfying ( 5 . 5 )  and (5 .6 ) .  The above theorem was proved by Leitmann in (221 without 

the inclusion ( 5 . 6 ) .  

Proof. The set-valued map F ( z )  = f ( z ,  U ( z ) )  satisfies the hypothesis ( H I )  on a neighbor- 

hood of z([O,I.]) .  Moreover the linear operators 

a f  a f  a ut A t )  = ( ( ) , (  + ( ) )  1  E [Oy11 . a z 

verify ( H z )  and ( H 3 ) .  Since z  is the minimizing trajectory for all w  E T R ( l , C ) ( ~ ( l ) ) ,  

g T ( z ( l ) ) w  2 0 .  Thus g ' ( z ( 1 ) )  E T R ( l , c ) ( z ( l ) ) +  and the result follows from Corollary 4.8 

and the inclusion W(O,Z)+ c T ~ ( z ( o ) ) +  . 

4 )  A n  implicit  dynamical sys tem 

Consider a continuously differentiable function f :  Rn  x Rn + Rm and a function 

g : R n + R , C c  R n .  

We study here the problem 

minimize g ( z ( 1 ) )  (5.12) 

over the absolutely continuous solutions of the implicit dynamical system 

satisfying the initial point constraint 

Such systems arise as models for nonlinear circuits. In general they can not be reduced to  

the state variable form, z' = f ( z , t )  or to  the control system (5 .2 )  (see [ 6 ] ,  bibliographical 



comments on p. 147). 

Set F ( z )  = { v :  f ( z , v )  = 0 )  and consider the differential inclusion 

Clearly solutions of (5.13)  and (5.15) do  coincide. Moreover, by continuity of f ,  

graph ( F )  is a closed set .  The  following result was proved in [15]:  

Lemma 5.8. Assume t h a t  for all z  E Rn 

lim inf ( f ( z , v ) l  > 0  
Icl-*m 

Then F  has compact images. If moreover for all ( z , v )  E graph ( F )  the derivative 

a 
-- f ( z , v )  is surjective then DomF is open and F  is locally Lipschitzian on i t ,  and av 

ker f'(z,v) = graph ( d F ( z , v ) )  

In particular this implies t h a t  dF(z , v )  is a closed convex process 

Lemma 5.9. Under all assumptions of Lemma 5.8 for every solution z  of (5.13) there ex- 

ist L > O such tha t  for almost all s  E [O,l] ,  d F ( z ( s ) ,  z ' ( s ) )  is L-Lipschitz on Rn and 

a f  a f  [ ~ ( z ( s ) , z ' ( s ) )  * - - ( z ( s ) , z ' ( s ) )  av *-I q if q E ker - ( z ( s ) , z ' ( s ) ) ~  a v 

d F ( z ( s ) , z ' ( s ) )  " q  = otherwise 

a f Proof. Fix a solution z  of (5.13) .  Since the  derivative -- is surjective on graph ( F ) ,  for av 
all ( z , y )  E graph ( F )  there exists p > 0  such tha t  

Since f E c', the assumption (5.16) implies t ha t  there exists a compact set  K such tha t  

a f for almost all s  E [O,l] , ( z ( s ) , z ' ( s ) )  E K. This, (5.17) and continuity of - imply tha t  for a v 

some p > O and almost all s  E [ O , J ]  

Using again [15, Theorem 10.11 we deduce tha t  for some L > 0  and almost all 

s  E [O,J . ] ,dF(z(s ) , z ' ( s ) )  is L-Lipschitz on a neighborhood of zero. Since d F ( z ( s ) , z ' ( s ) )  is 

a convex process we finally obtain t ha t  i t  is L-Lipschitz on Rn. By the  definition of the 



adjoint process 

graph ( F ( z ( s ) , z ' ( s ) )  *) = (ker / ' ( z ( s ) , ze (s ) ) ) '  = I m / ' ( z ( s ) , z ' ( s ) )  * 

Hence for all (p ,q )  E graph ( d F ( z ( s ) , z ' ( s ) )  *) there exist a E R m  such that  

a /  a /  
P = ' a z  * a  , (I = a , ( z ( s ) , z ' ( s ) ) * a  

a /  a /  Since - - ( z ( s ) , z d ( s ) )  is surjective the adjoint linear operator - ( z ( s ) , z ' ( s ) )  * is injective a a v 

and hence invertible on 

a /  a /  I m - - ( z ( s ) , z Z ( s ) )  a * = (ker-(z(s),z '(s))) '  av  . 

