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Abstract 

In environmental management, assessments and far-reaching decisions must typically be 
made under very high or extreme uncertainty. The future development of the environment 
in interaction with societies in transition is very difficult to forecast. This is the case re- 
gardless of whether the change is introduced actively at the project or policy level, or pas- 
sively through accumulated environmental deterioration or  climatic change. This study 
presents a belief network methodology designed specifically for modeling environmental 
change. Belief networks contain a set of interlinked nodes. Prior probability distributions 
of nodes are updated with information fiom the rest of the network, according to transfer 
information in links. A link can transmit information in two directions. The existing belief 
network methodology was extended in several ways to meet the multiple requirements of 
environmental modeling. Most notably, two-layered parallel linking of nodes was al- 
lowed: the conventional probabilistic linking, and linking of outcomes of probability dis- 
tributions using deterministic or logical relations. Moreover, several decision analysis 
techniques were included. The applicability of the methodology is discussed in reference 
to the following topics: knowledge acquisition, decision analytic modeling, mechanistic 
and process modeling, topological and spatial modeling, learning and adaptive modeling, 
and hybrid use. 
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1. Introduction 

One of the ways a human being comprehends a context is through naming objects and as- 
suming associations between them. When considering a certain object in this context, 
he/she sees it simultaneously as a single unit and as a detail in interaction with the rest of 
the context. Systems involving uncertain information on a set of mutually dependent ob- 
jects would typically be approached in Bayesian calculus by assigning a prior probability 
distribution to each object. Thereafter, the strength and character of the dependency be- 
tween each object pair would be inserted. With the given information, posterior probabil- 
ity distributions can be calculated for each object. This is actually the key idea in belief 
networks. In belief network terminology, the objects are called nodes, their associations 
are links, and the context is a network. 

Belief networks emerged from the Bayesian tradition in the 1980s (see Pearl 1986, 
1988, Shafer and Pearl 1990). The key idea is that any new information introduced in the 
network can be propagated in all directions in the net, instead of only in a single direction. 
This is achieved using bi-directional information flow in the links. The nodes are able to 
merge the information from these systems and update it. Pearl presented a sequence of al- 
gorithms starting from a chain, and proceeding through trees and polytrees to networks. 
The basic problem in network algorithms is to cope with circular references. The algo- 
rithms available consist of approximate methods such as simulation (Pearl 1988). 

Many of the tasks encountered in modeling and assessing environmental change 
are those in which (most of) the change has not yet taken place. Because of the high vari- 
ability in semi-natural systems caused by numerous uncontrolled and controlled factors, 
the potential for change is often so high that extrapolation from past development gives 
vague results. The systems are often changed on purpose in a certain direction, and histor- 
ical records are made partly or totally irrelevant. Numerous challenges face developers of 
computational methodology for such problems. They include the need to cope with ex- 
treme uncertainties, support expert reasoning and judgement (people from several disci- 



plines), handle several types of information, forecast systems that will possibly be subject 
to structural changes, provide computer implementations that make models easily struc- 
turable, and facilitate the expression of and trade-off between various environmental, so- 
cial, and economic aspects. 

The goals of this study were to formulate and discuss a belief network methodol- 
ogy for modeling and forecasting change in environmental systems subject to radical al- 
terations. The methodology is intended to serve the needs of, for instance, environmental 
impact assessment or climatic change studies. The interdisciplinary and otherwise special 
character of the subject has led to a need for a number of extensions to the present ap- 
proaches. These include the incorporation of many decision and risk analysis ideas and the 
use of deterministic and rule-based links in parallel with probabilistic links. These are im- 
portant features, since much of the information obtained by environmental forecasts 
should eventually yield decision support, in one form or another, and causal modeling has 
a long tradition and extensive use in the field. 

Next section presents the extended belief network approach. Prospects and meth- 
ods for modeling and forecasting environmental change are given and discussed. The po- 
tential uses of the belief network methodology are clustered in five groups: belief and 
knowledge acquisition, use for decision analysis, mechanistic and process modeling, 
topological and spatial modeling, and learning structures. A hybrid use of all these ap- 
proaches is also suggested, and, finally, conclusions are drawn. 

