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FOREWORD 

Stochastic control, and more generally stochastic optimization, deals with problems 

where decisions have to  be taken in the face of uncertainty and these decisions have to 

be optimal or a t  least nearly optimal - in some specific sense. "Stochastic" means that 

uncertainty is described in a probabilistic setting. More specifically, stochastic control 

deals with dynamic optimization problems, namely problems where the decisions (also 

called controls) affect the (stochastic) evolution over time of a given system. In many 

applications, the time horizon, over which we control a given system, is very remote; for 

the mathematical description it is therefore infinite. As optimality criterion according to  

which we choose the decisions (controls) one then takes the minimization of the long-run 

average cost. 

The present paper concerns such infinite horizon stochastic control problems with the 

a.verage cost criterion, when the evolution of the controlled system is furthermore observed 

only on an incomplete basis. Conditions are given under which it is possible to  actually 

compute nearly optimal decisions (controls) for such problems. 



ABSTRACT 

Stochastic control problems with partial state observation and the long-run average 

cost criterion are among the most difficult dynamic stochastic optimization problems and 

almost nothing has so far appeared in the literature concerning their solution. On the other 

hand many problems in Engineering, Operations Research, and the Economic and Social 

Sciences can be modelled as problems of the above type. In the present paper we study 

conditions under which the filtering process associated with the partially observed state 

process has a unique invariant measure and describe ways to approximate it. We finally 

discuss the applications of these results to the construction of nearly optimal controls. 



PARTIALLY OBSERVABLE CONTROL PROBLEMS 

WITH COMPULSORY SHIFTS OF THE STATE 

Wolfgang J. Runggaldier  and Lukasz  S t e t t n e r  

INTRODUCTION 

A common approach for the study of stochastic control problems under partial observa- 

tion of the state is to consider the so-called separated problem. This problem is of the 

form of a stochastic control problem with complete state observation and is obtained 

by replacing the original state process by the filter process, namely the process whose 

values are the conditional (normalized or unnormalized) distributions of the original 

state, given past and current observations. When studying stochastic control problems 

with partial state observation over an infinite horizon and with the long-run average 

cost criterion, the ergodic properties of the filtering process become most important. In 

particular, for approximation purposes it is crutial to have a unique invariant measure. 

The properties of the filtering process depend in turn on properties of the original state 

process as well as the obser~ation process. The main purpose of this study is to give 

conditions on the original control model to ensure the existence of a unique invaria,nt 

measure. Results on convergence of invariant mea.sures will also be given together with 

possible applications to the construction of nea,rly optimal controls. A related study was 

already performed by the authors in [3] where the coilditions imposed on the the original 

control model, to ensure uniqueness of the invariant measure for the filtering process, 

implied both a restriction of the class of admissible controls as well as conditions on the 

transition kernel of the original state process. Here we take a global control approach 

considering, besides continuously acting controls, also compulsory periodic shifts of the 

state on the basis of the values of the filtering process. This setting allows to improve 

the ergodic behaviour of the controlled filtering process a.nd makes it possible to relax 

some of the assumptions in [3]. 



1. PROBLEM FORMULATION AND PRELIMINARY RESULTS 

la. Problem formulation 

On some probability space (0, F, P )  consider a controlled discrete time Markov process 

(x; ), i = 1,2, . . . , with values in a locally compact (but noncompact) separable state 

space E .  Assume (xy) starts from an initial law p anddenote by PUi(x,dz)  its transition 

kernel in the generic period i, where u; represents the control that takes values in a 

compact set of control parameters U c R. The process (xr )  is only partially observed 

through an observation process (yi), yi E R ~ ,  defined by 

where h E C(E, Rd), the space of continuous a.nd bounded functions from E into Rd, 
and w; are i.i.d. d-dimensional standard Gaussian random variables independent of 

xr; kor k 5 i. We assume that each u; is adapted to the observation a-algebra Yi = 

a{yl, .  . . , y;). Given a bounded Borel function q on E, define the filtering process, 

corresponding to the controlled state process (xy) with observation (1.1) as follows: It 

is the process T: with values in the space P ( E )  of probability measures on E, endowed 

with the weak convergence topology, defined through 

E, stands for the expectation, given the initial law p for the process (xy ), where the 

latter is controlled by a law u to be defined later; ~ ( 9 )  denotes the integral of a function 

y(x) with respect to the measure ~ ( d x ) .  

