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Foreword 

This paper presents the analysis of a periodically fbrced second order nonlinear dynamical sys- 
tem describing predator-prey communities. Six different seasonality mechanisms are identified 
and compared in terms of bifurcation diagrams. The analysis is carried out by means of an 
interactive package which detects Hopf, flip and fold bifurcations curves as well as codimension 
two bifurcation points. The results are in agreement with the general theory of periodically 
perturbed Hopf bifurcations. This work shows that complex environmental issues can be high- 
lighted by suitably combining basic results of nonlinear system theory and powerful numerical 
techniques. 
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Abstract 

The classical predator-prey model is considered in this paper with reference to  the case of 

periodically varying parameters. Six elementary seasonality mechanisms are identified and 

analyzed in detail by means of a continuation technique producing complete bifurcation dia- 

grams. The results show that each elementary mechanism can give rise to  multiple attractors 

and that catastrophic transitions can occur when suitable parameters are slightly changed. 

Moreover, the two classical routes to  chaos, namely, torus destruction and cascade of period 

doublings, are numerically detected. Since in the case of constant parameters the model 

cannot have multiple attractors, catastrophes, and chaos, the results support the conjecture 

that seasons can very easily give rise to  complex population dynamics. 
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1 Introduction 

The study of ecological systems driven by periodic external forces is of great importance since, 

with almost no exception, population communities are imbedded in periodically varying envi- 

ronments. Temperature variations strongly influence the reproduction rate of bacteria during 

the day, moon and tide cycles regulate migration rates of numerous species in aquatic and ter- 

restrial ecosystems, light intensity controls photosynthesis during the seasons, hunting perturb 

game stocks once a year. It is therefore quite natural to  try to  identify the functional role that 

seasons play in the behavior of population communities. In particular, a basic problem is to 

understand if the magnitude of the seasonal variations is related with the complexity of the 

system. Indeed, it is known since long ago that nonlinear mechanical and electronic systems 

described by Duffing and Van der Pol equations have a very simple dynamic behavior in the 

constant parameter case, but become very complex (multiplicity of attractors, catastrophes, 

and chaos) when they are periodically perturbed (Guckenheimer and Holmes, 1986). Another 

important example in a different field is the classical SEIR epidemic model which has a globally 

stable equilibrium in the constant parameter case and a great number of modes of behavior in 

the periodically varying case (Schwartz and Smith, 1983; Aron and Schwartz, 1984; Kot et al., 

1988; Olsen et al., 1988). 

In this paper we prove that the classical predator-prey model, composed by a logistic prey and 

a Holling7s type predator, is also very sensitive to  seasonality. In the constant parameter case the 

model has a supercritical Hopf bifurcation and therefore has only one mode of behavior for each 

combination of the parameters: a globally stable equilibrium or a globally stable limit cycle. For 

small magnitudes of the seasonal variations of the parameters the equilibrium is replaced by a 

periodic solution with the same period of the perturbation (say, period I ) ,  while the limit cycle is, 

in general, replaced by a quasi-periodic solution (torus). Nevertheless, if the parameter values are 

such that the period of the limit cycle of the unperturbed system is approximately k times bigger 

than the period of the forcing function (k = integer), then even a small periodic perturbation 

of a parameter can give rise to  uphase-lockingn, i.e., t o  stable period k periodic solutions (called 

subharmonics). This well-known phenomenon (Guckenheimer and Holmes, 1986) is particularly 

relevant (and therefore easy to  detect numerically) for k = 2 and k = 3. Period 2 and 3 

subharmonics can coexist with the basic period 1 solution as well as with quasi-periodic solutions 

or with strange attractors obtained through torus destruction. Obviously, the presence of two 

(or more) attractors, each one having its own basin of attraction, makes the system particularly 

sensitive to  random disturbances. Moreover, some of the bifurcations characterising the system 

(for example, tangent and flip bifurcations) are such that small variations of a parameter can 



entail "catastrophic transitionsn between different attractors. Finally, for high magnitudes of 

the seasonal variations the period 2 and 3 subharmonics can very easily undergo a cascade of 

period doublings ending in a strange attractor. Some of these attractors are quite similar to  

those discovered by Ueda for the periodically perturbed Duffing equation (Guckenheimer and 

Holmes, 1986). 

