
Working Paper
Modular Optimizer for

Mixed Integer Programming
MOMIP Version 1.1

Wlodzimierz Ogryczak, Krystian Zorychta

WP-93-055
October 1993

IiIIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria

Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Modular Optimizer for
Mixed Integer Programming

MOMIP Version 1.1

Wlodzimierz Ogryczak, Krystian Zorychta

VCTP-93-055
October 1993

Working Papers are interim reports on work of the Int,ernationa.l Institute for Applied
Systems Analysis and have received only limited review. Views or opinions expressed
herein do not necessarily represent those of the Institute or of its National Member
Organizations.

BIIASA International Institute for Applied Systems Analysis o A-2361 Laxenburg Austria

Telephone: +43 2236 715210 Telex: 079 137 iiasa a Telefax: +43 2236 71313

Foreword

The research described in this Working Paper was performed at the Institute of Informat-
ics, Warsaw University (IIUW) as part of IIASA CSA project activities on "Methodology
and Techniques of Decision Analysis7' stage 111. While earlier work within this project re-
sulted in the elaboration of prototype decision support systems (DSS) for various models,
like the DINAS system for multiobjective transshipment problems with facility location
developed in IIUW, these systems were closed in their architecture. In order to spread the
scope of potential applications and to increase the ability to meet specific needs of users,
in particular in various IIASA projects, there is a need to modularize the architecture of
such DSS. A modular DSS consists of a collection of tools rather than one closed system,
thus allowing the user to carry out various and problem-specific analyses.

This Working Paper describes the MOMIP optimization solver for middle-size mixed
integer programming problems, based on a modified branch-and-bound algorithm. It
is designed as part of a wider linear programming library being developed within the
project.

Abstract

This Working Paper documents the Modular Optimizer for Mixed Integer Programming
(MOMIP). MONIIP is an optimization solver for middle-size mixed integer programming
problems, based on a modified branch-and-bound algorithm. It is designed as part of
a wider linear programming modular library being developed within the IIASA CSA
project on "Methodology and Techniques of Decision Analysis". The library is a collec-
tion of independent modules, implemented as C++ classes, providing all the necessary
functions of data input, data transfer, problem solution, and results output. The In-
put/Output module provides data structure to store a problem and its solution in a
standardized form as well as standard input and output functions. All the solver modules
take the problem data from the Input/Output module and return the solutions to this
module. Thus, for straightforward use, one can configure a simple optimization system
using only the Input/Output module and an appropriate solver module. More complex
analysis may require use of more than one solver module. Moreover, for complex analysis
of real-life problems, it may be more convenient to incorporate the library modules into
an application program. This will allow the user to proceed with direct feeding of the
problem data generated in the program and direct withdrawal results for further analysis.

The paper provides the complete description of the MOMIP module. Methodological
background allows the user to understand the implemented algorithm and efficient use
of its control parameters for various analyses. The module description provides all the
information necessary to make MONIIP operational. It is additionally illustrated with
a tutorial example and a sample program. Modeling recommendations are also provided,
explaining how to built mixed integer models in order to speedup the solution process.
These may be interesting, not only for the MOMIP users, but also for users of any mixed
integer programming software.

Contents

1 Introduction 1

2 Methodological background 2
2.1 Mixed integer linear programming problems 2
2.2 Branch-and-bound basics . 3
2.3 The algorithm . 4

3 MIP class 7
3.1 Straightforward use . 7
3.2 Advanced use . 9
3.3 Messages. 13
3.4 Compilation . 16

4 DUAL class 16

5 Tutorial example 19

6 Future extensions 27

7 Software availability 28

8 References 28

A Sample program 31

B Computational tests 3 3

C Modeling of multiple choices and piecewise linear functions 34

vii

Modular Optimizer for
Mixed Integer Programming

MOMIP Version 1.1

Wlodximierx Ogryczak: Krystian Zorychta**

1 Introduction

MOMIP is an optimization solver in C++ (Stroustrup, 1991) for middle-size mixed inte-
ger linear programming problems, based on a modified branch-and-bound algorithm. It is
designed as part of a wider linear programming modular library being developed within
the MDA project. The library is a collection of independent modules, implemented as
C++ classes, providing all the necessary functions of data input, data transfer, problem
solution, and results output. The Ip-problem class (Gondzio et al., 1993) is a communica-
tion kernel of the library. It provides data structures to store a problem and its solution
in a standardized form as well as standard input and output functions. All the solver
classes take the problem data from the Ip-problem class and return solutions to this class.
Thus for straightforward use one can configure a simple optimization system using only
the Ip-problem class with its standard input/output functions and an appropriate solver
class. More complex analysis may require use of more than one solver class. Moreover,
for complex analysis of real-life problems, a more convenient way may be to incorporate
the library modules in the user program. This will allow the user to proceed with direct
feeding of the Ip-problem class with problem data generated in the program and direct
results withdrawal for further analysis.

MOMIP is implemented as the MIP class. It is a typical solver class taking problem
data from the Ip-problem class and returning the solution to this class. It is presumed,
however, that the problem has been solved earlier (not necessarily in the same run) by
the linear programming solver and that the linear programming solution is available as
a starting one in the search of integer solution. With the specification of various control
parameters, the user can select various strategies of the branch-and-bound search. All
these parameters have predefined default values, thus the user does not need to define
them for a straightforward use of the MOMIP solver. The Nll P class constructs implicitly
all the auxiliary computational classes used in the branch-and-bound search. One of these
classes, the DUAL class that provides the dual simplex algorithm, may be useful in some
other analyses. Therefore, despite its implicit use in MONIIP, the DUAL class is made
explicitly available for other applications and its description is included in this manual.

The manual is organized as follows. Chapter 2 deals with methodological backgrounds
of the MOMIP solver. It specifies the algorithm implemented in MOMIP and meanings
of the control parameters that can be used in advanced applications. Chapter 3 describes
in details the MIP class, thus it can be considered as a typical user's manual. Similarly,

' Ins t i tu te of Informatics , Warsaw University, 02-097 Warsaw, Po land .
"Inst i tute of Applied M a t h e m a t i c s a n d Mechanics, Warsaw University, 02-097 Warsaw, Po land .

W. Ogryczak, K. Zorychta - 2 - MOMIP

Chapter 4 contains detailed description of the DUAL class. It is addressed to the users
interested in using this class outside the MOMIP solver and it can be skipped by users
of the MI P class. Chapter 5 presents an illustrative example of the mixed integer model
analysis with the MOMIP solver, thus it can be considered as a tutorial. Finally, in Chap-
ter 6, the future extensions to increase the efficiency of the MOMIP solver on structured
problems are outlined.

The MOMIP solver was designed and mainly developed by the authors of this man-
ual. However, it could not have been completed without the help of Janusz Borkowski,
Krzysztof Studzinski and Tomasz Szadkowski. We want to express our sincere gratitude
to them.

2 Methodological background

2.1 Mixed integer linear programming problems

A mixed integer linear programming problem (referred to thereafter as MIP problem) is
a linear problem with two kinds of variables: integer variables and continuous variables.
Integer variables can take only integer values, whereas continuous variables can take any
real number as a value. Classical linear programming problems only have continuous
variables. In the absence of continuous variables, we get the so-called pure integer linear
programming problem. It can be considered as a marginal case of the MIP problem and
solved with the same software although specialized algorithms are, usually, more efficient
for these types of problems.

The possibility of introducing integer variables into linear programming models allows
for the analysis of many very important problems which are not covered by the classical
linear programming. In many models, some of the given variables represent entities which
cannot be partitioned. Much more important, many logical relations can be formulated as
linear relations with integer (binary) variables. Moreover, many nonlinear and nonconvex
models can be reformulated as linear programming problems with integer variables (see
Williams, 199 1 ; Nemhauser and Wolsey, 1988; and references therein). These problems
cannot be solved or approximated with the classical linear programming.

The efficiency of the solution procedure for MIP problems strongly depends on tight-
ness of linear constraints on integer variables. For instance, the set of constraints

defines the same integer solutions as the set of constraints

0 . 8 ~ 1 + 0 . 6 ~ ~ 5 1.3, 0 5 XI 5 1, 0 x2 5 1, x1,xz are integers

The former provides, however, tighter linear constraints on integer variables than the
latter. If we drop the integrality requirements, the former set of constraints defines the
convex hull of integer solutions, whereas the latter defines a larger set. In Appendix C
we provide some recommendations for efficient modeling of the most typical integer pro-
gramming structures. For more reading about efficient MIP problems formulation we
recommend the book by Williams (1991) and references therein.

As MOMIP utilizes standard linear programming input functions of the Ip-problem
class, it is assumed that all integer variables precede continuous variables, and a number
of integer variables is given as an additional parameter (NINT). The order in which integer
variables are processed during the search for integer solution is important for the efficiency.

W. Ogryczak, K. Zorychta - 3 - MOMIP

In some situations, this order depends on the original order of integer variables in the
problem. Therefore, it is recommended to introduce integer variables in decreasing order
of importance in the model.

2.2 Branch-and-bound basics

Branch-and-bound is, in practice, the only technique allowing to solve general MIP prob-
lems. Land and Powell (1979) found that all the commercial MIP codes used the branch-
and-bound technique.

The branch-and-bound technique solves the NIIP problem by successive optimizations
of linear programming problems. It is assumed that the continuous problem, i.e. the
MIP problem without integrality requirements, has been first solved. If all the integer
variables have integer values in the optimal solution to the continuous problem, there is
nothing more to do. Suppose that an integer variable, say x,, has a fractional (noninteger)
continuous optimum value x:. The range

cannot include any integer solution. Hence, an integer value of x, must satisfy one of two
inequalities

T 5] Or XT 2 [~ f] +
These two inequalities, when applied to the continuous problem, result in two mutually
exclusive linear problems created by imposing the constraints x, 5 [x:] and x, 2 [x:] + 1,
respectively, on the original feasible region. This process is called branching and integer
variable x, is called branching variable. As a result of branching the original problem is
partitioned into two subproblems. Now each subproblem may be solved as a continuous
problem. It can be done in an efficient way with the dual simplex algorithm. If in opti-
mal solution of a subproblem some integer variable fails the integrality requirement, the
branching process may be applied on the subproblem thus creating a tree of subproblems.
Due to this structure the subproblems are referred to as nodes (nodes of the subproblems
tree). The original continuous problem is assumed to be node 0 (root of the tree) and the
other nodes get subsequent numbers when created.