2. The Belief Network Approach 

A belief network consists of nodes, which are connected with links. A bi-directional belief 
network with n nodes has n(n-1)12 links in two directions, denoted here as x and h. That 
makes the total number of possible links n(n-1), and yields a substantial number of links 
even in models with only a few variables. As the number of nodes is doubled, the number 
of links grows more than four-fold. This underlines the need for models that are as simple 
as possible. 

This section defines and illustrates the basic properties of nodes, links, and net- 
works, with special reference to environmental modeling. The methodology presented 
here is deeply rooted in the work of Pearl (1986, 1988). It has adopted certain features 
from the influence diagram methodology of Shachter (1986). A number of extensions 
have been made. 

2.1 Nodes 

Each node i in a network contains 
A vector of possible (discrete) outcomes yi that can be defined as inputs, or they 
may depend on the outcome values of other nodes. 
A prior probability distribution ei, with probabilities el ... ek assigned to the k out- 
comes given. 
A sign indicating the direction of change. It may either be positive (implying, for 
instance, growth, increase, addition, enlargement) or negative (implying, for in- 
stance, decline, decrease, reduction, lessening). 
A posterior probability distribution Beli. 



The prior probabilities assigned to the outcomes are updated with information linked from 
other parts of the network, yielding the posterior probability distribution. 

Certainty and uncertainty 

In general, the nodes are probabilistic (uncertain). They can, however, have one outcome 
with the value 1 and others with the value 0, and thus be deterministic (certain). If an out- 
come in a prior distribution has the value 0, then the posterior distribution will also have a 
0 value in the respective outcome. Only uncertain information accepts updating from other 
parts of the model. 

Decisions and objectives 

Some nodes may be understood as controllable, decision nodes. One or several nodes can 
act as a criterion for or constraint on decision making, and constitute an objective func- 
tion. Uncertainty can be removed from a node, i.e., the probability of one of its outcomes 
set at 1, in order to simulate a decision or other action. The implications of the action are 
propagated through the network, and they can be observed at each of the successor nodes. 
Some of them are usually more critical than the others, involving objectives or constraints, 
and the adjustment of the actions simulated can be based on observed changes in these 
nodes. 

2.2 Links 

A link transfers information from one node to another. In the methodology suggested, the 
links are in two layers, as described below. When defining the concept of link, Pearl 
(1988) lists the following four primitives, for which I suggest climate change examples: 

Likzlihood: Lake eutrophication is more likely to increase than to decrease. 
Conditioning: If temperature increases, then lakes will become more eutrophic. 
Relevance: Whether the lake will become more eutrophic depends on whether 
changes occur in policy or climate. 
Causation: Higher temperature will intensify lake eutrophication problems. 

For more discussion and illustration, see Pearl (1988). I would like to propose another 
classification based on the information source for the link: (1) deductive; there is prior 
knowledge, theory, or belief concerning the interdependency of the two nodes, and (2) in- 
ductive; there is empirical evidence or data concerning the interdependency of the two 
nodes. 

In order to increase the practical applicability of the belief network approach, a set 
of definitions and extensions to the mathematical formulation of links is presented. They 
are: 

Non-informative link. 

Division of links into (a) uncertainty links (denoted here simply as links) and (b) 
outcome links (denoted here as o-links). 
Deterministic o-link. 



Logic& 0-link. 
Asymmetric link matrix. 
Direc tion-specific link. 
Negative link. 

Information content of a link. 
Link-strength approach. 
Node independence. 

These extensions are defined and illustrated below. The link matrix is case-specific and 
does not generally follow any theoretical probability distribution. However, in specific 
applications, it may do so. 

Non-informative link 

For computational convenience, when, for instance, using the fully connected approach by 
Varis (1992b) in a spreadsheet, it is useful to predefine a network topology that includes 
all possible connections within the group of applications to be studied. The initial state of 
links is then non-informative. This implies that all the elements of a link matrix have an 
equal value. All the new information concerning the probabilistic relations between the 
nodes is expressed by changing the link matrix element values. 

Linking uncertainties and outcomes 

An uncertainty link is defined as the link mamx Mib between two variables i and j. It can 
have all the properties described below, except deterministic or rule-based presentation. 
Those two features are the only ones that can be used for outcome links. An outcome link 
presents a relation between outcomes yi and yj of variables i and j. Because the belief 
network approach requires that each outcome has a single value, the propagation of out- 
come values is unidirectional, i.e., a functional relationship exists, yi = f(yj). This relation 
is deterministic, either algebraic (numerical) or logical (rule-based). 