This is not the first contribution on periodically forced ecosystems. Discrete-time models 

(maps), in which the unit time step coincides with the period of the forcing function, have been 

used to  show that quasi-periodic and chaotic solutions are possible in population dynamics (see, 

for example, May, 1974; Kot and Schaffer, 1984; Lauwerier and Metz, 1986). Models of this kind 

are very easy to handle and can give rise to spectacular dynamics, in particular when the map 

is non-invertible as in the famous case of seasonally breeding organisms with nonoverlapping 

generations (May, 1974). More interesting continuous time models with periodically varying 

parameters have been used to  show that seasonality can support coexistence of competing species 

(Cushing, 1980; De Mottoni and Schiaffino, 1981; Smith, 1981; Butler et  al., 1985; Namba, 1986), 

and that periodic Lotka-Volterra predator-prey systems can have a great variety of periodic 

solutions (Cushing, 1977; Bardi, 1981; Cushing, 1982). Nevertheless, these studies are somehow 

incomplete, because they do not touch the problem of deterministic chaos. On the contrary, 

more recent contributions on second order periodically varying predator-prey systems (Inoue 

and Kamifukumoto, 1984; Schaffer, 1988; Toro and Aracil, 1988; Allen, 1989; Kuznetzov et  al., 

1991) deal with such a problem and are much closer, at  least in spirit, to  the present analysis. 

Specific comments on these contributions can be found in the following sections. Here i t  suffices 

t o  say that the analysis presented in this paper is much more accurate and complete and allows 

one to  synthetically interpret the results. Some interesting analogies can also be found with a 

very recent work (Kot et  al., 1991) on a third order chemostat model with periodically varying 

concentration of the inflowing substrate. 

Finally, we would like to mention that the analysis of a number of recorded time series of 

seasonally perturbed plant, animal, and human populations seems to  confirm the existence of 

the above nonlinear phenomena (Sugihara and May, 1990). Subharmonics of period 2, 3 and 8 

days, as well as phase-locking with the moon cycle, have been found by analyzing the abundance 

of reef fishes influenced by tides (Roberston et  al., 1990). A low dimensional strange attractor 

has been ascertained in the Canadian Lynx population by applying Taken's method to  the 200 

yr. long time series of number of skins shipped by the Hudson's Bay Company (Schaffer, 1984), 

while higher dimensional strange attractors have been detected in plant populations through 

the analysis of tree-rings (Gutierrez and Almiral, 1989). But the most convincing and detailed 

analysis showing evidence of chaos in a periodically perturbed population is, with no doubt, 



the study on childhood diseases which are strongly influenced by the seasonality of the contact 

rates induced by the Summer and Christmas vacations in schools (Kot et al., 1988; Olsen et 

al., 1988). Other examples can be found in the broad area of food chain and food web systems 

which comprises forest ecosystems with recursive insect-pest outbreaks and aquatic ecosystems 

with chaotic algae blooms seasonally triggered by light intensity. Nevertheless, we would like 

to  stress that the ultimate goal of this paper is only to show that the analysis of the classical 

predator-prey model supports the conjecture that seasons can generate very complex ecosystems 

dynamics, comprising catastrophes and chaos. The reinforcement of this conjecture through the 

analysis of field data and laboratory experiments is certainly a much more ambitious and difficult 

task. 

2 THE MODEL AND THE SIX SEASONALITY MECHA- 

NISMS 

The model we discuss in this paper is the classical predator-prey model used in the last twenty 

years to  interpret the behavior of many predator-prey communities, namely 

where the six parameters r, K,  a,  b, d, e are positive and x and y are the numbers of individuals of 

prey and predator populations or suitable (but equivalent) measures of their density or biomas. 

In the absence of predators (y = 0) the rate of growth of prey per unit of biomass, namely 

r(1 - x/K),  decreases with x. This is the standard assumption of logistic growth of populations 

(Verhulst, 1845) which accounts for competition for food and space among individuals of the 

same species and for increased mortality a t  high density due, for example, to  higher chances 

of epidemics a t  higher frequency of encounters among individuals. The intrinsic growth rate 

r describes the exponential growth of the prey population at low densities, while the carrying 

capacity K is the prey biomass at  equilibrium in the absence of predators. The intrinsic growth 

rate and the carrying capacity increase with the quality and amount of food available to  the 

prey population and can therefore undergo synchronous periodic variations during the year. 

The function 



appearing in Eqs. (I) ,  (2) is the type 2 functional msponse proposed by Holling (Holling, 

1965), which is, by far, the most commonly used in these kind of studies. It represents the prey 

biomass destroyed by each predator in one unit of time and can be justified as follows (for a more 

detailed interpretation see Metz and van Batenburg, 1985). Let us assume that the searching 

time, namely the time the predator spends to  find a unit of prey is inversely proportional to  

prey density, i.e., s / z ,  where s is a suitable parameter. If the time needed by each predator 

to  handle one unit of prey is h and all other activities (resting time) of the predator occupy a 

fraction u of its time, we can write 

s 
-q(z) + hq(z) + '11 = 1 
2 

from which Eq. (3) follows with 

Thus, q(z) is a concave saturating function and a is the mazimum harvest rate of each predator, 

while b is the half saturation constant, namely the density of prey at which the predation rate 

is half maximum. Finally, the parameter e in Eq. (2) is a simple conversion factor, called 

eficiency, that specifies the number of newly born predators for each captured prey, while d is 

the predator death rate per capita. 

