This study introduces a novel forecast combination method for monthly Japanese tourism demand, analyzed at both aggregated and disaggregated levels, including tourist, business, and other travel purposes. The sample period spans from January 1996 to December 2018. Initially, the time series data were decomposed into high and low frequencies using the Ensemble Empirical Mode Decomposition (EEMD) technique. Following this, Autoregressive Integrated Moving Average (ARIMA), Neural Network (NN), and Support Vector Machine (SVM) forecasting models were applied to each decomposed component individually. The forecasts from these models were then combined to produce the final predictions. Our findings indicate that the two-stage forecast combination method significantly enhances forecasting accuracy in most cases. Consequently, the combined forecasts utilizing EEMD outperform those generated by individual models.