The three-node example in Figure 1 illustrates the idea of two different links in a 
model: probabilistic links propagated bi-directionally through link matrices Mib, and out- 
come links yi =f(yj). The computational details for the former are presented in the subsec- 
tion 'Network Propagation'. Analogically, logical rules can be used as o-links. 

Asymmetric link matrix 

If a nonlinear relationship exists between two nodes, there are two ways to take it into ac- 
count. First, the scales of the outcomes can be made nonlinear, for instance, by using a 
nonlinear function in the o-link between the variables as shown above. Second, a non- 
symmetric link matrix can be used. The example in subsection 'Information Content of a 
Link' provides an illustration of both of these features. 

Direction specific link and negative link 

In Pearl's original concept, the links from one node to another were not direction specific, 
i.e., Mib = MJli. This is often a reasonable assumption, but not always. Moreover, only 



link matrices in which the diagonal elements are greater than the off-diagonal elements are 
conventionally used. This implies that the nodes may only be positively linked to one an- 
other. In many cases, however, negative links and non-symmetric links are very useful. If 
a link represents correlation between two variables, then there is no reason to use non- 
symmetric links. Negative links are very useful, however. In deductive models or depen- 
dencies, non-symmetric links are also highly applicable. 

Generally, if the sign (+ or -) of a node is changed, then the signs of the link pa- 
rameters should also be changed. For instance, if the increase in temperature were to have 
a positive link to the increase in wheat yield, then the decrease in temperature would have 
a negative link to the increase in the yield (Figure 2). The same example can also be used 
to illustrate the idea of a non-symmetric link. Increasing temperature has a positive link to 
the increase in wheat yield, but the wheat yield has practically no causal influence on 
temperature. Therefore, there should be no symmetric, causal link in such a case. 

Node 1 Llnk 2ll,ll2 I I Node 2 

0 Prior Posterior + 

Llnk 312,213 Node 3 

1 Prior W poete"or 1 

Figure 1. An example of a three node belief network (chain) with deterministic outcome 
links. Computed values are set in italics, and inputs are in cells surrounded by double 
lines. The uncertainty layer with links in two directions is above, and the outcome layer 
with links in one direction is below. 



Figure 2. An example of a negative link (from Temperature to Wheat yield) and of a di- 
rection-specific link. The links are presented using link-strength parameters defined in the 
text. 

Temperature . 

Information content of a link 

When we are dealing with uncertain link information, it is useful to define the degree of 
uncertainty of a specific link numerically. A scale, say from 0 to 1, can be fixed easily at 
both ends. A non-informative link matrix from node i to j, in which all elements have an 
equal value, evidently has the lowest information content. Hence, information content qjli 

= 0. An identity matrix I as a link matrix contains the maximum amount of information, 
qjli = 1. The intermediate values can be obtained in many ways. One possible index is: 

-0.7 

where k is the number of rows in M, and m, is the sth element of M. It may also be worth- 
while to consider the information contents of distributions assigned to single outcome 
pairs between two nudes. 

As an example, assume that the algal biomass in a lake is predicted on the basis of 
the orthophosphate (PO4) concentration of the water. The outcomes are: 

Wheat yleld 
0 

and the link mamx from PO4 to algae is: 

With prior probabilities for the nodes: 



one gets the posterior distribution for algae 

Returning to the link matrix Ma lgae lp~ ,  we can calculate its information content using 

Equation 1, ~ l ~ l ~ ~ ~ l ~ ~ ~  = 0.387. Moreover, an information index can be calculated for each 

of the outcome pairs separately, yielding values [0.1 0.361 0.5571~. This implies that ev- 
idence of 1 mg/l of orthophosphate is less informative than 10 mg/l, which in turn is less 
informative than 100 mg/l, as regards prediction of algal biomass. 

Link strength approach 

The information content of the link can also be used in the reverse manner, but only for 
square link matrices, i.e., in cases where the number of outcomes in the linked nodes is 
equal. It is often practical to present the strength of each link using a single parameter, in- 
stead of inserting values for each link matrix component separately. The number of links 
grows rapidly as the number of nodes increases. There are numerous ways of doing this. 
The following very practical method is presented as an example. 