Thus 

a /  a / * a /  
P E (kerz('(.),.(s)))' , P = T & ( " ( ~ ) , Z ' ( S ) )  a v ( z ( " , z , ( s ) )  *-I q  

Theorem 5.10. Assume that  z  solves the problem (5.12) - (5.14) ,  / satisfies all the as- 

sumptions of Lemma 5.8 and g is differentiable at  z ( 1 ) .  Then there exists q  E ~ ~ ' ~ ( 0 , l )  

satisfying 

m i n { < q ( s ) , e >  : / ( z ( s ) , e )  = 0 )  = < q ( s ) , z ' ( s ) >  a.e. (5.20) 

q ( s )  E W ( s , z ) +  for s  E [0,1[ (5.21) 

Proof. For all w  E T R ( l , C ) ( ~ ( l ) ) ,  g ' ( z ( 1 ) ) w  2 0 .  Hence g ' ( z (1 ) )  E T R ( l , C ) ( z ( l ) ) + .  

Since the solution of (5.18) is uniquely defined we may apply Theorem 4.7 with closed 

convex processes { d F ( z ( s ) ,  ~ ' ( s ) ) ) ,  ( o , l ~ .  Lemma 5.9 ends the proof. 



6. An I m p u l s e  Closed Loop  De te rmin i s t i c  Control P r o b l e m  

Let U: R n  2 R m  be a set-valued map with compact nonempty images, C be a 

nonempty subset of R n  and f :  R n  x Rm -+ R n  be a locally Lipschitzian function, 

g :  Rn - R .  

Further let V: R n -  RP be a set-valued map of shift parameters and 

cp  : R n  x RP -+ R n  be a given function. 

Consider the closed loop control system 

A sequence {(t,,vi) : i = 1, . . . , j )  is called an impulse strategy of a left-continuous tra- 

jectory z :  [O,l] -+ R n ,  if O = t1 < . 5 ti = 1 and for all i 

and z satisfies (6.1) with a measurable control u .  Such trajectory z is called admissible. 

This type of systems is met in a number of optimal cont,rol problems in economics 

and management (see for example [7, pp. 281-2851). We refer to (51, [24] and the bi- 

bliographies contained therein for previous results on discontinuous optimal trajectories. 

Consider a function g : R n  -+ R .  The problem we study here consists in characteri- 

zation of a solution z to the problem 

min{g(z(l)) : z is an admissible trajectory) . (6.5) 

The approach is essentially the same. So we shall only stress the main points. For all 

2 E R n  set F ( z )  = f(z,U(z)) .  Exactly as Lemma 5.5, we prove 

L e m m a  6.1. If U is upper semicontinuous then the set of admissible trajectories coincide 

with the set of left-continuous functions z :  [0,1] --+ R n  satisfying for some 

0 = t ,  5 - - 5 ti = 1 and v, E V(z(t,)) the following relations 



Theorem 6.2. Assume that  a trajectory-control pair (z,u) solves the above problem and 

let {(ti,ui) : i = 1, ..., 1) be a corresponding strategy. Further assume that  U,ii,g, f satisfy 

all the assumptions of Theorem 5.7, that  p is differentiable a t  (z(ti),vi) and for all i there 

exists a differentiable a t  z(ti) selection vi(z) E V(z) such that  vi(z(ti)) = u,. Then there 

exists a (left-continuous) function q :  [0,1] -+ Rn satisfying (5.5), (5.11) and such that  for 

all i 

Furthermore 

a)  If the right derivative z'(ti+) does exist then 

min < q(ti),f(z(ti),u)> > < q(ti+),zt(ti+)> 
UE U(z(fi)) 

b) If the left derivative z'(ti--) does exist then 

min < q(ti+),f(z(ti+),u)> > < q(ti),z'(ti-)> 
UE U(z(i,+)) 

c) If z has the right and left derivative a t  ti then 

min < q(ti+),f(z(ti+),u) > = 
UE IJ(z(i,+)) 

min < q(t;),f(z(t,),u)> 
uE U(z(i,)) 

When U does not depend on z the assumption that  f(z,.) is locally Lipschitzian can 

be omitted and we have 

Theorem 6.3. Let U be a compact metric space of controls, V be a set of shift parame- 

ters, f :  Rn x U -+ R n  be a continuous function and p: Rn x V -+ Rn. Assume that  a 

trajectory-control pair ( z ,u )  solves the problem 

minimize g(z(1)) (6.1 1) 

over the solution of the system 



1 z(O) E C and  for some 0 = t l  5 - - . 5 ti = 1 

vi E V and all i, z E ~ ' , l ( t ~ , t ~ + , )  

and let {ti,vi) : i = 1,  ... 1 )  be a strategy of r .  If f,g satisfy all the  assumptions of Theorem 

5.1 and cp(.,vi) is differentiable at z(ti) then there exists a left-continuous function 

q :  [0,1] + R n  satisfying (5.4), (5.5), (6.7), a ) ,  b) ,  c) and 

As in section 2 we associate t he  reachable set  R ( t , C )  at time t with t he  differential 

inclusion (6.6).  