A node does not need to be further branched if its optimal (continuous) solution
satisfies all the integrality requirements. Such a node, called integer node, is dropped
from the further search while its solution is stored as the best integer solution so far
available and its objective value becomes the cutoff value. A node may also be dropped
from further analysis if it is fathomed, i.e., there is evidence that it cannot yield a better
integer solution than that available so far. A node is, certainly, fathomed if it is infeasible
and thereby it cannot yield any solution. Since a node optimal value is a bound on the
best integer solution value that can be obtained from the node, nodes with noninteger
optimal solutions may be fathomed by comparison of its optimal (continuous) value versus
the current cutoff value. The importance of acquiring good bounds to fathom nodes at
the early stages of the search process cannot be overemphasized. Therefore, in advanced
implementations of the branch-and-bound techniques, additional penalties are used in
fathoming tests. The general idea of the penalties is to estimate the deterioration in the
objective value caused by enforcing additional inequalities in branching.

While making the branch-and-bound technique operational, it is necessary to introduce
some order in the branching and solving of nodes. For this purpose, the so-called waiting
list containing all the nodes in need of further analysis. is usually introduced. It can be

W. Ogryczak, K. Zorychta - 4 - MOMIP

arranged in two ways. If constructed but unsolved nodes are stored on the waiting list we
get the so-called single branching, where a node selected from the list is first solved and
next branched if not fathomed. If solved nodes are stored on the list, we have the so-called
double branching, where a node selected from the list is first branched and the next both
new subproblems are solved and stored on the list if not fathomed. For larger problems,
double branching is recommended and therefore it is implemented in the MOMIP solver.

The process of branching continues, where applicable, until each node terminates
either by generating an integer solution, or by being fathomed. Thus the branch-and-
bound search is completed when the waiting list becomes empty. During the course
of the branch-and-bound search one may distinguish three phases: search for the first
integer solution, search for the best integer solution and optimality proof. Computational
experiments show (see, Benichou et al., 1971) that for typical MIP problems, the first
two phases are usually completed in a relatively short time (only few times longer than
the time of continuous problem solution), whereas the last phase may require extremely
long time. Therefore MOMIP is armed with control parameters allowing to abandon the
search if it seems to be in a long optimality proof phase. Unfortunately, whereas the end
of the first phase is clearly defined (the first integer solution has been found), the end of
the second phase and the beginning of the optimality proof is never known for sure until
the entire search is completed.

Having defined the waiting list there are still many ways to put into operation the
branch-and-bound search. The most important for algorithm specification are two opera-
t ions: branching variable selection and node selection (for branching). Both the operations
may be arranged in many different ways resulting in different tree sizes and search effi-
ciency. Specificat ion of these two selection operations, called branch-and-bound strategy,
is crucial for the algorithm efficiency on a specific NIIP problem. Unfortunately, there
is no definitely best strategy for all the problems. Therefore, like most advanced MIP
solvers (compare, Land and Powell, 1979; Tomlin and Welch, 1993), MONIIP, despite
providing some default branch-and-bound strategy, allows the user to adjust the strategy
to the specificity of the MIP problem.

2.3 The algorithm

The branch-and-bound algorithm implemented in the MOMIP solver can be roughly
summarized in the following steps:

Step I. Define node 0 by the continuous problem and the available optimal continuous
solution.

If all integer variables in the solution satisfy the integrality requirements, the search
is completed.

If not, set the number of examined nodes n = 0, set the starting cutoff value, choose
node 0 as branched node k (k = 0) and select a branching variable.

Step 2. Define nodes n+l and n+2 as subproblems of node k according to the preselected
branching variable (n = n + 2) .

Step 3. Optimize node n + 1.

If the node is fathomed drop it.

If the optimal solution satisfies the integrality requirements, store it as the best
integer solution so far, modify the cutoff value and use it to eliminate fathomed
nodes from the waiting list.

W. Ogryczak, K. Zorychta - 5 - MOMIP

If the optimal solution fails the integrality requirements, select a potential branching
variable and add the node to the waiting list.

Step 4. Optimize node n + 2.

If the node is fat homed drop it.

If the optimal solution satisfies the integrality requirements, store it as the best
integer solution so far, modify the cutoff value and use it to eliminate fathomed
nodes from the waiting list.

If the optimal solution fails the integrality requirements, select a potential branching
variable and add the node to the waiting list.

Step 5. If the waiting list is empty, the search is completed. The best integer solution is
the optimal one.

If there is no integer solution, the entire problem has no integer solution.

Otherwise, select the next branched node k from the waiting list and remove it from
the list. Return to Step 2.

The initial cutoff value is defined in MOMIP by default as INFINITY in case of mini-
mization and -I IV FI N ITY for maximization. The user can define another starting cutoff
value with parameter CUTOFF. The search is then restricted to integer solutions with
objective value better than CUTOFF. When an integer solution is found the cutoff value
is reset according to the formula:

CUTOFF = V - MINMAX x OPTEPS x (V (

where:

V denotes the objective value of the integer solution,

0 P-r EPS is the relative optimality tolerance (by default OP-rEPS= 0.0005),

MI hl M A X is 1 for minimization and -1 for maximization.

Thus, if the default value OPTEPS is used, whenever an integer solution is found, MOMIP
will continue search for the next integer solution with functional value better by 0.05%
at least.

In the current basic version of MOMIP, branching variable can be selected only de-
pending on the integer infeasibility of variable values in the optimal solution. A variable
value is considered to be integer infeasible (fractional) if it differs from the closest integer
by INTEPS at least. Thus an integer variable x, with value x: = [x:] + f T is integer
infeasible if

min(fT, 1 - f,) > INTEPS

The value min(f,, 1 - f,) is called integer infeasibility of variable z,. The default value
of INTEPS is set to 0.0001.

By default, the variable with minimal integer infeasibility (i.e., the variable closest to
an integer but not closer than INTEPS) is selected as branching variable until the first
integer solution is found and later the variable with maximal integer infeasibility (i.e., the
variable with maximal distance to an integer) is selected. The user can force MOMIP
to use always maximal or minimal integer infeasibility selection rule, respectively, by
specification of the parameter B RSW.

W. Ogryczak, K. Zorychta - 6 - MOMIP

Nodes are optimized in MOMIP with the dual simplex algorithm. Optimization can
be abandoned if during the course of the algorithm it becomes clear that the node cannot
have better optimal value than the current cutoff value (and thereby it will be fathomed).
When a noninteger optimal solution is found, a potential branching variable is selected and
the corresponding penalties calculated. Exactly, the SUB and Gomory7s penalties based
on the Lagrangean relaxation (see, Zorychta and Ogryczak, 1981) are computed. If the
penalties allow to fathom both potential subproblems, the optimized node is fathomed.
If the penalties allow to fathom one of the potential subproblems, the constraints of the
optimized node are tightened to the second subproblem and the optimization process is
continued without explicit branching. Thus a noninteger node is added to the waiting list
only if both its potential subproblems cannot be fathomed by the penalties.

In the current version of MOMIP, there are two basic node selection rules: LIFO and
BEST/POSTPONE. In addition, a mixed selection rule is available, where LIFO rule is
applied until the first integer solution is found and later BEST/POSTPONE rule is used.
By default LIFO rule is used in all the search phases. The user can force MONIIP to use
BEST/POSTPONE rule in one or in all the search phases, by specification of the parameter
SELSW.

LIFO rule, after Last In First Out, depends on the selection of the latest generated
node. This means that, if the branched node has a t least one subproblem to be optimized,
then one of these subproblems (the one with the better value bound, if there are two)
will be selected. If both the subproblems are fathomed or integer, the latest node added
to the waiting list is selected. Thus with LIFO rule the waiting list works like a stack.
LIFO rule implies narrow in-deep tree analysis with the small waiting list. It is a very
efficient node selection strategy while looking for the first integer solution. In MOMIP
default strategy it then works together with minimal integer infeasibility branching rule,
thus creating a heuristic search for an integer solution close to the continuous one.

BEST/POSTPONE rule is a parameterized strategy that depends on a limited selection
of the best node (node with the best value bound) and avoiding too frequent branch
changes thus preventing uncontrolled growth of the waiting list. For this purpose all the
waiting nodes are classified in two groups: candidate nodes and postponed nodes that can
be selected only if the group of candidate nodes is empty. If the most recently branched
node has at least one subproblem to be optimized and the corresponding node is not
postponed, then it will be selected (the one with better value bound if there are two). If
both the subproblems are integer, fathomed or postponed, the best node on the waiting
list is selected.

Let BEST denote the best value bound (optimal value modified by penalty) among the
waiting nodes and CUTOFF be the current cutoff value. All the waiting nodes have value
bounds within the range defined by BEST and CUTOFF. Within this range we distinguish
a subrange of postponed nodes as defined by CUTOFF and the parameter POSTPONE
given by the following formula:

POSTPONE = CUTOFF - MINMAX x POSTEPS x IBEST - CUTOFF1

where:

POSTEPS is the relative postpone tolerance (by default POSTEPS= 0.2),

IVllNMAX is 1 for minimization and -1 for maximization.

Thus the BEST/POSTPONE rule provides very elastic node selection strategy con-
trolled with the parameter POSTEPS. If using POSTEPS= 1 all the waiting nodes are

W. Ogryczak, I<. Zorychta - 7 - MOMIP

postponed and thereby one gets the classical best node selection rule. On the other hand,
for POSTEPS= 0 one gets similar to LIFO in-deep search strategy where subproblems of
the most recently branched node are selected as long as they exist. The only difference
to LIFO rule is in backtracking. Namely, if there is no recent subproblem to optimize,
the best node on the waiting list is selected whereas the latest one would be selected
with LIFO. For POSTEPS taking various values between 0 and 1 one gets strategies that
implement various compromises between the strict in-deep search and the open search
based on the best node selection. It provides balance between the openness of the search
and the low waiting list growth.