We now define a global control strategy I9 as given by the quadruplet I9 = (u, K,  y, q), 

where 

u E B(P(E) ,  U), the set of Borel measurable function from P ( E )  into the compact 

set U, and will be referred to us the "continuous control", 

K c E is compact with Int (8I i )  = 0, Int ( K )  # 0 and may be called "test set", 

y E (0 , l )  is a threshold level, 

q E H a fixed compact subset of P (E) ,  and represents the "shift measure". (In 

particular applications, H may be the set of Dirac &measures of points of a compact 

subset of E or the set of all probability measures over a compact subset of E) .  



REMARK. Instead of the strategy 9 as defined above, we may also consider the 

quadruplets of the form 9 = (u, $, y, q), where u, y, q are as before, while 1C, E C(E),  

has compact support, and satisfies 0 5 1C, 5 1. 

The results obtained below for strategies 9 = (u, K,  y, q) can easily be carried over 

to the case considered here, by just replacing, for any measure u E P ( E ) ,  u(I<) by 

~ ( $ 1  = J1C,(x)u(dx). 

Having defined the strategy 6,  from now on, instead of (xy) and T:, we shall more 

appropriately use the notation (x:) and (T:) respectively to denote the state and filter 

processes governed by the more general strategy 9. The effect of 9 on the evolution of 

the state and filter processes is as follows: 

The continuous-control component u of 9, which through the kernel PU(x,  dz) gov- 

erns the evolution of the state process (x:), is defined in the generic period i by the 

relations: 

where u E A = C(P(E) ,  U). In words, if at stage i we have =;(I{) 2 y, then the control 

u, is Yi-adapted in the sense specified by the first alternative in (1.3), otherwise, a 

compulsory shift is applied to the state x:, restarting its evolution from a given fixed 

measure q E H C P(E) ,  independently of past history, and applying a control value 

21 = u(q). 

Coming to the filter process, consider, for fixed 9, the sequence of measures 

+,, (d,) = { JE (x, dz)i~f(dx) if =;(I{) 2 y 
JE pU(x ,  dz )q (d~)  if =;(I<) < y 

19 which represents the distribution, under 9 of x:+, given T, . 

Using then the so-called measure transformation approach to filtering, we obtain 

that the controlled filtering process ( ~ 9 )  satisfies, for given 9 and 9 E B ( E )  

where we implicitly define the operator R. It is easily seen that, under a given 9, the 

controlled filtering process (x:) is Markov. Let I119(p,A) denote its transition kernel, 

where A E B(P(E)) ,  the a-field of Bore1 subsets of P(E).  



We shall be interested in control over an infinite horizon, minimizing a long run 

average cost criterion; given bounded Bore1 functions c : E x U -t R and d : E x P ( E )  -t 

R+ we then consider as objective function the cost functional 

J , ( I ~ )  = lim sup n-' 
n -+ oo 

E, { c ccx:, ucr: 1 
i =O  

having put 

C(U) = ~ ( 2 ,  u ( u ) ) v ( ~ z )  D(V, I ) )  = J t))V(di) J 
E E 

lb .  Assumptioils  

We shall make the following assumptions 

(Al )  There exists j E {1,2,. . . , d) such that the j- th component hj(x) of h(x) has a 

limit at "cm" and attains at "cm" either its strong maximum or strong minimum. 

More precisely, letting 

I<, = {x E E : p(x,?) 5 l a )  

where p is a metric on E compatible with the topology and 2 is a fixed element of 

E, we either have 

sup hj(x) < sup hj(x) for n = 1,2, . . . 
z E  K, z E E  

or 

inf hj(x) > inf hj(x) 
zEKn z E E  

(A2) For any compact set Ii: c E there exists a > 0 such that 

inf inf P V ( x ,  I<') _> a. 
v E U  z E E  

Notice that (A2) represents a nondegeneracy condition for the state process that is 

always satisfied for state evolution models with nondegenerate additive Gaussian noise. 

Additional assumptions will be formula.ted in Section 3 where convergence of in- 

variant measures is considered. 



lc .  Preliminary results and backgrouild 

Given a control strategy 19 and initial measure p E P(E), let 

: = inf{i > 0 I (T!)(K) < 7). 