T o  prove the  Theorem 6.2 we need the  following (simple) lemmas. 

Lemma 6.4. For all i = 1 ,..., I - 1 set  

Then 

T h e  proof follows from the  inclusion z(ti) + cp(z(ti), V(z(ti))) c Ci and t he  definition 

of the  contingent cone. 

Lemma 6.5. For  all i = 1 ,...,I- 1 set 

Then 

Proof. Fix 1 I i <_ 1-1, w E T R ( t i l C ) ( ~ ( t i ) )  and let hi + 0+,  w, + w be such t h a t  

z(ti)  + hjwj E R( t i ,C ) .  Then  



The definition of the  contingent cone ends the proof. 

Lemma 6.6. Assume tha t  z  has the right derivative % ' ( t i + )  a t  ti and let u  E U ( z ( t i ) ) .  

Then the  solution w of the  linear system 

satisfies 

Proof. Fix hi -+ 0 +  and let z be a solution of the inclusion 

Then 

and therefore 

z ( t ; +  hi) + p ( z ( t i +  h i ) , v i ( z ( t i  t h i ) ) )  = % ( t i + )  + h j A i f ( z ( t i ) , u )  + o ( h j )  

Thus 

and A i j ( z ( t i ) , u )  - % ' ( t i + )  can be seen as a variation of R ( . , C )  a t  ( t i , z ( t i + ) ) .  The proof 

then follows by the same arguments as Theorem 2.4. 

Lemma 6.7. Assume t h a t  z  has the  left derivative % ' ( t i - )  a t  t i .  Then for all 

U E U ( % ( t i + ) )  

Proof. Fix hi -+ 0 + ,  u  E U ( z ( t i + ) )  and set 



Since F is locally Lipschitzian there exists M > 0 such that for all j and t E [ti-h,,ti] 

This and Filippov's theorem imply that 

The definitions of z, and of the contingent cone end the proof. 

Lemma 6.8. For all p E TR(t l+, ,C)(~(t i+l))+ there exists q E ~ ' ~ ~ ( t , , t , + ~ )  satisfying 

(5.11), such that 

Moreover q satisfies a) ,  b), c) of Theorem 6.2 with q(t,) = q(t,+)A,. 

Proof. Consider the differential inclusion 

and observe that its reachable set R(~ ,+~,c , )  at  time is contained in R(t,+l,C).  

Thus p E T d ( ,  C,)(z(t,+l))+. By Corollary 4.8 applied on the time interval [t,,t,+l] to 
t + l 7  

(6.15) and linear operators 

there exists g E ~ ~ t ~ ( t ~ , t , + ~ )  satisfying (5.11) such that ~ ( t ; + ~ )  = p and 

Then (6.13) follows from (6.16) and Lemma 6.4 and (6.14) results from (6.16) and Lemma 

6.5. Lemma 6.7 and (6.16) imply b). Since q solves the linear equation (5.11)) Lemma 

6.6 implies that for all u E U(z(ti)) 

Hence a). On the other hand by [13] 



This and a) ,  b) imply tha t  

and the claim c) follows. 

Proof of Theorem 6.2. Since z is an  optimal trajectory gS(z( l ) )w > 0 for all 

w E T R ( l , C ) ( ~ ( l ) ) .  Thus  g'(z(1)) E T ~ ( ~ , ~ ) ( Z ( I ) ) +  and we may apply Lemma 6.8. with 

p = g'(z(1)). Set 

Then Lemma 6.8 can be applied again with p = ~ ( t l - ~ ) .  We complete the  proof using an  

induction argument and Lemma 6.8. 

Observe tha t  the  Lipschitz continuity of f(z,.) is needed t o  prove the local 

Lipschitzianity of the map  z + f (z ,  U(z)). When the control map U does not depend on 

z ,  the set-valued map  z + f ( z ,  U )  is locally Lipschitzian and therefore the same proof im- 

plies Theorem 6.3. 