When the selected node is branched, two of its subproblems have to be optimized.
The order of these optimizations can affect the efficiency of the algorithm in two ways.
First, if the subproblem optimized as the second is later selected for branching, then the
optimization process can be continued without any restore and refactorization operations.
Therefore, we are interested to optimize the subproblem which seems to be more likely
selected for future branching, as the second one. Moreover, if while optimizing the first
subproblem an integer solution is found, then it can ease fathoming of the second one
making its optimization short or unnecessary. In MOMIP, the subproblem associated
with larger integer infeasibility on the branching variable is usually optimized as the first,
presuming that the second will have better value bound and therefore will be selected for
future branching. There is, however, an exception to this rule when the branched node
is a so-called quasi-integer node. A node is considered to be quasi-integer if all integer
variables have values relatively close to integer. Exactly, if all the integer infeasibilities
are less than specified parameter QINTEPS (equal to 0.05 by default). In the case of
quasi-integer branched node the subproblem associated with smaller (in fact less than
QINTEPS) integer infeasibility on the branching variable is optimized as the first one,
hopefully to get an integer solution quickly.

MIP class

3.1 Straightforward use

MOMIP is implemented as the MIP class. It is a typical solver class taking problem data
from the Ip-problem class and returning the solution there. It is presumed that the problem
has been earlier solved (not necessarily in the same run) by the linear programming solver
and the linear programming solution is available as a starting one in the search for integer
solution. The MIP class constructs implicitly all the auxiliary computational classes used
in the branch-and-bound search. Thus for straightforward use of the MOMIP solver one
only needs to declare the MIP class and call its solvemip function.

The MI P class constructor must be called with one parameter: a pointer to an Ip-prob-
lem class. The constructor, when called, builds the MIP class and assigns its functions to
the specified Ip-problem class where data will be taken from and solution written to. For
instance the statement:

MIP(&MYPROBLEM) MYMIP;

causes construction of a MIP class called MY MlP and assigns its computational functions
to the class MYPROBLEM of type Ip-problem. The MIP class constructor may be used
anywhere within the scope of the Ip-problem class used as the parameter. The Ip-problem
class does not need to contain any problem data while the MI P class constructor is called.

W. Ogryczak, K. Zorychta - 8 - MOMIP

It may be filled out with a problem data and used for a linear programming solver either
prior to the MIP constructor call or having already MIP class constructed. Certainly, the
corresponding Ip-problem class must be filled out with the problem data prior to any use
of the MIP functions.

The user does not need to fill out any MIP class data structure to solve the problem.
In fact, all its data structures and most computational functions are not directly accessi-
ble to the user (declared as private) leaving the solvernip function as only available. The
solvemip function constructs implicitly all the necessary auxiliary classes like C-LIST class
for the waiting list handling, DUAL class for nodes solving, and inverse class for LP basis
factorization handling. The solvernip function manages the entire branch-and-bound algo-
rithm calling all the necessary computational functions; It provides also all the necessary
data transfer between the MIP class and the corresponding Ip-problem class.

The solvernip function is declared within the MIP class with the header of the form:

where Int-T is an integer type defined during the compilation depending on the computer
architecture (see Section 3.4 for details). The function returns the number of integer
solutions found during the course of the branch-and-bound algorithm. Thus it returns 0
if no integer solution has been found.

The solvernip function is called with one obligatory parameter and up to two optional
parameters (exceptional omitting of the obligatory parameter will be discussed later).
Optional parameters are designed for a special control of the search process and are
described in the next section. The obligatory parameter A2B is a pointer to an integer
vector describing the basic continuous solution found with a linear programming solver.
A2B vector should contain n + m (where n is the number of structural variables and
m denotes the number of constraints) coefficients representing the basic solution structure.
The continuous solution is assumed to be coded within A2B according to the following
rules:

for k = 0, I , . . . , n - 1 (structural variables)

A2B[k] = - 1 if variable k is nonbasic at its lower limit,

A2B[k] = -2 if variable k is nonbasic at its upper limit,

A2B[k] = i 2 0 if variable k is in basis a t position i;

for r = 0,1 , . . . , m - 1 (constraints)

A2B[n + r] = -1 if constraint r is nonbasic at its RHS limit,

A2B[n $ r] = -2 if constraint r is nonbasic at its range limit,

A2B[n + r] = i 2 0 if constraint r is in basis at position i ;

where the basis positions are numbered from 0 through m - 1.

The above structure of A2B vector is consistent with that used in modular linear pro-
gramming solver by Gondzio et al. (1993). There is no need for any operations on A2B
vector while using this solver. Thus, the user only needs to pass the vector pointer as the
parameter, like in the following example:

W. Ogryczak, K. Zorychta MOMIP

Ip-problem M Y PROBLEM;
MIP MYMIP(&MYPROBLEM);
...
[linear programming processing with A2B generation]

If the continuous solution has been generated during earlier independent computation
(or with different linear programming solver) the user is obliged to take responsibility
for a proper filling of the corresponding Ip-problem structure and A2B vector. A sample
program with such a use of MOMIP solver is included in Appendix A.

MOMIP has its own primal simplex algorithm which is activated in the case of nu-
merical difficulties in the dual algorithm or invalid primal solution provided with the
parameter A2 B. Therefore, the possibility to call solvem ip function without the param-
eter A2B is available and the MOMIP primal algorithm is then used to find the initial
(continuous) solution. Thus the following is a legal solvemip call:

solvem ip();

However, the MOMIP primal algorithm is designed as auxiliary tool and it can solve
directly only relatively small problems. Therefore, we do not recommend such a call for
larger problems. It should be considered only as an additional capability for small and
medium problems.

3.2 Advanced use

For advanced use of the MOMIP solver, the solvemip function can be called with one or
two additional optional parameters: CUTOFF and PAR. Thus, all the following are legal
solvem ip calls:

solvemip(A2B);
solvemip(A2B,CUTOFF);
solvemip(A2B, PAR);
solvemip(A2B,CUTOFF,PAR);
solvem i p();
solvemip(CUTOFF);
solvem ip(PAR);
solvemip(CUTOFF,PAR);

However, the last four calls are not recommended for use with larger MIP problems. Note
that if both the optional parameters are used, CUTOFF must precede PAR, and A2B
(whenever used) must be the first parameter.

CUTOFF is a float type parameter defining the initial cutoff value for the branch-and-
bound algorithm. If this parameter is used the search is restricted to integer solutions with
functional values better than CUTOFF. When some integer solution is already known, use
of this parameter allows to make the search shorter. In the absence of the CUTOFF pa-
rameter, the initial cutoff value is defined, by default, as INFINITY in case of minimization
and -INFINITY for maximization.

PAR is a pointer to a MIP-PAR structure with MOMIP control parameters. It allows
the input of nonstandard values for MOMIP control parameters. MIP-PAR is a predefined

W. Ogryczak, K. Zorychta - 10 - MOMIP

structure type containing all the control parameters as members. It is provided with the
constructor assigning default values to all the members (parameters). Thus the user
having declared his/her own MIP-PAR structure only needs define the values for these
parameters he/she wish to change.

The MIP-PAR structure has the following (public) members:

INTMAGN - maximal integer magnitude. Each integer variable must be bounded and
its magnitude cannot exceed IIUTMAGN. By default INTMAGIU= 65535. Any value
ranging from 1 to 65535 is a legal INTMAGN value.

TREELIMIT - maximal size of the waiting list. Despite the available memory size the
waiting list cannot exceed TREEI-I M I T nodes. The search is continued but exceeding
waiting nodes will be lost. By default TREELIMIT= 10000. The parameter may be
used to control unexpected growth of the waiting list in experimental runs while
looking for the most efficient branch-and-bound strategy. Legal TREELIMIT value
cannot be less than 1.

NODELI M I T - maximal number of nodes to be solved during the search. If the number
of solved nodes exceeds NODELIMIT, further search is abandoned and the entire
solution process is treated as completed (the best integer solution found so far is
available in the Ip-problem structure, etc.). By default NODELIMIT= 100000. The
parameter may be used to prevent unexpectedly long computations in experimental
runs while looking for the most efficient branch-and-bound strategy. Legal NODE-
LIMIT value cannot be less than 1.

NOSUCCLlMlT - maximal number of nodes to be solved (without success) after the last
integer solution has been found. It is ignored during the search for the first integer
solution. If the number of nodes solved after the last integer solution has been
found, exceeds NOSU CCI-I M IT, further search is abandoned and the entire solution
process is treated as completed (the best integer solution found so far is available in
the Ip-problem structure, etc.). By default NOSUCCI-IMIT= 100000. The parameter
may be used to control unexpectedly long last phase of the branch-and-bound search
(optimality proof). Legal NOSUCCLlMlT value cannot be less than 0.

SU CCLl M I T - maximal number of integer solutions searched. If the number of integer so-
lution found exceeds SU CCLl M I T further search is abandoned and t he entire solution
process is treated as completed (the best integer solution found so far is available in
the Ip-problem structure, etc.). By default SUCCLIMIT= 100. The parameter may
be used to control the branch-and-bound search if the user is interested in a specified
number of integer solutions better than some threshold (specified with CUTOFF) or
simply feasible solutions rather than the optimal solution. Legal SUCCLl M l T value
cannot be less than 1.

OPTEPS - relative optimality tolerance used in the dynamic formula for cutoff value
after first integer solution has been found (see Section 2.3). If an integer solution
with objective value VAL has been found, MOMIP is looking for the next solution
which is better by OPTEPSx IVALl at least, while all smaller improvements are
ignored. Therefore, when the entire branch-and-bound search is completed the best
integer solution found is proven to be optimal with the relative tolerance OPTEPS.
By default OPTEPS= 0.0005. This parameter may be used to implement a rough
search for a good integer solution. Any value between 0 and 1 is a legal OPTEPS
value.

W. Ogryczak, K. Zorychta - 11 - MOMIP

INTEPS - integrality tolerance. A variable value is considered to be noninteger (integer
infeasible, fractional) if it differs from the closest integer by INTEPS at least. By
default INTEPS= 0.0001. Any value between 0 and 1 is a legal INTEPS value.

BRSW - branching strategy switch for definition of the branching variable selection rule
(compare Section 2.3). By default BRSW= 0 which means AUTOMATIC rule. The
minimal integer infeasibility (i.e., the variable closest to an integer but not closer
than IN-TEPS) is then selected until the first integer solution is found and later the
maximal integer infeasibility (i.e., the variable with maximal distance to an integer)
is selected. The user by putting B RSW= 1 can force MOMIP to use always maximal
integer infeasibility selection rule. Similarly, BRSW= 2 causes the minimal integer
infeasibility rule to be used in all phases of the branch-and-bound search. Only
values 0, 1 or 2 are accepted as legal BRSW values.