Lemma 1.1. Under (Al),  (A2) we have 

inf inf P,{(T~)(I{) < 7 )  = p > 0. 
6 ,€P(E) 

PROOF. Can be obtained along the lines of Lemma 2.1 and Corollary 2.2 in [3]. 

Corresponding to Corollary 2.3 in [3] we then have 

Corollary 1.1. Under (Al), (A2) we have for all k = 1,2,  . . . and all strategies 19 

sup E,(T') < a. 
P€P(E) 

Consider now the sequence of stopping times 

where 17 E P ( E )  is the fixed restart (shift) measure introduced in Section 1.1 and ern 
stands for the Markov shift operator of the filtering process. 

Notice that { x ~ ~ , ,  , i = 1,2,  . . .) form a sequence of i.i.d. random variables with 

common law (cf (1.4)) 

i?'(dz) = P"(x, d ~ ) ~ ( d x )  / (1.12) 

E 

Defining, furthermore 

Yr;+l  = h(xritl) + W i + l  (1.13) 

where writ,, ( i  = 1 ,2 , .  . .) are i.i.d. standard Gaussia.n we have (cf (1.5)) 

from which it is easily seen that, analogously to {x:,, , (i = 1,2 , .  . .)), 
{ T  , i = 1,2, . . .) is an i.i.d. sequence of random variables with values in P(E). 



As will become a.pparent from the next section, the fact of having a sequence of 

stopping times Ti, i = 1,2, ... with finite moments, leading to the i.i.d. sequence 

{a:+, , i = 1,2, . . . ) will allow us to obtain a unique invariant measure by means of the 

Strong Law of Large Numbers for martingales. The above fact is here obtained from 

the introduction of the global control strategy 29, combined with assumption (A2): The 

strategy 29 considers compulsory shifts by periodically restarting, on the basis of the 

current value of the filter, the evolution of the state process from the fixed measure 77, 

while assumption (A2) guarantees that shifts are applied at successive intervals, whose 

expected duration is bounded uniformly with respect to the initial measure. 

Uniqueness of the invariant measure for the filtering process was obtained also in [3]. 

There, the set of admissible strategies of the form ui = u(ar)  with u E C(P(E),  U )  was 

restricted to a subclass that considers a periodic return, at stopping times T; to the fixed 

control value u = 0, based on the current value of the filter. An assumption correspond- 

ing to (A2) then guarantees tha.t return to u = 0 occurs at successive intervals, whose 

duration is uniformly bounded. To obtain then an i.i.d. sequence {ari+, , i = 1,2 , .  . .), 
in [3] we had to introduce a restriction on the transition kernel of the original state 

process, by requiring that, for a control value u = 0, we have PU(x,  dz) = ~ ( d z )  for all 

x E E with rj E P ( E )  given. 

2. ERGODIC BEHAVIOUR OF THE CONTROLLED FILTER PROCESS 

(EXISTENCE OF A UNIQUE INVARIANT MEASURE) 

The main result of this section is 

Theorem 2.1. Under (Al),  (A21 and given a strategy 29, there exists a unique invariant 

measure 4' for the controlled filtering process (a:). The measure 4' has the following 

representation, where F E B(P(E))  the set of Borel bounded functions on P ( E )  and 11 

is the given shift measure 

Moreover, for all p E P ( E )  

where C(v) and D(v, 77) are as in (1.7). 

- 6 -  



In the rest of this section we derive some auxiliary results that in the end will allow 

us to obtain rather immediately the proof of Theorem 2.1. 

Given a bounded and measurable function I<(.), I< : P ( E )  4 R, define for a given 

strategy 19 a process { ~ n ) , , ~ , ~ , . . .  as 

where T and rn are as defined in (1.8) and (1.11) respectively, 7) is the given shift measure 

introduced in Section 1 . l ,  and (n:) denotes the filtering process starting from an initial 

measure p E P ( E )  and evolving under the strategy 19. 

Lemma 2.1. Under (Al), (A2) and taking as initial measure for (n!) the measure p = 

71 we have that the process { ~ n )  is a square integrable Gn = a{yl , . . . , yrn ) martingale 

with 

PROOF. Notice that 

Thus from the definition of T, (see 1.1 1) we have 

and from (1 . lo) 

E { I z n  - zn-112 I G n - 1 )  5 C < 00 

which is sufficient for (2.4) to hold. 