Of course, the parameters must be time-varying if relevant environmental factors periodically 

fluctuate in time. For simplicity we consider only sinusoidal perturbations so that for any 

periodic parameter p in Eqs. (I) ,  (2) we write 

where po is the average value of p and E is the "degree" of seasonality (notice that & p o  is 

the magnitude of the perturbation). Obviously, 0 5 E 5 1 because p cannot be negative: 

E = 0 corresponds t o  absence of seasonality, while E = 1 means that the maximum value of the 

parameter is twice its average value. 

Real predator-prey communities are characterized by many seasonality mechanisms so that 

many, if not all, parameters of model (I), (2) vary periodically. Moreover, these periodic vari- 

ations are often not in phase, because, even when the different seasonality mechanisms have a 

common physical origin, their influence reaches its maximum at  different times. For example, 

light intensity and water temperature influencing in different ways phytoplankton-zooplankton 

communities are out of phase of one or two months in relatively large lakes, although they both 

depend upon the sun cycle. In order to  avoid a too heavy analysis, we only deal with "ele- 



mentary" seasonality mechanisms, namely with phenomena that entail periodic variations of a 

single parameter in model (I), (2) or periodic but synchronous variations of two parameters. At 

this aim, we identify six elementary mechanisms denoted by (i), (ii), . . . , (vi) in the following. 

The first one entails the synchronous variation of the intrinsic growth rate T and of the carrying 

capacity K ,  while all others imply the periodic variation of one parameter. 

(i) Amount of food available to prey (T, K )  

The intrinsic growth rate r in (1) is the difference between basic birth and death rates of 

the prey. Hence r increases with the amount of food available to the prey community, so that, 

T = TO (1 + ~sin27rt). Since, on the contrary, the prey intraspecific competition (T/K)  is not 

influenced by the amount of food available to the prey it follows that K = KO (1 + E sin 27rt). 

(ii) Prey intraspecific competition (K)  

Surplus of prey mortality at  high densities due to competition for special niches or to epi- 

demics can be enhanced in some seasons. If this is the case, the carrying capacity varies peri- 

odically, i.e., K = KO (1 + E sin 27rt). 

(iii) Caloric content of the prey (e) 

If the caloric content of the prey varies during the year, like in some plant-herbivore com- 

munities, the energy available to the predator for reproduction varies consistently. Hence the 

efficiency varies periodically, i.e., e = eo (1 + E sin 27rt). 

(iv) Predator exploitation (d) 

The periodic presence of a superpredator exploiting the predator community gives rise to 

periodic variations of the predator death rate, i.e., d = do (1 + ~sin27rt).  Phytoplankton- 

zooplankton communities with first year class fish feeding on zooplankton during the Summer 

and tree-insect pest systems controlled by migratory insectivores are examples of this class. 

(v) Predator and prey mimicry (b) 

When the degree of mimicry of the prey (predator) is not constant during the year or when 

variations of the habitat facilitate the escape or the capture of the prey in some specific season, 

the parameter identifying the searching time in Eq. (4) varies periodically. This implies (see 

Eq. (4)) that the half saturation constant varies in the same way, i.e. b = bo (1 + E sin2nt). 

(vi) Predator resting time (a) 

If the resting time of the predator fluctuates during the year, as in populations characterized 

by some degree of diapause, the parameter u in (4) varies periodically. Thus the maximum 

harvest rate of the predator varies in the same manner, i.e., a = a0 (1 + E sin 2nt). 

The only "single parameter" perturbation we have excluded in our analysis is that of the 

intrinsic growth rate T ,  because we have not found an interesting biological interpretation for it. 



In this respect we must point out that the analysis carried out in (Inoue and Kamifukumoto, 

1984; Toro and Aracil, 1988; Allen, 1989) refers exactly to  this case. Moreover, the discussion 

in (Inoue and Kamifukumoto, 1984) is mainly focused on the influence of the frequency of the 

forcing function, which is classical in mechanics and electronics but has a very little sense in 

ecology, while in (Toro and Aracil, 1988; Allen, 1989) only the results of a few simulations 

are shown. On the contrary, the discussion in (Schaffer, 1988) (corresponding to  our third 

elementary mechanism) is more systematic and points out that chaos can be obtained through 

torus destruction. This is confirmed by our analysis which, nevertheless, shows that the period 

doubling route to  chaos is also present as was already proved for the fifth elementary mechanism 

in (Kuznetsov et al., 1991) and for a third order chemostat model composed by Limiting substrate, 

heterotrophic prey and holozoic predator in (Kot et al., 1991). 