SELSW - node selection strategy switch for definition of the branched node selection
rule (compare Section 2.3). SELSW= 0 means AUTOMATIC rule. The LIFO (Last
In First Out) rule is then used until the first integer solution is found and later the
BEST/POSTPONE (restricted selection of the best waiting node) rule is applied. The
user, by putting SELSW= 1, can force MOMIP to use always the BEST/POSTPONE
selection rule. By default, SELSW= 2 which causes the LIFO rule to be used in all
phases of the branch-and-bound search. Only values 0, 1 or 2 are accepted as legal
SELSW values.

POSTEPS - relative postpone parameter. The control parameter for the BEST/POST-
PONE branched node selection rule. POSTEPS dynamically defines the subrange of
postponed nodes within the waiting list (compare Section 2.3). Using this parameter
the user may define the most appropriate for the problem compromise between the
wide open search and the narrow in-deep search strategy. By default POSTEPS=
0.2. Any value between 0 and 1 is a legal POSTEPS value.

QIN-TEPS - quasi-integrality tolerance. A node is considered to be quasi-integer if all
integer variables have values relatively close to integer. Exactly, if all the integer
infeasibilities are less than QI NTEPS. Quasi-integrality of the branched node affects
the order in which two subproblems are optimized (compare Section 2.3). By default
QINTEPS= 0.05. Any value between 0 and 1 is a legal QINTEPS value.

NODREPFRQ - node report frequency. Every NODREPFRQ node solved MOMIP issues
the node report (see Section 3.3 for details). By default NODREPFRQ= 100. Any
value no less than 1 is a legal NODREPFRQ value.

TOLFEAS - primal feasibility tolerance. While node solving with the dual simplex algo-
rithm, any computed variable value is treated as if it were feasible, if the magnitude
of the amount by which it violates the limit is no greater than TO LFEAS. By default
TOLFEAS= l.0e-7. Any nonnegative value is a legal TOLFEAS value.

TOLDJ - dual feasibility tolerance. While node solving with the dual simplex algorithm,
any computed reduced cost is treated as if it were 0, if its magnitude is no greater
than TOLDJ. By default TOLDJ= l.0e-7. Any nonnegative value is a legal TOLDJ
value.

TOLPIV - pivot tolerance. While node solving with the dual simplex algorithm, any
potential pivot element is treated as if it were 0, if its magnitude is no greater than

W . Ogryczak, K . Zorychta - 1 2 - MOMIP

TOLPIV. By default TOLPIV= l.0e-7. Any nonnegative value is a legal TOLPIV
value.

INVFREQ - refactorization frequency. While node solving with the dual simplex al-
gorithm, the refactorization function is called every l NVFREQ simplex steps. By
default INVFREQ= 50. Any value no less than 1 is a legal INVFREQ value.

ITERLl M l T - maximal number of simplex steps per node. While node solving with the
dual simplex algorithm, the solution process is abandoned and the node classified
as unsolved, if the number of simplex steps has exceeded ITERLIMIT. By default
ITERLIMIT= 5000. Any value no less than 1 is a legal ITERLIMIT value.

For instance, if one wants to use the LIFO node selection rule during the entire search
and abandon the search after identification of ten integer solution, it can be done with
the following sequence of statements:

. . .
MIP-PAR mypar; / / MIP-PAR construction
m ypar.SUCCLIMIT=lO; / / only 10 integer solutions
mypar.SELSW=2; / / LIFO node selection strategy

The MIP-PAR structure provides also two convenient utility functions:

void checkpar();
i n t read(char* FNAME);

Function checkpar verifies if all the control parameters satisfy their formal requirements.
If some parameter value is illegal, the corresponding warning message is issued and the
default is assumed. Function read allows to read values for the control parameters from
a specified file (FNAM E) instead of dealing with direct assignments. It returns the value 0 if
the specified file has been successfully read and 1 if otherwise.

For instance the branch-and-bound strategy defined above directly in the program
may be defined with a specification file built of two lines:

SUCCLlMlT 10 / / only 10 integer solutions
SELSW 2 / / LIFO node selection strategy

The corresponding program should then include the following statements:

. . .
MIP-PAR mypar;
mypar.read("MYFILE");
mypar.checkpar();
. . .
solvern ip(A2B,rnypar);

where MYFILE is the name of the specification file.

W. Ogryczak, K. Zorychta - 1 3 - MOMIP

3.3 Messages

The MOMIP module generates MIP.LOG file where all the messages issued by the MIP
functions are available. There are two kinds of messages:

info messages providing the user with information about the current status of the NIIP
analysis and changes in that status;

warning messages providing the user with information about any errors or irregularities
in the process.

At the beginning of the analysis, MOMIP issues the message containing values of the
control parameters and the problem characteristics. It has the following form:

MOMIP - Modular Optimizer for Mixed Integer Programming
version 1.1 (1993)

Institute of Informatics, Warsaw University

MIP SETTINGS
Max no. of nodes to be examined NODELIMIT
Max no. of nodes after last integer NOSUCCLlMlT
Max no. of integer nodes . SUCCLIMIT
Max no. of simplex steps per node ITERLIMIT
Max no. of waiting nodesTREELIMIT
Node report frequency . IVODREPFRQ
Relative optimality tolerance . OPTEPS
Maximal integer magnitude . INTMAGN
Integrality tolerance . INTEPS
Quasi-integrality tolerance . QINTEPS
Relative postpone tolerance POSTEPS
Branching variable selection strategy BRSW
Node selection strategy . SELSW
Primal feasibility tolerance . TOLFEAS
Dual feasibility tolerance . TOLDJ
Nonzero pivot tolerance . TOLPIV
Refactorization frequency . INVFREQ

10000
5000
100
500
10000
10
0.005
65535
0.0001
0.05
0.2
AUTOMATIC
AUTOMATIC
ie-07

ie-07

ie-07

100

PROBLEM: 'small.1 '
0 bjective: 'rO ' (MAX) Rhs: 'supp '

Bounds: 'first , Ranges: 'rg
I

4 constraints with 5 structurals including 5 integer
Cutoff value: -100

The message gives current values of all the MIP control parameters that can be changed
by the user. The problem characteristic contains the names of the problem and of its data
groups (i.e., objective, RHS, bounds and ranges). There are also reported dimensions of
the problem (number of constraints, number of all structural variables, and number of
integer variables) and the cutoff value.

During the analysis MOMIP automatically issues info messages when any important
event occurs. Namely, when an integer solution is found, or the cutoff value is changed,
or the best still possible value of the integer solution is changed. These event messages
have the following forms:

W. Ogryczak, K. Zorych ta - 14 - MOMIP

*INTEGER SOLUTION with functional 7 a t node 8 and iter. 16
Nodes dropped if functional beyond 7.035

*AFTER node 10 and iter. 18
Any further solution cannot be better than 7.5

where iter. denotes the total of the simplex iterations from the MOMIP start till the event
has occurred.

Additional node report messages are controlled by the user with the parameter NOD-
REPFRQ. Such a message is issued whenever the number of examined nodes becomes
a multiple of NOD REPFRQ (note, that the first node has a number 0 thus causing issue
of the message). The node report message takes one of the following form depending on
the node type:

* NODE 5 noninteger (2) wi th functional 7.75 (7.5) Iter. 11 (1)
* NODE 7 INTEGER with functional 6 (6) Iter. 13 (1)
* NODE 9 infeasible her. 17 (1)
* NODE 19 UNSOLVED Iter. 15237 (5001)

The message begins with the node number and its type (noninteger, integer, infeasible,
or unsolved), where unsolved node means that the simplex solver could not overcome
some numerical difficulties, or simply the limit of simplex iterations for the node has been
reached (parameter ITERLI M IT). In the case of a noninteger node, the number of variables
failing the integrality requirements is shown in parentheses. Value of the functional at
the node is followed by the value bound on integer solution calculated with the penalties.
The total of the simplex iterations, from the MOMIP start till the node has been solved,
is followed by the number of simplex iterations at the node (shown in parentheses).

After any event message or node report MOMIP issues an additional status message
with information about current number of waiting nodes. It takes the following form:

* AFTER node 8 and iter. 16 - 3 waiting nodes

At the end of MIP analysis the resume message is issued. Its first line specify why
the analysis terminates. When all the waiting nodes have been examined the following
appears:

* MIP analysis completed

In other cases it takes one of the following form:

* SUCCLlMlT encountered - MIP terminated prematurely!
* NOSUCCLlMlT encountered - MIP terminated prematurely!
* NODELIMIT encountered - M IP terminated prematurely!

The next line specifies the number of integer solution found during the analysis. It has
the following form:

2 integer solutions found

If at least one integer solution has been found the following message appears:

* BEST SOLUTION with functional 7 a t node 8 and iter. 16

W. Ogryczak, K . Zorychta - 1 5 - MOMIP

It provides the user with functional value of the best integer solution found during the
analysis and information when it was found.

Further lines of the resume report provides the user with information about the best
possible solution (cutoff value at end of analysis), number of examined nodes, total of the
simplex iterations, and maximal size of the waiting list during the analysis. They have
the following form:

Best possible value: 7.035
14 nodes examined
25 simplex iterations
Max list size: 3

Warning messages provide the user with information about any errors or irregularities
in the process. All the warning messages are related to the events when MOMIP finds
some error and automatically corrects it. However, to inform the user about the error
processing and the way of error correction, an appropriate warning message is then issued.
All the messages are listed below.

* WARNIIVG: Invalid PARAMETER - default assumed

The pointed parameter (within the MIP-PAR structure) has an invalid value. It is
ignored and the default value is taken.

* WARNING: Invalid primal solution - MONl lP primal called

The first parameter (A2B) of the function solvemip specifies invalid optimal solution to
the continuous problem and MONIIP is forced to use its internal primal simplex algorithm.

* WARNIIVG: Not bounded integer variable 'x11-10 '

The pointed integer variable is specified as not bounded. It is assumed to be bounded.

* WARNIIVG: Variable 'x11-10 ' has too large integer magnitude!

The pointed integer variable has too large difference between its upper and lower limit.
It is reduced to the maximal integer magnitude.

* WARNIIVG: Ignored negative range on row ' r l '

There is a negative range value for the pointed row. The range for this row is ignored.

* WARNIIVG: Lower bound for variable 'co15 ' forced to: 9

The pointed integer variable has noninteger lower bound. It is tightened to the closest
integer value.