Given the result of Lemma 2.1, we can apply the Law of Large Numbers for mar- 

tingales (see Thm VII.8.2 of [2]) obtaining 

Corollary 2.1. Under the assumptions of Lemma 2.1 but letting the initial measure 

for n: be an arbitrary p E P ( E )  we have 

zn lim - = 0 P a.s 
n-m n 

The following two corollaries are obtained from Corollary 2.1 by particularizing the 

function I<(.) in (2.3). 



Taking K( . )  = 1 we have 

Corol lary  2.2. The assumptions are those of Corollary 2.1. Then 

Taking K ( v )  = C ( v )  + D(v, v ) x ~ ( K ) < ~  with C and D as in (1.7) we have 

Corol lary  2.3. Again with the assumptions of Corollary 2.1 

lim n-' 
n 4 m  ( 2  i= 1 [c(.:) + D ( ~ : ,  ' ~ ) X ~ : / K ) < ~  

(2.10) 

~ ( n : )  + ~ ( n , d ,  V )  
i= 1 

L e m m a  2.2. For bounded Borel I< : P ( E )  -t R and under (Al), (A2) we have for all 

with the same relation holding also for lim sup instead of liminf. The initial measure 

for the filtering process n: may be any measure p E P ( E ) .  

PROOF. Defining 
p(n): = max{i 1 T; < 1 2 )  

we have 

n 
i= 1 t= 1 i=rp(,,)+l I 

Now, noticing that {P(n ) )  is a subsequence of { n )  

lim sup rP(")+' - rP(n) < limsup TP(n)+l - TP(n)  . P(n) 
n 4 m  n n d c o  P(n) n 

Tn+l - Tn 5 lim sup = lim sup Tn+l - ( n  + 1)Eq(7) 1 (2.14) 
n-+m n n+m n 

- q +- E,(T)]  = O  P a.s. 
n 12 



the last equality being a consequence of Corollary 2.2 and the finitness of E,(T) (Corol- 

lary 1.1). 

On the other hand, since 

from (2.14) we also have 

lim - 3(n)  - - 1 P a.s. 
n+oo n 

(2 .16)  

From (2 .13) ,  (2 .14) ,  (2 .16) ,  noticing that (7,) is a subsequence of { n ) ,  and {rP(,)) 

is in turn a subsequence of {T , ) ,  we have 

< lirn inf rk:) C ~ ( ( n ; )  = lirn inf n-' - 
n+oo n+oo 

i.e. we have obtained (2.11).  Analogous procedure holds for lirn sup. 
n+oo 

Corollary 2.4. Under the assumptions of Lemma 2.2 we have 

n 
1 

lirn n-' C ~ ( ( n ; )  = 
n+oo 

i= 1 

PROOF. From Lemma 2.2, using also Corollary 2.2 and Corollary 2.1 we have 

n 1 rn 1 
= lirn inf - - C I i ( n 9 )  = - E, C ~ ( ( x : )  

n-oo 7, n . r=l E,(7) 

Since also (Lemma 2.2) 

n 
1 

lirn sup n-' C I i ( n : )  = - E, 
n+oo i=l E,(7) 

we obtain (2.18).  



PROOF OF THEOREM 2.1. Notice first that (2.18) can be rewritten as 

valid for any p E P ( E )  and where we implicitly define a measure @ E P(P(E) ) .  From 

(2.21) we first obtain the invariance of the measure @ ; in fact (2.21) also holds when 

replacing K by I191r' where (see Section 1.1) IIQ denotes the transition kernel of the filter 

Markov process (7r9) (notice that Ir' was required only to be bounded and measurable). 

From (2.21) however we also obtain the uniqueness of the invariant measure @. Assume 

in fact that Q is another invariant measure; then for all n we have 

On the other hand letting n -+ oo, from (2.21) and Dominated Convergence The- 

orem we have 
n 

From the equality of the right hand sides in (2.22) and (2.23) and the arbitrariness 

of the bounded and mea,surable function I< we obtain the uniqueness of the invariant 

measure. 

The representation (2.2) is a,n immediate consequence of the preceding results by 

taking I<(.) as for Corolla'ry 2.3. 