3 THE CONSTANT PARAMETER CASE 

In the absence of seasonality ( E  = 0), system (I),  (2) is an autonomous second order system 

where all parameters and state variables are nonnegative. The analysis of the local stability of 

its equilibria (May, 1972) shows that there is a Hopf bifurcation at 

and a tmnscritical bifurcation at 

The Hopf bifurcation is always supercritical (the computation of its Liapunov number is rela- 

tively easy if one considers the orbitally equivalent system obtained by multiplying Eqs. (I) ,  (2) 

by (6 + 2)) and the asymptotic period of the appearing limit cycle is 

Moreover, the limit cycle does not bifurcate since it is unique (Cheng, 1981; Wrzosek, 1990). 

Thus the parameter space is partitioned into three regions separated by the manifolds (5) and 

(6). For all combinations of the parameters there is a single attractor which is globally stable 

in the first quadrant as indicated in Fig. 1. More precisely, for sufficiently high values of the 

carrying capacity K ,  the attractor is a stable limit cycle. For decreasing values of K this cycle 

shrinks and disappears through a Hopf bifurcation. Then the attractor is a stable equilibrium 

which is positive for intermediate values of K and trivial (absence of predator population) for 

low values of K. 



4 METHOD OF INVESTIGATION 

For E > 0 system (I),  (2) adding the equation t! = 1 ( t  mod I),  can be transformed into an au- 

tonomous three-dimensional system for which PoincarC section and first return map (z(O), y(0)) -t 

("(I), y(1)) can be defined (Arnold, 1982; Guckenheimer and Holmes, 1986). Fixed points of the 

k-th iterate of the map correspond to  periodic solutions (cycles) of Eqs. ( I ) ,  (2) with period k 

(we will refer to  these points as period k fized points). Closed and regular invariant curves of the 

PoincarC map correspond to  quasi-periodic solutions (invariant tori), while irregular invariant 

sets correspond to  chaotic solutions (stmnge attmctors). 

Non-saddle (i.e., attracting or repelling) and saddle cycles of period k of system ( I ) ,  (2) can 

bifurcate a t  some parameter values. We use the following notation for the corresponding fixed 

point codimension one bifurcation curves. 

h(k) - Hopf (Neirnark-Sacker) bifurcation curve. For parameter values on this curve the 

map has a period k fixed point with a pair of multipliers on the unit circle: = e"", 

w > 0. When curve h(k) is crossed an attracting (repelling) cycle of period k bifurcates 

into an attracting (repelling) quasi-periodic solution and a repelling (attracting) cycle of 

period k. 

dk) - tangent (fold) bifurcation curve. For parameter values on this curve the map has a 

period k fixed point with a multiplier P?) = 1. When this curve is crossed a saddle and a 

non-saddle cycle of period k collide and disappear. 

f (k )  - flip (period doubling) bifurcation curve. For parameter values on this curve the 

map has a period k fixed point with a multiplier P?) = -1. When this curve is crossed a 

saddle (non-saddle) cycle of period k bifurcates into a non-saddle (saddle) cycle of period 

k and a saddle (non-saddle) cycle of period 2k. 

The behavior of the system for parameter values close to these curves are described in (Arnold, 

1982; Guckenheimer and Holmes, 1986). It is worthwhile noticing that tangent and flip bifur- 

cations always involve saddle cycles, while Hopf bifurcations are only concerned with attractors 

and repellors. Moreover, Hopf bifurcations always involve an attractor, while tangent and flip 

bifurcations sometimes do not. Although all curves h(k), dk), f (k)  are needed if one likes to fully 

understand the structure of the bifurcations of a dynamical system, only those concerning at- 

tractors are useful to classify the asymptotic modes of behavior of the system. In the following, 

in order to  facilitate the biological interpretation of the results, we will not display bifurcation 

curves which do not refer to attractors. Readers interested in the bifurcation structure of the 



model can refer to (Kuznetsov et al., 1991), where the bifurcation curves corresponding to our 

fifth elementary mechanism are fully displayed. 

The bifurcation curves presented in the next section have been computed by means of a 

continuation method interactively supported by the program LOCBIF developed by the third 

author and by A. Khibnik, V. Levitin and E. Nikolaev at the Research Computing Centre of 

the USSR Academy of Sciences at  Pushchino. 

The method can be briefly described as follows (see Khibnik, 1990a, b). Each bifurcation 

curve is computed by projecting a one-dimensional manifold located in the four dimensional 

space (z, y,pl,p2) on the (pl,p2) - plane, where pl and p2 are two parameters of (I) ,  (2). The 

manifold is determined by the two fixed point equations and by a bifurcation condition imposed 

on the multipliers of the fixed point. This condition is written using the characteristic polynomial 

det (A - PI), where A is the Jacobian matrix of the PoincarC map at point (z, y) and I is the 

unit matrix. More precisely, the bifurcation conditions are the following 

R[det (A - PI),  det (PA - I ) ]  = 0 (for Hopf bifurcation) , 
det (A - I )  = 0 (for tangent bifurcation), 

det (A + I )  = 0 (for flip bifurcation), 

where R[-, -1 stands for the resultant of two ponlynomials (Lancaster and Tismenetsky, 1985). In 

the program LOCBIF the bifurcation curves are computed by means of an adaptive prediction- 

correction continuation procedure with tangent prediction and Newton correction. All relevant 

derivatives, as well as the PoincarC map, are evaluated numerically. The program LOCBIF also 

produces phase portraits of the PoincarC map, continues fixed points in any (z, y,pl)-space and 

detects codimension one bifurcations. 