* WARNING: Upper bound for variable 'co15 ' forced to: 8

The pointed integer variable has noninteger or too large upper bound. It is tightened
to the specified value.

* WARNING: Direct infeasibility on integer variable 'co15 '

The problem is (integer) infeasible as for the specified integer variable its upper bound
is less than the lower one.

* WARNING: Waiting list is full - node 596 lost

There is not enough memory to extend the waiting list. The specified node is dropped
although it could generate a better integer solution.

* WARNING: 5 unsolved nodes

The specified number of nodes has been left unsolved due to numerical difficulties
encountered by the simplex solver or too small ITERLl M I T value.

W. Ogryczak, K . Zorychta - 16 - MOMIP

3.4 Compilation

MOMIP is programmed in the standard C++ language (Stroustrup, 1991). It can be
made operational in both UNIX and MS-DOS environments, thus allowing use of many
various hardware platforms. It was tested with Borland C++ 3.0 (Borland, 1991) compiler
in the MS-DOS environment and with GNU CC (Stallman, 1992) compiler in the UNIX
environment.

To make it possible to build in the MOMIP solver into some application programs,
it is provided as a set of ANSI source files. There are four main source files: MIP.CC,
-rREE.CC, DL.CC and IOMIP.CC. They include functions of the MIP class, C-LIST class,
DUAL class and MOMIP extensions to Ip-problem class, respectively. There are also four
exclusively MOMIP header files: MIP.H, DL.H, TREE.H and TREALL0C.H with the classes
definitions. These header files are implicitly included into appropriate source files during
compilation. A special header file M0MIP.H is also provided, which, if included in an
application program, causes the implicit inclusion of all the header files necessary for the
MIP class declaration and use.

During compilation of the MOMIP files, the following header files from the linear pro-
gramming module (Gondzio et al., 1993) should be available: LPP.H, LU PP.H, MALLOC. H
and S-TYPE.H. The last among them contains Int-T and Real-T data types definition
which can be adjusted to the specific computer architecture.

While linking the program using the MOMIP solver, the following source files from
the linear ~rogramming module (Gondzio et al., 1993) have to be compiled and linked:
HASH .CC, LU PP.CC and ERROR.CC, even if the linear programming solver is not directly
used within the program.

4 DUAL class

The MIP class constructs implicitly all the auxiliary computational classes used in the
branch-and- bound search. However, the DUAL class that provides the dual simplex algo-
rithm, may be used for some other analyses. Therefore, despite its implicit use in MOMIP,
the DUAL class is made explicitly available for other applications and its description is
given in this chapter.

The DUAL class constructor must be called with three parameters: a pointer to an
Ip-problem class, a pointer to an inverse class and pointer to a DUAL-PAR structure. The
constructor, when called, builds the DUAL class, assigns its functions to the specified
Ip-problem and inverse classes, and transfers the control parameters from the specified
D UAL-PAR structure. For instance the statement:

DUAL(&MYPROBLEM,&MYLU,&MYPAR) MYDUAL;

causes the construction of a DUAL class called MYDUAL, assigns its computational func-
tions to the class MYPROBLEM of type Ip-problem and to the class MYLU of type inverse,
and transfers the control parameters from the structure MYPAR of type DUAL-PAR.

The DUAL class constructor may be used anywhere within the scope of the classes
used as the parameters but the specified Ip-problem class must be filled out with the
main problem data prior to the DUAL constructor call. Moreover, the problem should
be transformed into the standard form, i.e. it should be the minimization problem with
shifted bounds and added slacks.

DUAL-PAR is a predefined structure type containing as members all the control pa-
rameters. It is provided with the constructor assigning default values to all the members

W. Ogryczak, K. Zorychta - 1 7 - MOMIP

(parameters). Thus the user having declared his/her own DUAL-PAR structure needs to
define values for only those parameters he/she wishes to change.

The DUAL-PAR structure has the following (public) members:

TOLFEAS - primal feasibility tolerance. During the course of the dual simplex algorithm
any computed variable value is treated as if it were feasible, if the magnitude of the
amount by which it violates the limit is no greater than TOLFEAS. By default
TOLFEAS= l.0e-7. Any nonnegative value is a legal TOLFEAS value.

TOLDJ - dual feasibility tolerance. During the course of the dual simplex algorithm
any computed reduced cost is treated as if it were 0 , if its magnitude is no greater
than TOLDJ. By default TOLDJ= l.0e-7. Any nonnegative value is a legal TOLDJ
value.

TOLPIV - pivot tolerance. During the course of the dual simplex algorithm, any po-
tential pivot element is treated as if it were 0 , if its magnitude is no greater than
TOLPIV. By default TOLPIV= l . ~ e - ~ . Any nonnegative value is a legal TOLPIV
value.

INVFREQ - refactorization frequency. During the course of the dual simplex algorithm,
the refactorization function is called every INVFREQ simplex steps. By default
INVFREQ= 100. Any value no less than 1 is a legal INVFREQ value.

ITERLIMIT - maximal number of simplex steps. During the course of the dual simplex
algorithm, the solution process is abandoned and the problem classified as unsolved,
if number of simplex steps has exceeded ITERI-IMIT. By default ITERI-IMIT= 500.
Any value no less than 1 is a legal ITERLIMIT value.

The DUAL class includes the following public data members:

Int-T m ;
Int-T n;
Int-T n2;
Real-T * b;
Real-T * a;
Real-T * c;
In t -T * ia;
Int-T * ka;
Real-T * bound;
Real-T valueshift;

char * typevar;
Int-T * status;
Int-T * hreg;
Real-T * xb;
Real-T * value;

/ /Data (ASSIGNED by constructor)
//number of constraints
//number of structurals
//total number of variables (m + n)
//pointer to RHS vector
//pointer to coefficients vector
//pointer to objective vector
//pointer to coefficient row indices
//pointer to columns vector
//pointer to bound vector
//objective fixed term
//Data (MUST BE DIRECTLY ASSIGNED)
//pointer to vector of variable types
//pointer to basic solution description
//pointer to basic variables
//pointer to basic solution vector
//pointer to return objective value

Most of the DUAL class data members are implicitly assigned by the constructor to
the corresponding data structures of the specified Ip-problem structure. Since they are
public, the user can change these assignments if necessary. Five following data members
must be assigned directly by the user.

W. Ogryczak, K. Zorychta - 1 8 - MOMIP

Member typevar must have assigned a pointer to the vector of variable types. It must
be a vector of n+m chars filled out according to the following codes:

0 - free structural variable or unconstrainted row,

1 - nonnegative structural variable or inequality,

2 - bounded structural variable or ranged row,

3 - fixed structural variable or equation.

Member status must have assigned a pointer to the starting basic solution description.
It must be a vector of n + m variables (of the predefined integer type Int-T) filled out
according to the following rules:

for k = 0,1 , . . . , n - 1 (structural variables)

status[k] = -1 if variable k is nonbasic at its lower limit,

status[k] = -2 if variable k is nonbasic at its upper limit,

status[k] = -3 if fixed variable k is nonbasic,

status[k] = i 2 0 if variable k is in basis at position i;

for r = 0,1 , . . . , m - 1 (constraints)

status[n + r] = -1 if constraint r is nonbasic at its RHS limit,

status[n + r] = -2 if constraint r is nonbasic at its range limit,

status[n + r] = -3 if equation r is nonbasic,

status[n + r] = i > 0 if constraint r is in basis at position i;

where the basis positions are numbered from 0 through m - 1.
Member hreg must have assigned a pointer to the starting basic variables description.

It must be a vector of m variables (of the predefined integer type Int-T) filled out according
to the following rules:

for i = O , l , . . . , m - 1

hreg[i] = k if variable k is in basis a t position i ,

hreg[i] = n + k if constraint k is in basis at position i.

Member xb must have assigned a pointer to a vector for values of basic variables. It
must be a vector of m variables (of predefined float type Real-T) and it does not need to
be filled out.

Member value must have assigned a pointer to a variable of the predefined float type
Real-T for objective value.

To solve a linear programming problem with the dual simplex algorithm, one needs
to declare the DUAL class, assign necessary class members (typevar, status, hreg, xb and
value), and call its Solve function. The Solve function is declared within the DUAL class
with the header of the form:

char Solve(Real-T CUT, char CONT);

W. Ogryczak, K. Zorychta - 19 - MOMIP

Thus it must be called with two parameters. Parameter CUT specifies the cutting off
value for optimization. If, during the course of the dual algorithm, a current objective
value exceeds the CUT value, the optimization is abandoned and the problem classified as
semi-infeasible. If CONT=O, full refactorization is made prior to the dual algorithm start.
If CONT=l, the dual algorithm starts using the current factorization data available in
the inverse class. If CONT=-1, the primal simplex algorithm is used instead of dual.

Solve function returns the solution status coded as follows:

1 - optimal solution found,

- 1 - problem unsolved (numerical difficulties or ITERLI M IT encountered),

-2 - problem infeasible,

-3 - problem semi-infeasible (CUT bound encountered),

-4 - problem unbounded (returned only by primal algorithm).

If Solve has returned code 1 the optimal solution can be read from the data structures
assigned to the DUAL class. The optimal value is given with the variable value. The
optimal values of the basic variables are given in vector xb, and the entire solution vector
can be restored using information from vectors status and hreg.

5 Tutorial example

To illustrate the use of MOMIP for a MIP problem analysis, let us consider a simplified
distribution problem with warehouses sizing. The AC Auto Company wants to expand
its distribution network on a new market. AC produces two different models of cars,
which we refer to, for simplicity, as M 1 and M2. The cars are assembled in two plants
A 1 and A2. In the A 1 plant 80 M 1 and 40 M2 cars are assembled monthly, whereas the
monthly production capacities of the plant A2 are 30 and 60 cars of the models M 1 and
M2, respectively. The cars are transported by rail to the distribution centers then by
trucks to individual dealers. For simplicity we consider only four dealers denoted as D l ,
D2, D3 and D4. Monthly demands of the dealers on the specific models are given in the
following table.

AC operates one distribution center W1 in the area. To meet increasing demands
they consider creating one or two additional centers W2 and W3. Current capacity of
the center W1 is 50 cars but it can be increased to 80 cars. The distribution center W2
can be created in two possible versions with the capacity for 50 or 100 cars, respectively.
Similarly, W3, if created, can have the capacity for 60 or 130 cars. Operating costs of
the distribution centers depends on their capacities rather than their current throughput.
These costs in hundreds of dollars are as follows:

200 for capacity 50 or 60,
250 for capacity 80,
300 for capacity 100 or 130.