The link-strength parameter is denoted as pjli, i # j. bli E [-I, 11. A symmetric, k x 

k link matrix M,li is constructed as a function of bli. p is now used as an input. The diago- 
nal elements of M are obtained by 

and the off-diagonal elements by 

For instance, the link-strength parameter value 1 implies an identity matrix, the value 0 
implies a non-informative link matrix, and the value 0.7 implies the following matrix, 
which is a 3 x 3 matrix for demonstration purposes: 

Node independence 

The nodes in a network may have different grades of independence. Some nodes may be 
totally independent of other network variables, and some may be highly dependent on 
other variables. For instance, weather conditions may be independent variables in a wheat 
crop model, while crop size may be highly dependent on weather conditions. 

Using the link-strength parameter idea, a simple index for the dependence d, of a 



node j on other nodes in a network is the sum of the absolute values of all links ending up 
in the node: 

i z j  

Another index could be the mean link strength from all informative links to the node: 

i z j  

where K is the number of informative links to the node. Node independence d'j can be de- 
fined as 

2.3 Network Propagation 

An algorithm for propagating uncertain information in a network is presented below. It is 
based on Pearl's (1988) polytree algorithm. Two independent polytree messages are com- 
puted, and the updated belief is obtained as the convolution product of these messages and 
the prior belief. The nodes are linked with link matrices that can be direction-specific. 
Positive and negative dependencies between variables are allowed. Computationally, all 
nodes are interlinked, and a non-informative link (link parameter p = 0) implies no con- 
nection. The polytree approximation does not update messages in cases where the propa- 
gation direction is changed. 

Inputs 

Let us consider a fully connected network with n nodes that can be arbitrarily linked to 
one another. Since a Bayesian network has to be directed, an ordering from the first to the 
last node must be defined. The inputs to the system are: 

A set of possible (discrete) outcomes yi for each node i. 
The prior belief on each node, expressed in terms of probabilities el ... ek assigned 

to k outcomes given, summing up to unity. These constitute a k dimensional vector ei for 
the node i, also known as an evidence vector. If no prior belief exists, a non-informative 
prior distribution - a unit vector, for instance - is used. 

The information for each non-informative link. There is an indefinite number of 
ways to construct the link matrix M. The algorithm requires the use of a square link 
matrix. 

Top-down propagation 

The next question is how to make use of the links and their strengths to calculate posterior 
belief distribution vectors Belj for the nodes. Since the network is directed, two informa- 
tion propagation directions can be distinguished in the network: top-down and bottom-up. 
The calculation is performed symmetrically, but directions up and down are used for ver- 
bal convenience. 

When propagating messages downwards in a network, all messages coming to a 



node, say j, from an mother node, say i, are denoted by pjli and messages leavlng node i 
are denoted by Xi. For any node j, preconditioned by any node i (i < j): 

The vectors Pj\i and Xi consist of the following elements: 

For elements r, the X[ message is the convolution product of the message X;'ll..i-l and the 
prior belief e[. 

where a is a scaling constant, scaling the sum of the k vector elements of Xi to unity. The 
incoming message Xill..i-l is the convolution of all the messages, pill to pili-1, from the 
node's i - 1 predecessors: 

Starting from the first node, the p:1.10 = 1 and X I  = e l ,  p210,l = M211~1, and so on. 

Bottom-up propagation 

Bottom-up propagation is quite similar to top-down propagation. Only the direction is re- 
verse. All messages coming to node i from node j are denoted by lib and messages leaving 
the node j are denoted by hi. For any node i, preconditioned by any node j, with i < j. 

The hj message is the convolution of the message hjv+l..n and the prior belief e i  

where p is a scaling constant. The incoming message h,lj+l..n is a convolution of all the 
messages, ljb+l to ljln, from the node's n - j successors: 



Posterior beliefs 

For each node j, the posterior belief distributions Be9 can now be calculated on the basis 
of the prior distribution e,, updating it with the information from the sub-network above 
and below the node, i.e., vectors aj1l.j-1 and h,~+i+l..~, respectively: 

where y is a scaling constant. 