5 BIFURCATION CURVES 

In this section we present and discuss the bifurcation curves of system (I),  (2) for the six 

elementary seasonality mechanisms identified in Sec. 2. The reference values of the parameters 

are the following 

For these values, the system oscillates on a limit cycle ( K  is slightly bigger than b(ea+d)/(ea-d) 

(see Eq. (5)), and the period of the cycle (evaluated numerically) is T = 1.85. Thus, in the 

parameter space we are not too far from Hopf bifurcations (5) and from k = 2 resonances, i.e., 

values of parameters giving rise to  a cycle of period two times bigger than the period of the 

forcing function. Actually, the reference values of the parameters have been tuned intentionally 



in this way, because these are the most favourable conditions to  point out periodic and quasi- 

periodic behavior, as well as phase-locking of a periodically forced dynamical system. The reader 

interested in the analysis of the bifurcations of system (I),  (2) in other regions of the parameter 

space can refer t o  (Kuznetsov et al., 1991) where the fifth seasonality mechanism is discussed 

in some more detail. 

For each seasonality mechanisms the discussion is carried out with respect to  two parameters. 

The first is the degree of seasonality E, which varies from 0 to  1, and the second is the average 

value of the periodically varying parameter, i.e., KO (with to = 2n . KO) in case (i), KO in case 

(ii), eo in case (iii), and so on. All other parameters are kept constant a t  their reference value 

(8). The second parameter varies in a range that contains the value for which the unperturbed 

system has a Hopf bifurcation (easily computable from (5)) and the resonant value for which 

the period of the limit cycle for E = 0 is equal to  2. 

The six diagrams (i), (ii), . . . , (vi) of Fig. 2 display the bifurcation curves of system (I), (2) 

for the corresponding six seasonality mechanisms. Five bifurcation curves are drawn on these 

diagrams, namely, h('), h(2), f('), f ( 2 ) ,  and d2), the last one composed by two branches (t?) 

and t r ) ) .  These bifurcation curves are present in all cases, but curve h(2) cannot be seen in 

cases (i), (ii), (iii), (vi) because of the particular range of the parameters. The curves f('), f ( 2 )  

and d2) are not complete, because the branches not involving attractors have been disregarded. 

The bifurcation curves f(4)  and f(8) have also been obtained but they are not shown in Fig. 2 

because they almost coincide with f (2). Nevertheless, they must be kept in mind because they 

clearly indicate one of the two routes t o  chaos (i.e., cascade of period doublings). 

If we compare the six diagrams 2(i), . . ., 2 (vi) we immediately recognize that turning the 

fourth and fifth upside down we obtain six topologically equivalent diagrams. This fact is 

very important and clearly indicates that the six seasonality mechanisms give rise t o  the same 

phenomena. Let us therefore consider and interpret in detail the qualitative bifurcation diagram 

of Fig. 3 which is equivalent to  those of Fig. 2, but contains, for the sake of clarity, the bifurcation 

curves f(4)  and h(4). The parameter po of this diagram is directly (in cases (i), (ii), (iii), and 

(vi)) or inversely (in cases (iv) and (v)) related to  the average value of the periodically varying 

parameter. On the po-axis there is point H (computable from (5)) corresponding to  the Hopf 

bifurcation of the unperturbed system. Below that point, the attractor of the unperturbed 

system is an equilibrium, while above it  the attractor is a limit cycle. Thus, for small values of 

E and below point H we have period 1 periodic solutions, while for small values of E and above 

point H we have quasi-periodic solutions. Consistently, a bifurcation curve h(') rooted at  point 

H separates the two regions. When this curve is crossed from below, the forced stable cycle of 

period 1 smoothly bifurcates into a stable quasi-periodic solution. While continuing curve h(') 



from the left t o  the right the multipliers = ekiW of the Poincare map vary and become equal 

t o  -1 when the terminal point A is reached. 