W. Ogryczak, K. Zorychta - 20 - MOMIP

The company wants to minimize the total of operating and transportation costs. The
unit transportation costs are the same for both car models. They depend only on the
distance and their values in hundreds of dollars are summarized in the following tables:

To build an algebraic model of the problem, we introduce the following decision vari-
ables:

mr : ak-wi - the number of Mr cars transported from Ak to Wi,

mr : wi-dj - the number of Mr cars transported from Wi to Dj,

wi - the size (capacity) of distribution center Wi,

w h e r e r = 1 7 2 ; k = 1 , 2 ; i = 1 , 2 , 3 ; j = 1 , 2 , 3 , 4 .
All such defined decision variables must be nonnegative and integer. Moreover, the

variables wi can only take specific values. To model this requirement we introduce auxil-
iary binary variables wi-vt and equations:

To guarantee the proper modeling of the capacity selection, they must be accompanied
by the equations:

wl-vl + w l 2 2 = 1
w2-vl + w222 + ~ 2 x 3 = 1

w3-vl + w3-v2 + ~ 3 x 3 = 1

Furthermore, we introduce the transportation balance constraints. The quantities to
be sent from each assembly plant and from each distribution center cannot exceed the
quantities being available. Similarly, the quantities received by the dealers have to meet
their demands and the quantities received by the distribution centers cannot exceed their
capacities.

Finally, we define the objective function which is the sum of transportation and oper-
ating costs. The transportation cost is defined as the total of variables mr : ak-wi and
mr : wi-dj multiplied by the corresponding unit costs. The operating cost is defined as
the total of variables wi-vt multiplied by the operating cost of the corresponding version
of the center.

Essentially, all the decision variables must be integer. One can easily notice, however,
that integer values of variables wi-vt imply integer values of variables wi. Thus, we need
not impose explicit integrality requirements variables wi.

The entire MPS-file for the problem takes the following form:

W. Ogryczak, K. Zorychta

NlNT 38
NAME
ROWS

N
L
L
L
L
E
E
E
E
E
E
L
L
L
G
G
G
G
G
G
E
E
E
E
E
E

COLUMNS

cost
rn1:al
rn l :a2
rn2:al
rn2:a2
rn1:dl
rn l :d2
rn l :d3
rn2:d2
rn2:d3
rn2:d4
b w l
bw2
bw3
rn 1 :w l
rnl:w2
rn l :w3
rn2:wl
rn2:w2
rn2:w3
ver-wl
ver-w2
ver-w3
sel-wl
sel-w2
sel-w3

ver-wl
sel-wl
ver-wl
sel-wl
sel-w2
ver-w2
sel-w2
ver-w2
sel-w2
sel-w3
ver-w3
sel-w3
ver-w3
sel-w3
cost
b w l
cost
bw2

cost 200

cost 250

cost 200

cost 300

cost 200

cost 300

3 g 3 g 3 g 3 g 3 g 3 2 3 g 3 g 3 g 3 no 3 g 3 g 3 " W " u n u n w n w n w n w n w n w n u n g- o r O r o t O r o r o s o r o r O r o r o % N % ~ % ~ % v % ~ % r % r % r % r % r B ~ % r % r ~ r % W % N % r % W % N % r % W % N % r % W % r r r
~ & s ~ s z $ $ & & N F r r :

W. Ogryczak, K. Zorychta - 23 - MOMIP

RHS

cost

rn2:w2
cost

rn2:w3
cost

rn 2:w3
cost

rn2:w3
bw 1
bw2
bw3

W. Ogryczak, K. Zorychta - 24 - MOMIP

UP BD m l : w 2 4 1 200
UP BD m l : w 2 d 2 200
UP BD m l : w 2 d 3 200
UP BD m l : w 3 d l 200
UP BD m l :w342 200
11 P BD ml:w3-d3 200
11 P BD m2:wl-d2 200
11 P BD rn2:wl43 200
11 P BD m2:w144 200
11 P BD m2:w2-d2 200
11 P BD m2:w2-d3 200
11 P BD m2:w2-d4 200
11 P BD m2:w342 200
UP BD m2:w3d3 200
UP BD m2:w3-d4 200

EN DATA
In the MPS-file, the number of integer variables is specified after the keyword IVINT

before the NAME line. Next in the COLUMNS section, the integer variables precede
continuous variables wi. Note that to guarantee better efficiency of the branch-and-
bound search, the variables wi-vt precede other integer variables as they represent the
distribution center location and sizing decisions and thereby they have the greatest impact
on the model. Another order of integer variables may cause longer solution process. For
instance, while solving our model with the default MOMIP strategy for the assumed order
of variables, the entire branch-and-bound process takes 13 simplex steps, whereas moving
the variables wi-vt as the last integer variables increases this to 24 simplex steps. In fact,
deep analysis of the model leads to the conclusion that with integer values of variables
w i and integer data, all the transportation variables mr : ak-wi and mr : wi-dj will take
integer values in the optimal solution (compare, Nemhauser and Wolsey, 1988). Thus,
the integrality requirements need to be imposed only on 8 variables wi-vt. However, as
it requires some experience with the integer optimization theory, we have omitted this
opportunity in the model formulation.

When solving the problem with MOMIP, the following log report has been received:

MOMIP - Modular Optimizer for Mixed Integer Programming
version 1.1 (1993)

Institute of Informatics, Warsaw University

MIP SET-I-INGS
Max no. of nodes to be examined NODELIMIT
Max no. of nodes after last integer NOSUCCLIIMIT
Max no. of integer nodes .SUCCLIMIT
Max no. of simplex steps per node ITERLlMlT
Max no. of waiting nodes .-TREELIMIT
Node report frequency . NODREPFRQ
Relative optimality tolerance . OPTEPS
Maximal integer magnitude . INTMAGN
Integrality tolerance . l NTEPS
Quasi-integrality tolerance . QlNTEPS
Relative postpone tolerance POSTEPS
Branching variable selection strategy BRSW

10000
5000
100
500
1000
10
0.0005
65535
0.0001
0.05
0.2
AUTOMATIC

W. Ogryczak, K. Zorychta - 25 - MOMIP

Node selection strategy . SELSW = AUTOMATIC
Primal feasibility tolerance . TOLFEAS = le-07

. Dual feasibility tolerance TOLDJ = le-07

. Nonzero pivot tolerance TOLPIV = le-07
. Refactorization frequency INVFREQ = 100

PROBLEM: 'AC-Model'
0 bjective: 'cost ' (MIN) Rhs: '1/1993 '
Bounds: 'BD I Ranges: '
25 constraints wi th 4 1 structurals including 38 integer
Cutoff value: 1.797693e+308

NODE 0 noninteger (6) wi th functional 1565.769231 (1635) Iter. 0 (0)
AFTER node 0 and iter. 0
Nodes dropped if functional beyond 1.797693e+308
AFTER node 0 and iter. 0
Any further solution cannot be better than 1635
AFTER node 2 and iter. 8
Any further solution cannot be better than 1670
AFTER node 2 and iter. 8 - 2 waiting nodes
AFTER node 4 and iter. 11
Any further solution cannot be better than 1693.333333
AFTER node 4 and iter. 11 - 3 waiting nodes
INTEGER SOLU-I-ION with functional 1700 a t node 5 and iter. 13
Nodes dropped if functional beyond 1699.15

* MIP analysis completed
1 integer solutions found

* BEST SOLUTION with functional 1700 a t node 5 and iter. 13
Best possible value: 1699.15
5 nodes examined
13 simplex iterations
Max list size: 2

One can read from the log report that the optimal solution to the continuous problem
(Node 0) has the functional value 1565.769231 (in hundreds of dollars) but the calculated
penalties show that integer solution cannot have functional value better than 1635. This
bound on the functional value of the integer solution increases during the solution process
(1670 after two and 1693.33 after four nodes solved). Finally, at node 5, the first integer
solution with the functional value 1700 is found, which turns out to be optimal. The
integer solution generates the cutoff value 1699.15 which allow to fathom all the remaining
nodes, thus completing the branch-and-bound search.

From the resume of the report one may read that only one integer solution has been
found during the entire branch-and-bound search. It was found at node 5 after 13 simplex
steps. If there exists another integer solution, its functional value cannot be better than
1699.15 (best possible value). Thus, due to the model specificity (integer cost coefficients),
we can be sure that the strict optimal solution has been found. In general, if the achieved
optimization accuracy is not enough, the relative optimality tolerance OPTEPS should be
decreased. The entire branch-and-bound search required solution of 5 nodes (apart from
the original continuous problem) and it took 13 simplex steps.

Using the standard output function of the Ip-problem class one gets the following solu-

W. Ogryczak, K. Zorychta

tion report:

MOMIP

MIP problem - AC-Model
MOMIP v. l .1

SOLUTION VALUE = 1.700e+03
COLUMNS SECI-ION

index

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
2 1
22
23
24
25
26
27
28
29
3 0
3 1
32
33
34
35
3 6
3 7
3 8
39
40

label

W. Ogryczak, K. Zorych ta MOMIP

ROWS SECTION

index label dual-value
0 m1:al -4.000e+00
1 ml:a2 0.000e+00
2 m2:a l 0.000e+00
3 m2:a2 -6.667e-01
4 m1:d l 9.000e+00
5 ml :d2 8.667e+00
6 ml :d3 1.367e+01
7 m2:d2 6.667e+00
8 m2:d3 1.167e+01
9 m2:d4 3.667e+00

10 b w l -1.667e+00
11 bw2 -5.000e+00
12 bw3 0.000e+00
13 m1:w l 7.667e+00
14 m l :w2 8.667e+00
15 m l :w3 7.000e+00
16 m2:wl 5.667e+00
17 m2:w2 6.667e+00
18 m2:w3 2.667e+00
19 ver-wl 1.667e+00
20 ver-w2 5.000e+00
21 ver-w3 0.000e+00
22 sel-wl 1.167e+02
23 sel-w2 0.000e+00
24 sel-w3 0.000e+00

From the solution report one can read that to minimize the total operating and trans-
portation costs the AC company should expand the distribution center W 1 to capacity
SO and operate the center W3 with capacity 130 whereas the center W2 should not be
used. Values of the transportation variables mr : ak-wi and mr : wi-dj depict details of
the optimal distribution scheme.