3. APPROXIMATIONS OF THE INVARIANT MEASURE 

In this section we shall use v to denote the generic element in the set U of control 

parameters. 

In order to approximate the invariant measure 4' of the filtering process corre- 

sponding to the original control model with state process (x:), observation function 

h (see (1.1)), and control strategy 29 = (u ,K,  y , ~ ) ,  we start by approximating (2:). 

For this purpose let the approximating process ( x y b )  (m = 1,2, .  . .) be Markov with 

transition kernel PL (x, dz) such that 

if U 3 vm + v, then Pzm(x, .) + PV(x ,  .) 
\ / 

uniformly in x from compact subsets of E .  

Concerning the observations, let h(.) in (1.1) be approximated by functions lzm E 

B(E)  such that 

sup Ihm(x) - h(x)l + 0 for m + m 
S E E  

Finally, approximate any given control strategy 29 = (u, I<, y, 7)  by strategies 29, = 

(urn Km 'Ym Vm) where 

the convergence holding uniformly in v from compa.ct subsets of P (E) ;  

m + w  
max{sup p(x, I<,), sup p(x, I<)) + 0; 

z  E K  z  E  Km 

I<, compact in E; namely, ICm + I< in the Hausdorff metric (p is the distance on E ) ;  

where denotes weak convergence. 

The main result of this section is Theorem 3.1 below, for which, besides (Al),  (A2) 

we also need the following assumptions 

(A3) For fixed v E U, the transition kernel PV(x,  -) is Feller 

(A4) If U 3 vm + v, then PVm(x,  -) * PV(x,  a )  uniformly for x from compact subsets 

of E i.e. for any f E C(E)  

P v m  f (x) + PV f (x), uniformly on compact subsets of E 

(A5) If K = I? and Int (I[) = 0, then Vx E E, Vv E U we have Pt ' (z ,  I<) = 0 



Theorem 3.1. Assume (AI) - (AS) with (A2) holding uniformly in m for the se- 

quence P i ( x ,  a ) .  There exists mo such tha.t, for m > mo, we have a unique invariant 

measure +Lm of the filtering process (r:"") that corresponds to the transition kernel 

P,, observation function h, and strategy 19,. Furthermore, if (3.1) - (3.5) hold, then 

PROOF. We may choose mo sufficiently large so that, for m > mo, (Al)  is satisfied also 

with h replaced by h,. From Theorem 2.1 we then have, for F E B(P(E))  

where 

r, : = inf {i > 0 I r r ~ " ~  (I<_) < 7,) (3.8) 

Since (Al) holds with m > mo, also for h, and (A2) holds uniformly with respect 

to m, we may write for m > mo, 

,,em 
inf pp{rl ( I )  < m }  2 inf P,{~;"~(B,) < 7,) 2 

PEP(E) PEP(E)  

where for fixed 5 E E 

B, = {x E E I p(x, 5 )  < n} and n is sufficiently large so that U,I<, c B,. Notice 

also that (3.9) holds for any choice of 9,. In line with Lemma 1.1 and Corollary 1.1 we 

then have for all k = 1,2, .  . . and all strategies dm 

SUP sup E,{(T,)*} < m 
m>mo pEP(E)  

From (3.7) we not only have uniqueness, but also a representation formula for dim, 

which is completely analogous to that for 4' in (2.1). Based on this representation 

and the uniform in m boundedness of the moments of 7, (see (3.10)), to prove the 

second part of the theorem, namely to obtain (3.6) it will be sufficient to show, for 

F E C(P(E))  and n E N 



Let, for v l ,  . . . , vn+l E P ( E )  ( n  E N )  

and define 

\ / 

with v r  * v; such that g m ( v r , .  . . , v,mS1) f ,  g(v l ,  . . . , vn+l )) 

Provided now that 
79 ~.{(.l, - - .  , %+l)  E r1 = 0 

by Theorem I 5.5 of [I.] we have that, in order to show (3.11), it will in turn be sufficient 

to show 

(T ," ,~"  , + * . , r n + l  mrGm ) * ( T I  79 , . * * , r n + l )  79 (3.15) 

where the initial law for r,m'79m is qm while for x9 it is q and the convergence is 

in the sense of weak convergence of the sequence of measure valued random variables 
m , d m  ) (r;"", . . . , rn+, . 