Point A is a codimension two bifurcation point, called strong resonance 1:2, studied in 

(Arnold, 1982) by means of the normal form approach. The two coefficients of the normal form 

are of opposite sign and this suffices t o  say that  only two bifurcation curves, namely, a Hopf h(') 

and a flip f (I), are rooted a t  point A (as already said, the branch o f f  ('1 not involving attractors 

is not shown in the figure). Curve f(') can be generated by the continuation technique starting 

from point A. Along curve f(') the normal form coefficient (computed as in (Kuznetsov and 

Rinaldi, 1991)) varies and becomes equal t o  0 a t  point B,  which is therefore a codimension two 

bifurcation point. Thus, curve f(') is divided into two segments (AB and B E )  and the period 

doubling takes place in opposite directions on these two segments, namely from region 4 on 

segment A B  and from region 1 on segment B E .  More precisely, when curve f (') is crossed from 

region 1 t o  region 4 the forced cycle of period 1 loses stability and smoothly bifurcates into a 

stable period 2 cycle. On the contrary, if f ('1 is crossed from region 3 t o  region 4, the stable 

cycle of period 1 collides with a saddle cycle of period 2 and becomes a saddle cycle of period 1. 

The codimension two bifurcation point B is the terminal point of one of the two branches 

of a tangent bifurcation curve t(2) (Afrajmovich et al., 1991). The two branches (112) and t r ) )  

originate a t  point T2 on the po-axis where the limit cycle of the unperturbed system has period 

2. Some details concerning the system behavior near point T2 can be found in (Guckenheimer 

and Holmes, 1986). When 112) and t p )  are crossed from the left, close t o  point T2, a stable cycle 

of period 2 and a saddle cycle of period 2 appear. When branch t p )  is continued from point T2 

the first multiplier p?) remains equal t o  1 while the second p f )  varies smoothly and becomes 

equal t o  1 a t  the codimension two bifurcation point C. After this point, the bifurcation curve 

t r )  does not involve attractors and has not been drawn in Fig. 3. 

Point C is the root of a Hopf bifurcation curve h(2) ending a t  point D where the two 

multipliers are equal t o  -1 and the two coefficients of the normal form have the same sign. 

When h(2) is crossed from below, a stable cycle of period 2 bifurcates into an unstable cycle of 

period 2 and in a stable quasi-periodic solution. 

Point D is the root of a bifurcation curve f ( 2 )  (and of a bifurcation curve h(4)). When 

curve f ( 2 )  is crossed from region 4 t o  region 6, a stable periodic solution of period 2 smoothly 

bifurcates into a stable periodic solution of period 4. 

Finally, the analysis shows that  flip bifurcation curves f (4 ) ,  f('). . . exist in the vicinity of 

curve f (2) (the difference between curves f ( 2 )  and f (4 )  is intentionally magnified in Fig. 3). This 

cascade of period doublings results in strange attractors which can be found in some subregions 



of region 7. 

The quasi-periodic solutions also bifurcate, but their bifurcation sets can not be computed 

with our continuation technique. Nevertheless, in accordance with (Guckenheimer and Holmes, 

1986), we can say that the stable quasi-periodic solution appearing on h(') disappears through a 

homoclimic structure on a bifurcation set resembling a curve connecting point A with a point on 

branch t r )  close to  point T2. Thus, in this region we have strange attractors obtained through 

torus destruction see (Schaffer 1988 and Kuznetsov et al, 1991) for some examples. 

Finally, we must point out that the same kind of bifurcations exist for cycles of period 3 (as 

well as for cycles of higher period). Indeed, two branches t y )  and t?) of a tangent bifurcation 

originate a t  a point on the po-axis where the period of the limit cycle of the unperturbed system 

is equal t o  3. When these branches are crossed from the left, a stable cycle of period 3 appears 

together with a saddle cycle of period 3. Then, the stable cycle undergoes a cascade of period 

doublings f(3), f(6), . . . . None of these bifurcation curves is shown in our figures in order to  

maintain them as readable as possible. 

6 MULTIPLE ATTRACTORS, CATASTROPHES AND CHAOS 

The qualitative bifurcation diagram of Fig. 3 points out a number of interesting facts which 

prove that seasonalities can generate rather complex dynamics. 

The first and most important fact is the existence of multiple attractors. Indeed, for a 

constant value of E and for increasing values of po, a stable cycle of period 2 first coexists with a 

stable cycle of period 1 (in region 3 of Fig. 3), then with a quasi-periodic solution (in region 4, 

just above curve h(')) and, finally, with a strange attractor obtained through torus destruction 

(in a subregion of region 4). Coexistence of cycles of period greater than or equal t o  3 with 

quasi-periodic solutions and strange attractors are also possible in the regions delimited by the 

(k) branches t r )  and t2 , k 2 3 of tangent bifurcation curves not shown in Fig. 3. Moreover, 

coexistence of triplets of attractors like, for example, cycles of period 2 and 3 and strange 

attractors, cannot be excluded although we have not found numerical evidence of it during our 

computational experiments. 

A second relevant fact is that some of the bifurcations shown in Fig. 3 are catastrophic, so 

that even very small variations of a parameter can sometimes entail a radical change of behavior 

of the system. Assume, for example, that the system behaves in region 1 of Fig. 3, just below 

the Hopf bifurcation curve h('). In this region the system has only one stable mode of behavior, 

namely a cycle of period 1. If po is kept constant and E is slowly increased, the stable cycle 

of period 1 varies smoothly but gradually loses stability when approaching the flip curve f('). 