Round-the-corner message 

The most problematic simplification in the algorithm presented above is that the model 
contains two independent message polytrees, x and h. These messages are only connected 
when the posterior beliefs (Bel) are calculated (see Equation 18). The Bels should also in- 
fluence the messages, though, as in Pearl's original formulation. However, this simplifica- 
tion greatly reduces computational time, makes computation insensitive to the enlarge- 
ment of the network and the number of outcomes, and facilitates, for instance, interactive, 
on-line use in a spreadsheet, which has proved to be an important feature in practical envi- 
ronmental management work. With an algorithm requiring iteration or simulation, the 
time required for calculation would expand. 

These "round-the-comer" propagation problems of both x and h messages are il- 
lustrated in Figure 3. Evidence e l  will be propagated to all nodes through the a mecha- 
nism. However, the link from node 4 to node 2 does not take this message into account. e3 
has no influence on Be12, and e2 has no influence on Bel3, although those nodes are indi- 
rectly linked in two directions. This problem can be eliminated by making also links Mi14 
and M213, and vice versa, informative. But this may then make the semantic interpretation 
of the network more difficult. If this is considered a major drawback in a specific applica- 
tion, it would then be better to adopt an another, more computation-intensive approach. 

3. Prospects for Modeling Environmental Change 

Belief networks provide a variety of ways of modeling environmental change. On the ba- 
sis of my own experience, I see potential for modeling in the following five areas, which 
have no sharp borders: (1) belief and knowledge acquisition, (2) use for decision analysis, 
(3) analytical, mechanistic and process modeling, (4) spatial and temporal correlations, 
and (5) learning and adaptive modeling. 

In the following, these areas are discussed, and illustrated with tentative examples. 
In practice, a belief network can include properties from each of these categories. 



Figure 3. An example of the round-the-comer propagation problem in a four-node net- 
work. K messages are shown in solid arcs and h messages with dashed arcs. 

3.1 Belief and Knowledge Acquisition 

Under this approach, a model is constructed by an expert who names the most essential 
quantities (nodes) in the system, given a specific purpose, and assigns the most important 
links between the nodes. The interface can be an interactive checklist with a relatively low 
number of linguistic outcomes for the nodes. The nodes can be renamed, and the associa- 
tions can be easily modified. 

This approach may be very useful when we are dealing with very uncertain prob- 
lems, such as assessing the impacts of climatic change on water quality in a watershed. 
More conventional checklist approaches are fairly common in environmental impact as- 
sessment studies (cf., Biswas and Geping 1987, World Bank 1991). The suggested check- 
list approach could be of benefit in such applications. It is related to certain associative 
decision analysis approaches, such as the Analytic Hierarchy Process by Saaty (1980). 
Preliminary experience has shown that there can be reasonable deviations between prior 
and posterior distributions within a model. This indicates expert's inconsistency. Iterative 
use can help the expert to formulate a consistent network of beliefs. 

Using a belief network in this way is evidently appropriate as such. In addition, it 
can be used as the first stage in a modeling procedure, yielding a conceptual network that 
can later be refined using a higher number of outcomes, especially numerical ones, and o- 
links, decision analysis tools, etc. 

3.2 Use for Decision Analysis 

Decision analysis attempts to structure and quantify - typically uncertain and subjective - 
information, to find the most important influences within a system, to detect critical com- 
ponents of total risk and uncertainty, to identify proper variables and policies to be con- 
trolled within the system, and to provide scenarios and sensitivity studies to support the 
above targets. 

Varis (1992a) and Varis, Kuikka and Taskinen (1993) list a set of properties that 
are particularly useful in the use of probabilistic, environmental models, including belief 
networks, for decision analysis. Those include utility theory, risk attitude analysis, and the 
value of information and control. In addition, the comments on decisions and objectives in 
the 'Nodes' subsection are relevant here. 



A special case of a belief network is a model in which (1) all links have only one 
direction and (2) no cycles are included. Important computational extensions can be made 
in such networks, including the use of dynamic programming. Influence diagram 
methodology (Shachter 1986) is based on such networks. Influence diagrams are a very 
efficient decision analysis approach, tested in various environmental applications (Varis, 
Kettunen and Sirvia 1990, Varis and Kuikka 1990, Kuikka and Varis 1992, Varis, Kldve 
and Kettunen 1993). The reader is referred to these case studies for examples of the use of 
the influence diagram approach. 