Remark. Theorems 6.2 and 6.3 can be stated together with a higher order condition on 

the adjoint vector q. However we do  not do  i t  here in order t o  simplify the presentation 

of the result. 

7. Examples 

Example 1: Smooth control system. 

Consider the following optimal control problem in R ~ :  

minimize y(1) 

over the solutions of control system 



Set fi = 0 .  Then z ( t )  = ( t  ,0) is a solution of (7 .1 ) .  Moreover q r ( 0 , l )  verifies the max- 

imum principle (5 .4 ) .  On the other hand, setting u .= 1 we obtain the following Taylor 

expansion of the corresponding solution ( z ,  y )  of (7 .1)  

1  1 1  
Hence ~ ( t )  + f2(i,-T) E R( t ,O)  + o ( t 2 )  and therefore ( - )  E W ( O , ) .  But 

1 1  
< ( 0 , 1 ) , ( 1 , - - ) >  < 0. Comparing with (5 .6 )  we deduce that the pair ( z , ~ )  is not op- 

2 

timal. 

Example 2: Implicit dynamical system. 

Consider the following problem in R ~ :  

minimize 2sin y ( 1 )  - z ( 1 )  

Over the solutions of the implicit system 

Then ( 7 . 2 )  satisfies all the assumptions of Lemma 5.8. Observe that z  = ( z , y )  -- 0 is a 

solution of (7 .2 ) .  Set q -- ( -  1,2) and 

Then for all ( u , v )  E F(O),  u  - 2v  5 0 .  Hence min{<q,e>:  e E F ( 0 ) )  > 0 .  Therefore q 

verifies the maximum principle (5.18)-(5.20).  On the other hand the trajectory 

t + ( - t 2 , - 2 t 2 )  is a solution of (7 .2 ) .  Hence ( - 1 , - 2 ) E  W ( 0 , z )  and 

<(- 1,2) ( -  1 ,-2)> = - 3  < 0 .  Consequently (5 .21)  does not hold and therefore the zero 

trajectory is not optimal. 

Example 3: Differential inclusion. 

Consider the problem 

minimize g ( z ( 1 ) )  

over the solutions of the differential inclusion 



where F :  R n  = Rn is a set-valued map with convex images satisfying (HI)  and 

g: Rn -, R is a differentiable function. 

The high order variations for this problem can be studied via an extension of Lie 

brackets to set-valued maps. Although, repeating arguments from 1141, we can do it for a 

general trajectory z of (7.3) a t  every point t where z is twice continuously differentiable, 

the calculations are quite lenghtly. This is why in this example we only treat the case 

and the constant trajectory z - 0 using the ready results from (141. 

From now on we assume that  0 E F(zo). To  state a second order condition for op- 

timality we recall 

Definition 7.1 Let Q c F(z ) .  We set 

The following theorem tests for optimality the constant trajectory z s zO. 

Theorem 7.2 Let A c dF(zo,O) be a Lipschitzian closed convex process, Q c F(zo) be a 

convex set such that  

(i) 0 E rint Q 

(ii) F is lower semicontinuously differentiable on zo x Q (see [14]). 

If z -. zo is optimal then there exists a solution q of the differential inclusion 

Satisfying the minimum principle 

min <q( t ) ,e> = O  forall t E [0,1] 
e ~ F ( z , , )  

and the second order condition 

for all t E [ O , l ] .  

Proof. Fix t E [0,1]. By [14, Theorem 5.21, dF(zo,O)Q c Rw(t,zo). From [14, Proof of 

Theorem 6.11 we deduce that  (F,FIQ(zo) c Rw(t,zo). Since 2 - z0 is optimal, 

gr(zo) E TR( l ,q , ) (~o)+ .  Theorem 4.2 ends the proof. 



Final remark. It is clear that the creation of a differential and "variational" calculus of 

set-valued maps (applied to reachable sets) is needed to make the field of applications 

broader. Special difficulties do arise at all points where the trajectory tested for optimali- 

ty is not continuously differentiable. This difficulty was not overcomed up to now in the 

literature by any theorem concerning high order necessary conditions. It is usually as- 

sumed that the optimal trajectory is Cm (or piecewise Cm) (see for example [ZO], 1191, 

141). But, because of the Lavrentieff phenomenon, such assumption is not reasonable. 

This is also the reason why we state here necessary conditions using "general" variations 

of reachable sets. 
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