To obtain (3.14), notice first that 

r c { ( v l ,  . . . , vnS1) : ~ ( V Y , .  . . , vGl )wi th  vim * vi 

and for some i = 1,2,. . . , n ,  v r ( I < m )  f ,  (3.16) 

% ( I { ) )  U { ( v l , .  . . , vn+1 ), for some i = 1,2, . . . , 12 ,  vi(I<) = Y )  = f 
- 

In fact if (v l  , . . . , vn+1) E rC, then for i = 1,2, . . . , n ,  vr(I<,) --+ v ; ( K )  # y and thus 

It follows that it suffices to prove (3.14) for replaced by f .  For this purpose, as well 

as for later use we show 

Lemma 3.1. Let Ii', -t K in the Hausdofl metric, namely according to (3.4). If 

v y  * v, and vi(i31r') = 0, for i  = 1,2 ,..., n +  1, n E N ,  then 

PROOF. Let for 6 > 0 



By the definition of the Hausdorff metric, for each 6 > 0 we then have 

Therefore 

vY(I(K, 6)) < vY(Krn) 5 vY(B(K, 6)) 

Since one can choose 6 > 0 such that 

and given the weak convergence vim + vi, letting m -+ w in (3.20) we obtain 

vi(I(Ir', 6)) 5 liminf vY(ICrn) 5 l i r n ~ u p v ~ ( I < ~ )  
rn-oo m-ce  

Letting 6 0 over values 6 > 0 for which vi(aI(K, 6)) = vi(aB(Ii', 6)) = 0, since by 

assumption vi (aK) = 0, we have 

lim v,(I(I<, 6)) = 1im v,(B(I<, 6)) = v,(I<) (3.22) 
610 610 

From (3.21) and (3.22) we obtain then (3.17). 

From the definition of f' and Lemma 3.1 we now have that 

where the last equality follows from (A5), the fact that Int (aI<) was assumed to be 

empty as well as by a siutably adapted version of Lemma 2.4 in [3]. 

It remains to show (3.15), which will be proved by induction on n. 

Letting F E C ( P ( E ) )  and adapting with the use of assumptions (A.3), (A.4) the 

proof of Proposition 2.1 and Corollary 2.1 in [3], we have 

t9 where, we recall, n (7, .) is the transition liernel of (a:); analogously for n ~ r n ( q r n ,  -). 



Notice now that the convergence (3.24) is equivalent to 

which proves (3.15) for n = 0. 

Assume next, (3.15) holds for n - 1. For Fl, . . . , Fn+l E C(P(E))  we may write 

Furthermore, provided n ~ ~ 6 m ( ~ ~ m )  4 .rr:(I<) # y we can again adapt Corollary 2.1 

from [3] to obtain 

n" rn (n?lbm, ~ n + l )  4 n19(X;, F) 

Finally, using again Lemma 3.1 we have 

At this point we can again use Theorem 1.5.5 in [I],  obtaining on the basis of the 

induction hypothesis and the fact that Fi E C(P(E) )  (i = 1,2 , .  . . , n + 1) 

Remark. If (see the Remark in Section 1.a) one considers strategies of the form 1.9 = 

(u,$, y, 11) with $ E C(E)  having compact support and satisfying 0 < $ < 1, then as 

approximations one may take 1.9, = (urn, $,, y,, q,, ) with urn, y,, qm as before and 

$, E B(E)  with compact support satisfying 0 5 4, 5 1 and such that 

sup l $ ~ ~ ( x )  - $(x) 1 4 0 for m -t w 
z E E  

In this case the proof of Theorem 3.1 is simpler and does not require a.ssumption (A5). 

In fact, Lemma 3.1 is not needed any more, since, if v," + V; ( i  = 1,2, .  . . , n + I),  then 



This implies that, instea.d of (3.16), we have more simply 

- 
I? c ((ul, . . . , un+l), for some i = 1,2, . . . , n, ui($) = y} = I? 

At this point (3.23) becomes just 

where the quantity on the right is zero simply on the basis of a suitably adapted version 

of Lemma 2.4 in [3], without the need to assume (A5). 