3.3 Mechanistic and Process Modeling 

There is a reasonable limitation on the use of the belief network approach in mechanistic 
and process modeling because the equations have to be in an analytically solved form. 
Therefore, the belief network approach is not a suitable approach for most of the complex, 
dynamic models used in, for instance, climatic change impact assessment studies. 
However, the belief network approach can be utilized in many practically applicable mod- 
els, such as many pollution models, growth models, age-structured models, population 
models, chemical equilibrium and process models, financial models, and econometric 
models. The strength of the corresponding probability link can be understood as the belief 
in the appropriateness of the equation for the o-link (cf., Varis, Kuikka and Kettunen 
1993). This provides far-reaching potential for describing the structural uncertainty of 
models. 

Take an example from river pollution models, to illustrate how the well-known 
Streeter and Phelps (1925) model can be presented as a belief network. The amount of 
biologically degradable pollution in a river (measured as biological oxygen demand 
BOD), and its impact on the dissolved oxygen concentration in the water are modelled us- 
ing equations 

where b is BOD, c is the oxygen concentration in the water, t is the time from the dis- 
charge of the effluent in the river, and cs is the saturation concentration of oxygen in wa- 
ter. k l  and k2 are parameters. In the resulting network, the Equations (19a, b) are used as 
the o-links to the nodes b(t) and c(t). The uncertainties in the model can be updated either 
on the basis of time, parameters and initial values to state variables, or vice versa. 

In addition, the uncertain outcome of complex models - such as climate change 
scenarios computed off-line - can easily be used as prior distributions in belief networks. 
A belief network can be a meta-model, containing the outputs from several complex mod- 
els. Analogically, a solved trajectory of a complex model can serve as the basis of an o- 
link. 

Dynamic models can be constructed in many ways, for instance, by cloning a 
model made for one time step, to create a structure in which one layer represents one time 
step. Thereafter, time-dependent processes can be linked between those layers, and the 
value of the time step information node can be changed. 

When calculating the node independence parameter, one should be aware that dif- 
ferent nodes have very different interpretations. For instance, from a parameter to a state 
equation, the information content of the link is often close to 1. In a state equation with 



several prior parameters, the node independence approach is not suitable as such. One can, 
for instance, omit the information from parameters, and thus obtain a more informative 
index for the independence of a node containing a state equation. 

3.4 Topological and Spatial Modeling 

A belief network can also be used to present a topological structure in nature. There are 
many ways of using the belief network approach with spatial and time-dependent model- 
ing, such as correlation and autocorrelation models and geostatistical models. 

A particularly attractive idea is to use a belief network as an on-line model of the 
state of the environment in a certain region. Each new observation could be propagated 
through the network, and it would update our knowledge about the system. Risk analysis 
approaches can also be easily connected to such a model. As an example, consider a se- 
quence of water quality gauging stations along a river (Figure 4), operating on an on-line 
principle. The uncertainty system is propagated bi-directionally through the entire network 
in real time. The outcome system may possess a physical model structure. Additional 
nodes in the network could be, for instance, meteorological information sources. 
Analogical uses can be found for off-line problems. 

Gauging station in the river 

Figure 4. An example of a belief network corresponding to the topology of a river and its 
tributaries. 

3.5 Learning and Adaptive Modelling 

Belief networks can also include inductive components that perform estimation, learning, 
or structural adaptation. Many statistical estimation procedures can evidently be included 
in a belief network. 

Consider as an example the inclusion of a neural network, which is an adaptive 
and learning model structure, in a belief network. In principle, it would be possible to con- 
struct an interface between such networks. The input layer of a neural network would re- 
ceive information from the belief network, and the output layer would produce an input to 
the same or another belief network (Figure 5). One would need a set of information to 
teach the network to produce forecasts. All of the uncertainty information can be propa- 
gated through the interface, for instance, by coding each outcome of each interface node 
as a separate input layer node to a neural net and using the corresponding system in the 
output layer. 



Bellef network 

Interface nodes 

Outcomes of interface 

Hidden layers 

nodes = input layer 

Neural network 

Output layer = input 
to belief network 
Interface nodes 

Bellef network 

Figure 5. An interface structure between belief networks and neural networks. 

3.6 Hybrid Use 

Many of the technical details of the five approach categories discussed above partly over- 
lap (Figure 6). In applications, it would evidently be worthwhile to be able to use the most 
appropriate features of these five areas to produce proper models. There is no reason why 
a belief network model could not incorporate nodes, links, or sub-networks that make use 
of all these approaches simultaneously. 