6 Future extensions

Current version of the MOMIP solver facilitates basic branch-and-bound algorithm for
general middle-size MIP problems. We intend to continue its development to increase the
MOMIP efficiency on larger and highly structured problems. For this purpose we will
implement several extensions of the basic algorithm. The most important extensions are
outlined below.

In the current version the branching process is based on integer infeasibilities and
penalties. For larger problems these tools should be replaced with the so-called pseudo-
cost estimations (compare Benichou, 1971; Gauthier and Ribiere, 1977). Pseudo-cost
is a statistical estimation of the change of the functional value when forcing an integer
variable down or up . Pseudo-cost estimation are based on the assumption that the net
effect of branching on a particular variable upwards or downwards varies according to the
amount by which it has to be changed, but tends to be more or less similar wherever it
occurs in the tree. Pseudo-cost estimations do not provide a guaranteed bound on the

W . Ogryczak, K . Zorychta - 28 - MOMIP

solution and therefore they cannot be used to fathom nodes. They provide, however,
a very efficient tool for the branching variable selection and the branched node selection.

In highly structured MIP problems use of the so-called lifted and projected cuts may
significantly tighten the linear constraints of the problem (Balas et al., 1993; Van Roy
and Wolsey, 1987) thus dramatically speeding up the branch-and-bound solution process.
We will work on implementation of such techniques for general MIP problems.

In the current version of MOMIP, the entire branch-and-bound strategy must be spec-
ified prior to the search beginning. We intend to make the branch-and-bound process
control more flexible by allowing the user to program the strategy changes when some
typical events occur during the processing (so-called demands programming).

7 Software availability

MOMIP is available for UNIX (currently implemented for Sun OS 4.1.2 and Ultrix v. 4.3)
and for MS-DOS on IBM compatible PC. It has been already installed in IIASA (on
Sun Sparc 2) and in IIUW (on DEC 5000/240). For details on these installations one
may contact Marek Makowski (marekOiiasa.ac.at) at IIASA or Wlodek Ogryczak
(ogryczakOmimuw . edu . p l) at IIUW.

Executable form of MOMIP is available free of charge to educational and research
institutions (or to individuals working in this area), assuming that this product will not
be used for any commercial application. Inquiries for executable code should be addressed
to the Methodology of Decision Analysis Project at IIASA. Inquires for linkable library
should be addressed directly to the authors.

8 References
Balas, E., S. Ceria, and G. Cornuejols, (1993), A lift-and-project cutting plane algorithm

for mixed 0 - 1 programs, Mathematical Programming, 58, pp. 295-324.

Beale, E.M.L., (1979), Branch and bound methods for mathematical programming sys-
tems, in P.L. Hammer, E.L. Johnson and B.H. Korte (Eds) Annals of Discrete
Mathematics 5: Discrete Optimization, pp. 201-219, North-Holland, Amsterdam.

Beale, E.M.L., and J.A. Tomlin, (1970), Special facilities in a general mathematical
programming system for nonconvex problems using ordered sets of variables, in
J . Lawrence (Ed) Proc. 5th IFORS Conference, pp. 447-454, Tavistock, London.

Benichou, M., J.M. Gauthier, P. Girodet, G. Hentges, G. Ribiere, and D. Vincent,
(1971), Experiments in mixed integer programming, Mathematical Programming,
1, pp. 76-94.

Berkemer, R., M. Makowski, and D. Watkins, (1993), A prototype of a decision support
system for water quality management in central and eastern Europe, WP-93-049,
IIASA, Laxenburg.

Borland International, (1991), Borland C++ - Version 3.0, Borland International Inc.,
Scotts Valley.

W. Ogryczak, K. Zorychta - 29 - MOMIP

Forrest, J.J.H., J.P.H. Hirst, and J.A. Tomlin, (1974), Practical solution of large mixed
integer programming problems with UMPIRE, Management Science, 20, pp. 736-
773.

Gauthier, J.M., and G. Ribiere, (1977), Experiments in mixed-integer programming
using pseudo-costs, Mathematical Programming, 12, pp. 26-47.

Gondzio, J., A. Ruszczynski, and A. Swietanowski, (1993), Another efficient implemen-
tation of the simplex method.

Haldi, J., (1964), 25 integer programming test problems, Working Paper 43, Graduate
School of Business, Stanford University.

Healy, W.C., (1964), Multiple choice programming, Operations Research, 12 , pp. 122-
138.

Land, A.H., and S. Powell, (1979), Computer codes for problems of integer program-
ming, in P.L. Hammer, E.L. Johnson and B.H. Korte (Eds) Annals of Discrete
Mathematics 5: Discrete Optimization, pp. 221-269, North-Holland, Amsterdam.

Mitra, G., (1973), Investigation of some branch and bound strategies for the solution of
mixed integer programs, Mathematical Programming, 4, pp. 155-1 70.

Nemhauser, G.L., and L.A. Wolsey, (1988), Integer and Combinatorial Optimization,
Wiley, New York.

Ogryczak, W., K. Studzinski, and K. Zorychta, (1991), DINAS - Dynamic Interactive
Network Analysis System v.3.0, CP-91-012, IIASA, Laxenburg.

Ogryczak, W., K. Studzinski, and K. Zorychta, (1992), DINAS - a computer-assisted
analysis system for multiobjective transshipment problems with facility location,
Computers and Operations Research, 19, pp. 637-647.

Powell, S., (1985), Software, in M. O'hEigertaigh, J.K. Lenstra and A.H.G. Rinnooy Kan
(Eds), Combinatorial Optimization: Annotated Bibliographies, pp. 190-194, Wiley,
New York.

Stallman, R.M., (1992), Using and porting GNU CC.

Stroustrup, B., (1991), The C++ Programming Language (Second edition), Addison-
Wesley, Reading.

Suhl, U., (1985), Solving large scale mixed integer programs with fixed charge variables,
Mathematical Programming, 32, pp. 165-182.

Tomlin, J.A., (1970), Branch and bound methods for integer and nonconvex program-
ming, in J . Abadie (Ed) Integer and Nonlinear Programming, pp. 437-450, North-
Holland, Amsterdam.

Tomlin, J.A., and J.S. Welch, (1993), Mathematical Programming Systems, in E. Coff-
man and J.K. Lenstra (Eds) Handbook of Operations Research and Management
Science: Computation, North-Holland, Amsterdam.

Van Roy, T. , and L. Wolsey, (1987), Solving mixed integer programming problems using
automatic reformulation, Operations Research, 35, pp. 45-47.

W. Ogryczak, K. Zorychta - 30 - MOMIP

Williams, H.P., (1991), Model Building in Mathematical Programming (Third edition),
Wiley, New York.

Zorychta, K., and W. Ogryczak, (1981), Linear and Integer Programming (in Polish),
WNT, Warsaw.

W . Ogryczak, K. Zorychta - 31 - MOMIP

A Sample program

This appendix provides a sample program with usage of the MOMIP solver. Name of the
MPS-file (presumably with extension MPS) is read as the obligatory program parameter.
It is assumed that the continuous problem has been solved by another program and the
basis structure (A2B vector) has been written in the file with the same name as the MPS-
file but with extension INV. The solution report is written to the file which has the same
name as the MPS-file but with extension SOL. The value of CUTOFF parameter may be
provided as the second (optional) parameter of the program call. Nonstandard values
for the control parameters may be provided in the file mip.spc. All the operations are
commented within the program.

#include "momip.h"
//including the MOMIP header files

Ip-problem LPprobl;
/ /LPprobl instance of the Ip-problem class constructed

MIP-PAR mippar;
//mip-par instance o f the MIP-PAR class constructed

MIP mip(&LPprobl);
/ /mip instance of the MIP class constructed and assigned t o LPprobl

void main(int argc, char **argv)
/ / the program will be called with one or two parameters
/ / the first parameter (obligatory) specifies the M PS-file
/ / the second parameter (optional) specifies starting cutoff value

{
if(argc < 2) exit(0);
//program exits if there is no specified MPS-file

char *ptc;
char MIP-BAS[60];
char MIP_SOL[60];
char MIP-MPS[60];
char *dinv=".INV" ;
char *dsol= ".SOL" ;
strcpy(MIP-MPS, argv[l]);
strcpy(MIP-BAS, argv[l]);
ptc=strrchr(MIPBAS,'.');
*ptc='\ 0';
strcpy(MIP5OL,MIP_BAS);
strncat(MIP-BAS,dinv,4);
strncat(MIP5OL,dsol,4);
//names for basis and solution files build

double CUTOFF;
if(argc>2) CUTOFF=atof(argv[2]);
//starting cutoff value read if specified

W. Ogryczak, K. Zorychta MOMIP

LPprobl.readmip(MIP-MPS);
/ /M PS-file read

Int-T *A2B,A2B_len;
LPprobl.to-mipstd(A2B, A2B-len);
//problem transformed t o the standard form
/ /A2B allocated inside the function

FILE *bsfile=fopen(MIP-BAS, "rt");
if (bsfile==NULL){

tout<< "Cannot open basis file: "<<MIP-BAS<<" \ n" ;
exit (0) ;

Int-T i;
for(i=O;i<A2B_len;i++) fscanf(bsfile, "%d" ,&A2B[i]);
fclose(bsfile);
/ /A2B vector read from the file

mippar.read("mip.spc");
/ /MIP control parameters read from file mip.spc

mippar.checkpar();
/ /MIP control parameters verified

if(argc>2) / /CUTOFF specified

{
if(mip.~olvemip(A2B,&mippar,CUTOFF))
/ /MIP problem solved with defined C l lTOFF
LPprobl.writesol(MIP~SOL,LPprobl.lp+name,"MOMIP v.l.1");
//solution report writ ten if at least one solution found

1
else / /CUTOFF not specified

{
if(rnip.~olvemip(A2B,&mippar))
/ /MIP problem solved with default CUTOFF
LPprobl.writesol(MIP~SOL,LPprobl.lp+name,"MOMIP v.l.1");
//solution report writ ten if at least one solution found

1
1

W. Ogryczak, K. Zorychta - 33 - MOMIP

B Computational tests

The MOMIP solver was tested on a variety of available problems. For detailed testing,
the problems reported by Haldi (1964) and some problems developed by ourselves were
used. The problems represent a variety of different applications.