4. COMMENTS ON THE APPLICATIONS FOR THE CONSTRUCTION 
OF NEARLY OPTIMAL CONTROLS 

The results obtained so far concern uniqueness, representa.tion and convergence of 

invariant measures, which are especially useful for a.pproximation purposes, in particular 

for the construction of nearly optimal controls. In [3] a full approximation approach 

has been worked out in the setting and under the assumptions to obtain uniqueness 

of the invariant measure that were considered there. This approach, that leads to the 

construction of nearly optimal controls ca.n also be adapted to our setting with our 

assumptions and, as in [3], consists of three basic steps: 

1. approximation of admissible controls, 

2. approximation of the original state space E, 

3. approximation of the filter process. 

In what follows we only briefly sketch the essential aspects of the three steps where 

Theorem 3.1 is a crucial tool, the details can be obtained by analogy to [3]. 

Before coming to the description of the three steps we point out that as in [3] steps 1 

and 2 can be used for the construction of nearly optimal control functions, which, when 

applied to the true filter values, yield nearly optimal controls for the original problem. 

Since the true filter values, that are elements of the space P ( E )  of measures on E cannot 

be computed in practice, in step 3 a computable approximate filter is considered. It 

can be shown that, when applying the nearly optimal control functions resulting from 

steps 1 and 2 to the approximate filter values, defined in step 3, one still obtains nearly 

optimal controls. 

Let now V denote the set of our control strategies given by 

V = (29 = (u, I{, y, 77) 1 u E C(P(E)),  

K c E and is compact, y E (0, I ) ,  77 E H C P ( E ) }  



In step 1, instead of considering the entire set of continuous controls u corresponding 

to V a subclass is considered, that is defined as follows. Given L > 0 as well as a positive 

integer n, let 

A(L, n)  = {u E -4 I u(v) = G ( ~ ( Y I ) ,  . - - ~ ( y n ) ) )  (4.2) 

where (see (1.3)), A = C(P(E),  U), ii: Rn + R is Lipschitz with constant L and 

91,. . . , cpn, . . . is a dense sequence in Co(E). The subclass is thus determined by func- 

tions defined on a finite dimensional space and its elements approximate the continuous 

controls corresponding to elements in V. Besides considering approximations to the con- 

tinuous controls in V one may also consider approximations I<,, y,, q, (m = 1,2 , .  . .) 
of the remaining elements in the generic strategy 6. Let then 

Based on Theorem 3.1, the following result can be proved 

Corollary 4.1. For a suitable choice of I<,, y,, qm we have, for all p E P(E), 

lim inf J,(6) = inf J,(6) 
L,n ,m-+~= zPEV(L,n,m) 8 E V  

Coming to the second step, notice that the original filter process (~9) takes values 

in the space P(E) of measures on E .  Again, to obtain useful approximations, it is 

desirable to have a filter process taking values in a finite dimensional space. For this 

purpose the original state space E may be partitioned into a finite number of sets, 

which can be considered as elements of a new finite state space, implying that the 

filter process corresponding to an approximation h, of the observation function h(x), 

that is constant on the sets of partition, takes values in a simplex. Also functions 

c,d in the cost functional (1.6) may be approximated by functions c,, dm which are 

constant on the sets of partition. Theorem 3.1 again turns out to be a crucial tool 

to prove convergence of the cost functional when the partition becomes finer and finer 

and the step functions h,, c,, dm converges to h,  c, d respectively. For the proof of 

this convergence it is important to consider controls in the approximating class A(L, n), 

since they are determined by functions acting on finite dimensional vectors. 

The computable approximate filter in step 3 is of the form of the filter process of 

the previous step 2 that takes values in a simplex. While the filter in step 2 served only 

as a tool to construct a nearly optimal control function, here we want it to be driven 



by the real observations corresponding to the original model. As a consequence, it is 

no longer Markov and can not be interpreted as a conditional distribution. It turns 

out, however, that the pair given by the real filter and the approximate filter mentioned 

above form a Markov process. Again a suitable version of Theorem 3.1 can be used to 

show that in the limit, the behaviour of the approximate filter is close to that of the 

real filter. 

Although the three steps, described synthetically above, parallel the procedure in 

[3], the last step is much simpler in our setting: this is due to the regenerative structure 

of the filtering processes, implied by the periodic restarting of the original state process 

from the same measure q. 
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