When line AB is crossed the attractor disappears because on that  line the stable cycle of period 

1 collides with a saddle cycle of period 2 and becomes a saddle cycle of period 1. Therefore, after 

f(') has been crossed, the system moves toward another attractor, which, in the present case, is 

a period 2 cycle. After this catastrophic transition has occured, the system is trapped in the new 

attractor. Indeed, even if a is now slowly decreased, so that f(') is crossed from the right, the 

stable mode of behavior remains the cycle of period 2. Of course, if a is further reduced, so that 

the tangent bifurcation curve t r )  is crossed from the right, we will have another catastrophic 

transition that  brings the system back t o  a period 1 cycle. All this can be summarized by saying 

that if E is alternatively increased and decreased so that  curves t r )  and f(') are crossed we 

will have a Uhysteresys" involving transitions between cycles of period 1 and 2. Therefore, the 

catastrophic transitions characterizing the hysteresis involve a sudden variation of the frequency 

a t  which the system operates: a rather interesting behavior. 

Finally, the third important fact is the existence of deterministic chaos in two different 

regions of parameter space (see dotted regions of Fig. 3). The first region is characterized by 

relatively small values of a and is delimited from below by the bifurcation set on which stable 

quasi-periodic solutions disappear through homoclimic structures (torus destruction). If po is 

increased a t  constant E starting from a point just above curve h(') in Fig. 3, a small closed and 

regular curve on the PoincarC section (stable invariant torus) will first become bigger and bigger 

and then smoothly lose continuity and degenerate into a fractal set (strange attractor). I t  is 

clear from Fig. 3 that these strange attractors can be present only for values of po for which 

the unperturbed system behaves on a limit cycle. In other words, a predator-prey system which 

does not autonomously cycle in a constant environment, cannot become chaotic through torus 

destruction. 

The second region of deterministic chaos is characterized by relatively high values of E and 

corresponds to  the second well-known route to  chaos, namely cascade of period doublings f (2) ,  

f (4), f (8), . . . . This region is delimited by a curve f (OO) where the attractor loses periodicity 

and becomes chaotic. The curve f(OO) cannot be found by numerical analysis because i t  is not 

possible to  distinguish between a periodic cycle with an extremely large period and a genuine 

chaotic solution. Nevertheless, we can reasonably conjecture that  curve is quite close to  

f (2) because the flip bifurcation curves f (2), f (4), f (8), . . . follow, in general, the Feigenbaum 

accumulation law (Guckenheimer and Holmes, 1986) and all our computations point out that 

f (4) and f are already almost coinciding with f (2). Fig. 4 shows six chaotic attractors, one for 

each seasonality mechanism, while Fig. 5 shows the corresponding time series of the y variable 

(predator) for a time interval equal to  25. All attractors have been obtained with the same 

degree of seasonality E = 0.7 and with the other parameters (except the time varying ones) a t  



their reference values (8). The corresponding points are denoted by Q in Fig. 2. 

The analysis of Figs. 2, 3 proves that the value of po at which curve ~ ( o o )  is minimum is 

sometimes lower than the value of po corresponding to  point H. This implies that this kind of 

chaotic behavior can occur even if the corresponding unperturbed system does not autonomously 

cycle. The attractors (iii), (iv), and (v) of Fig. 4 are three examples. This characteristics allows 

one to  further distinguish between the two types of chaos: the first (torus destruction) does not 

need high degrees of seasonality but requires a strong endogenous tendency to  cycle, while the 

second (period doubling) requires high degrees of seasonality but can develop also in systems 

that would not cycle in a constant environment. 

7 CONCLUDING REMARKS 

The classical predator-prey model has been studied in this paper with reference t o  the case of 

periodically varying parameters. Six elementary seasonality mechanisms have been identified and 

analyzed in detail by means of a continuation technique automatically producing Hopf, tangent 

and flip bifurcation curves of periodic solutions of any period. The results have been compared 

and summarized through a general qualitative bifurcation diagram (Fig. 3) which allows one 

to  classify and interpret the main modes of behavior of the model. The general conclusion is 

that for suitable values of the parameters there are multiple attractors, catastrophes and strange 

attractors. Since, on the contrary, the unperturbed system has always a unique attractor (an 

equilibrium or a limit cycle) our analysis proves that seasons can easily give rise to  very complex 

predator-prey dynamics. This fact had already been established (Inoue and Kamifukumoto, 

1984; Schaffer, 1988; Toro and Aracil, 1988; Allen, 1989) but not synthetically interpreted in 

terms of bifurcations, since the analysis was carried out only through simulation. 