Pragmatic Linguistic 

I Hybrid 

Anal ical 
mod t Is 

Mechanistic Spatial & Metric 

models 

Figure 6. The belief network approach facilitates the combined use of several method- 
ological and paradigmatic (in italics, cf. Beck 1991) facets that are often seen as being far 
from one another. 



A fisheries management example 

Varis, Kuikka and Kettunen (1993) have used a combination of a deterministic, age- 
structured fish population model and a set of regression models in a belief network 
framework to support group work and decision making by an international committee that 
issues annual Baltic salmon quota recommendations. The stocking of reared salmon has 
enhanced the region's salmon fisheries, and wild stocks are under severe threat of extinc- 
tion. The goal of the stock assessment procedure is to produce information that is of value 
in formulating international policy to safeguard the existence of wild salmon stocks. The 
economic rationale for compiling empirical data is far too low to enable empirical stock 
forecasts. Furthermore, the Baltic Sea as a system with ecological, social, economic, and 
political facets, is undergoing practically unpredictable changes and transitions. 

In the case of salmon stock assessment, the information and experience available 
allow the use of empirical, regression-type models for certain relations between sub-stock 
data, growth parameters, water quality data, etc. The Virtual Population Analysis (VPA) 
equations (Beverton and Holt 1957, Gulland 1983) have also been found very useful, al- 
though they are not identifiable from data and the parameter values are assessed by ex- 
perts. Experts play a crucial role in the production of age-structured stock forecasts from 
this - rather diverse - information. Some experts prefer to use selected empirical models, 
while others prefer the VPA. Clearly, any contemporary assessment technique suffers 
from severe limitations, and all possible, relevant information and models should be taken 
into consideration. 

A belief network environment was produced (Varis, Kuikka and Kettunen 1993) 
that allows inclusion of empirical models and the VPA in one frame. The uncertain and 
diverse information can be merged in expert workshops. The interactive system allows the 
detection of disagreements in information, the weighting of different models, the tuning of 
the VPA, calculation of forecasts, and definition of the fisheries quota decision. This has 
been done using a belief network in which the above-mentioned models have been em- 
bedded (Figure 7). 

Figure 7. Schematic diagram of the structure of the assessment procedure for Baltic 
salmon (Varis, Kuikka and Kettunen 1993). The more angular the module, the more im- 
portant the expert judgement component. 
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4. Conclusions 

Uncertainty and subjectivity are important features of environmental forecasting, particu- 
larly in cases where the environment may be subject to radical change. Such forecasts are 
often made to produce information that is useful to decision-makers. In addition, such 
forecasts usually require a proper diagnosis of the problem. Subjective expert knowledge 
and value judgements are often among the major sources of information (cf. Henderson- 
Sellers 1990). Such information should be handled formally more often than at present. 
When using computer models, it is essential that the entire inference and decision support 
process be considered as a whole, and not, for instance, only as parameter or state uncer- 
tainty, as is often the case. The Bayesian approach to management of uncertainty provides 
various possibilities. It deserves more attention in research and in practice in the forecast- 
ing of environmental change. 

Evidently, environmental forecasts usually serve decision-making situations in 
which risk-neutral behavior is rare. In contrast, risk-averse behavior appears to be rather 
typical of these situations (see Laurmann 1991), i.e., the management objectives include 
reducting of the level of uncertainty involved. Risk-prone cases also exist, but they are 
less frequent. Therefore, a form of probabilistic modeling facilitating a risk attitude analy- 
sis is needed, as its exclusion leads to the assumption of risk neutral behavior. 

Belief networks, as presented here, appear to have many properties that help to 
cope with the above problems. The three most crucial are: 

Advanced handling of uncertainties (propagation & presentation, objectives, and 
structure). 
Ability to include modeling techniques from many methodological families that 
are usually considered far from one another (e.g., meuic, mechanical, linguistic, 
and pragmatic). 
Support for the acquisition of expert knowledge and structural construction of a 
model. 

A challenging extension to the approach presented would be to use continuous distribu- 
tions instead of discrete ones. Such a methodology already exists for influence diagrams 
(Shachter and Kenley 1989). Though our examples came from environmental manage- 
ment, the methodology presented here is readily applicable to many other fields as well. 
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