The FIX10 problem is the largest problem in the set of tests originally developed by
Haldi (1964). It belongs to the class of the so-called fixed-charge problems and it is a real
"mixed" problem which has been forced into a pure integer format.

The six JOB tests, originally developed by Giglio and Wagner (see Haldi, 1964), are
referred to machine scheduling problems. All the problems consider that six jobs are
required to follow the same processing sequence on three separate machines, whereas each
job may occur in any sequence position.

The nine IBM problems, taken from Haldi (1964), were originally provided by IBM Re-
search Center, Yorktown Heights, NY. The model origins of these problems are unknown
but probably some of them are some kind of set covering problems.

Table 1: Results of tests for Haldi's problems

JOB3 2 1 - 36 36 20 12 108 12 108 1

JOB5 2 1 - 36 36 20 60 431 60 431 4

The test results are summarized in Table 1. The following pieces of information are
presented in several columns:

IBMl
IBM2
IBM3
IBM4
IB M5
IB M6
IBM7
IBM8
IBM9
BIS
LUFT
LUFTl
CUT100
CUT700

(1) name of problem;

(2) number of equations;

-

-

-

-

-

-

-

-

-

2
8
8
-

-

7
7
3

15
15
31
12
12
50

7
-

-

10
10

-

-

-

-

-

31
-

-

-

-

-

-

-

-

7
7
4

15
15
3 1
50
37
15
14
20
20

100
100

-

-

-

-

-

-

-

-

-

4
-

-

-

-

1
10
11
13

2476
861
388

1722
120
209
742
68

265
1177

1
18
14
35

5459
4584
918

6127
441
377

1478
150
354

1393

--
1
8
9

13
29
21

388
1722

17

13
11
35
62

221
918

6127
73

3 0
10
6

132
584

1 1
1
2
1
1
1
6
5
1

73 1 127 1 4
no solution

0
3
2
6

164
4 6
65
83
13

1
1
1

7
265

1177

10
354

1393

W . Ogryczak, K . Zorychta - 34 - MOMIP

(3) number of inequalities;

(4) number of structural bounds on decision variables;

(5) number of integer variables;

(6) number of continuous variables;

Remark: The problem dimension can be introduced as

(7) number of nodes examined by MOMIP;

(8) total simplex steps required to solve the problem;

(9) number of node in which the optimal solution was found;

(10) number of simplex steps to find the optimal solution;

(11) number of integer solutions which have been found;

(12) maximum size of the waiting list during the search process.

MOMIP has been also initially tested on real-life problems originated from the water
quality management (Berkemer et al., 1993). The problems have up to 1000 constraints,
1000 continuous variables and 100 binary variables. The optimal solutions have been
found and proven very quickly. It takes, usually, between 30 to 50 CPU seconds (on Sun
Sparc 2 workstation) and requires about 100 to 200 nodes to be examined.

C Modeling of multiple choices and piecewise linear
functions

In the great majority of real-life mixed integer programming models, most of integer
variables represent some multiple choice requirements (Healy, 1964). A multiple choice
requirement is usually modeled with a generalized upper bound on a set of zero-one
variables, (Nemhauser and Wolsey, 1988; Williams, 1991) thus creating the so-called
Special Ordered Set (SOS). For instance, the multiple choice requirement

where aj represent several options (like facility capacities), may be modeled as follows:

XI + x2 + . . - + 23 = 1

X j > O , Xj integer for j = l , 2 ,..., T

where the xj are zero-one variables corresponding to several options aj. The xj variables
create the SOS being an algebraic representation of the logical multiple choice require-
ment.

Problems with the SOS structure may, of course, be solved by using the standard
branch-and-bound algorithm for mixed integer programming. However, the standard
branching rule

Xk = 0 or Xk = 1

W. Ogryczak, K. Zorychta - 35 - MOMIP

applied on a SOS variable leads to the dichotomy

thus creating an extremely unbalanced branching on the set of the original alternatives
(any option different from ak is selected or option ak is selected). It causes a low effective-
ness of the branch-and-bound algorithm. Therefore Beale and Tomlin (1970) (see also,
Tomlin, 1970) proposed a special version of the branch-and-bound algorithm to handle
SOS'es. A SOS was there treated as a single entity and branched into two smaller SOS'es.
After developing additional techniques for large-scale problems, like pseudocosts (Forrest
et al., 1974), the SOS branching rule has become a standard technique implemented in
large mainframe mixed integer programming systems (compare, Beale, 1979; Land and
Powell, 1979; Powell, 1985; Tomlin and Welch, 1993).

MOMIP, like other portable mixed integer programming codes, does not have the spe-
cial SOS processing capability. To overcome the difficulties (which may arise while solving
larger MIP problems) we propose another way of modeling multiple choice requirements.
While using the proposed modeling technique, the standard branching rule applied on in-
teger variables representing the multiple choice is equivalent to the special SOS branching
developed by Beale and Tomlin (1970) thus increasing efficiency of the branch-and-bound
search.

Let us consider a multiple choice requirement modeled with the SOS. One may in-
troduce new integer zero-one variables defined as the corresponding partial sums of xj,

yj = yj-1 + xj for j = 2,3, . . . , T

Note that the standard branching on a yk variable

implies the dichotomy

thus emulating the special SOS branching rule and generate a complete analogy with
binary branching on the set of original options

Variables x j no longer need to be specified as integer ones and, in fact, they should
not be specified as integer to avoid inefficient branching on them. Moreover, they can be
simply eliminated replacing the SOS model of the multiple choice with the following:

~1 I ~2 I - . . L yr-1 I 1

yj L O , yj integer for j = 1,2, . . . , r - 1

where the original values of x j are defined as the corresponding slacks in the inequalities.
The variables yj will be refered to as Special Ordered Inequalities (SOI).

Note that use of SO1 instead of SOS does not increase the number of variables (neither
integer nor continuous). SO1 modeling increases the number of constraints, but these are
very simple, and this does not cause a remarkable increase of data entries.

W. Ogryczak, K. Zorychta - 36 - MOMIP

In principle, the efficiency of the proposed modeling technique does not need any proof
as it can be consider a s an emulation of the SOS branch-and-bound algorithm (Beale
and Tomlin, 1970). Its efficiency has been proven in many commercial mixed integer
programming systems. However, to emphasize the importance of the use of the proposed
remodeling technique we present results of some computational experiments in Table 2.

Table 2: Results of tests for SO1 versus SOS model comparison

All problems are hard for the standard branch-and-bound algorithm due to high inte-
grality gap, which may result in extremely long optimality proof. Problem size is described
(in the second column) with three numbers m x n x c, where m denotes number of con-
straints, n number of variables, and c number of multiple choice requirements. Each
multiple choice requirement covers six options (including the null option). Thus problem
t5p0 contains 25 binary variables, problem t7p0 - 35 binary variables, etc. All the other
variables are continuous and n represents the total of variables within the SOS model of
multiple choice requirements.

All the problems have been solved with MOMIP using the standard strategy. Table 2
provides totals of nodes examined and (dual) simplex iterations completed for both SOS
and SO1 model. One can easily notice a dramatic improvement achieved by use of the
SO1 model. Due to long lasting computations we have abandoned the branch-and-bound
search after examination of half a million nodes. Therefore, three larger SOS models are
left unsolved. More precisely, in two of them (t 15p0 and t20p0) the optimality proof
has not been completed, and in one case (t20np0) the optimal solution has not been
even identified whereas the corresponding SO1 model has been completely solved (with
optimality proof) in less than 11000 nodes.

Multiple choice requirements arise also while modeling piecewise linear functions (Nem-
hauser and Wolsey, 1988). Suppose we have a piecewise linear function v = f (s) specified
by the breakpoints:

Problem

(s) V j = f (sj) for j = 1,2, . . . , r

name
t5p0
t5np0
t 7p0
t7np0
tlOpO
tlOnpO
t15p0
tl5np0
t20p0
t20np0

Such a function is, usually, modeled on the interval [sl, s,] as follows

m x n x c
21 x 41 x 5
21 x 41 x 5
29 x 57 x 7
29 x 57 x 7

41 x 81 x 10
41 x 81 x 10
61 x 121 x 15
6 1 x 1 2 1 ~ 1 5
81 x 161 x 20
81 x 161 x 2 0

SOS Model
nodes

670
134

424 1
1036

128680
13817

>>500000
416769

>>500000
>>500000

SO1 Model
iters.

1592
. 304

10270
2562

303314
34072

~ 1 2 3 2 3 5 7
1021380

>>I124714
>>1301984

nodes
42
3 7
86

107
929
920

99399
5505

44781
10855

iters.
127
118
262

4373
3223
2943

357430
18282

180702
37812

W. Ogryczak, K. Zorychta - 3 7 -

X j > O for j = 1,2, ..., T

where at most two subsequent X j are allowed to be positive. The latter is transformed
into algebraic conditions using the SOS technique

X j < x j - l + x j for j = 2 , 3 , ..., T - 1

Xr I xr -1

Xl + x 2 +...+ xr = 1

x j >_ 0, x j integer for j = 1,2,. . . , T

SOS of variables x j represents, in this formulation, multiple choice of one segment of
the piecewise linear function. While applying the standard branching on an individual
variable x k one gets

which is extremely unbalanced and thereby inefficient.
For efficient use of the standard branching rule one may remodel the SOS into the

corresponding SO1 as shown above. However, there is a way to get a much simpler alge-
braic formulation modeling directly the piecewise linear function with SO1 methodology.
Namely, the piecewise linear function v = f (s) can be modeled directly with SO1 as
follows

v = v l + (~ 2 - ~ 1) ~ l + (~ 3 - v 2) ~ 2 + + (v r - v r - 1) ~ r - 1

s = Sl + (3 2 - s1)u1 + (3 3 - s 2) u 2 + " ' + (S T - s r - 1) u r - 1

1 > U l L Y1 >_ U2 > Y2 > . . . > Ur-1 > Yr-1

u j 2 0, y j 2 0, y j integer for j = 1,2, . . . , T - 1

This SO1 differs from that introduced for multiple choice requirements as only every
second variable is required to be integer. Nevertheless, it keeps the most important
properties of this structure. The standard branching on a yk variable

implies the dichotomy
S E [s k , s r] Or S E [s I , s k]

thus emulating efficient branching on the function domain.