From a biological point of view the most interesting results are the following. If the degree of 

seasonality is small, the predator and the prey populations asymptotically vary in a periodic or 

in a quasi-periodic way. The period of the oscillations coincides with that of the forcing function 

(normalized to 1) if the system does not autonomously cycle when there are no seasons. On 

the contrary, if the unperturbed system behaves on a limit cycle, then the introduction of a 

small degree of seasonality transforms the cyclic behavior into a quasi-periodic one. Moreover, 

in some subregions of the parameter space, there are also subharmonics, namely periodic solu- 

tions of period k times bigger than that of the forcing function (k = integer). In particular, 

subharmonics of period 2 and 3 are relevant and have indeed been detected numerically in all 

cases we have analyzed. Thus, multiplicity of attractors, for example, coexistence of periodic 

solutions of period 2 or 3 and quasi-periodic solutions is possible even at very low degrees of 



seasonality. This is also true for higher magnitudes of the seasonal variations a t  which, for ex- 

ample, subharmonics of period 2 can coexist with the basic period 1 solution (region 3 of Fig. 3). 

Actually, if the degree of seasonality is slowly varied and alternatively increased and decreased, 

the system can repeatedly undergo catastrophic transitions between periodic solutions of period 

1 and 2 (hysteresys with frequency switches). Finally, the two classical routes t o  chaos, i.e., torus 

destruction and cascade of period doublings, are present. Strange attractors of the first kind 

are obtained by introducing a low degree of seasonality in a predator-prey community which, 

in the absence of seasons, behaves on a limit cycle, while the second type of attractors can be 

generated, with a higher degree of seasonality, even when the system does not autonomously 

cycle. This means that  chaos can be present in a predator-prey community provided that the 

exhogeneous and endogeneous sources of periodicities are, as a whole, sufficiently strong. 

As far as the method of analysis is concerned, we can summarize our experience by saying 

that continuation techniques producing bifurcation curves are very effective when they are used 

in conjunction with "detectors" of codimension two bifurcation points. Indeed, our bifurcation 

diagrams have been obtained in the following way. We have first generated curve h(') starting 

from the Hopf bifurcation of the unperturbed system (point H in Fig. 3) and ending a t  point 

A, which is a codimension two bifurcation point. Then, we have produced the flip curve f('), 

starting from point A, thus finding a second codimension two bifurcation point, namely point 

B. From this point we have generated the tangent bifurcation curve d2) and found the third 

codimension two point, namely point C. Continuing like so, we have alternatively obtained 

bifurcation curves (h(2), f (2), h(4), f (4)) and codimension two bifurcation points. Finding these 

codimension two points is therefore necessary for producing in a systematic way all the bifurca- 

tion curves. Of course, a t  each codimension two bifurcation point one must use the normal form 

approach t o  find out how many and which bifurcation curves are rooted a t  that  point. For this 

reason we believe that  packages which incorporate "detectors" and "analyzers" of codimension 

two bifurcation points are very powerful for discussing the qualitative behavior of nonlinear dy- 

namical systems. Moreover, they are the only serious tool for finding bifurcation curves which 

are not predicted by the available theories. For example, our bifurcation curves f ( 2 )  are not 

predicted by the known theory of periodically forced Hopf bifurcations (Kath, 1981; Rosenblat 

and Cohen, 1981; Gambaudo, 1985; Bajaj, 1986; Namachchivaya and Ariaratnam, 1987) (the 

interested reader can find more details on this matter in (Kuznetsov et al., 1991). 

Although the analysis presented in this paper is quite detailed, we believe that  there are 

still interesting questions t o  be answered and meaningful extensions t o  be performed. For 

example, it would be of interest t o  extend the analysis presented in this paper t o  predator-prey 

models which have also tangent and homoclinic bifurcations when they are not periodically 



perturbed. Among these models we have the case of a logistic prey, a Holling's type predator 

and a constant Holling's type superpredator, i.e. the most rudimentary food chain model (a  

more complete study of periodically forced food chain systems involving third order models 

appears to  be very difficult because such models can have chaotic behavior even in the case of 

constant environment (Hogeweg and Hesper, 1978; Scheffer, 1990; Hastings and Powell, 1991). 

Another interesting extension would be to  revisit the analysis of the periodically forced chemostat 

model carried out in (Kot et al., 1991) with the use of circle maps. In fact, our continuation 

technique allows one t o  find codimension two bifurcation points and is therefore more powerful 

than the circle map technique. Finally, an interesting direction for further research is the 

investigation of the synergism among independent sources of periodicity. In particular, i t  would 

be interesting t o  know how chaos could be reinforced or damped by suitably "controllingn the 

phase between different elementary seasonality mechanisms. Information on this matter would 

be of particular relevance in the field of renewable resources management, where the time and 

intensity of stocking and harvesting must be well tuned with the natural periodicity mechanisms 

in order to  avoid undesirable modes of behavior. 
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