Items where IIASA Author is "Frankowska, Halina"
Frankowska, H. & Quincampoix, M. (1996). Dissipative Control Systems and Disturbance Attenuation for Nonlinear H - Problems. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-96-117
Frankowska, H. (1996). How Set-Valued Maps Pop Up in Control Theory. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-96-116
Aubin, J.-P. & Frankowska, H. (1995). The Viability Kernel Algorithm for Computing Value Functions of Infinite Horizon Optimal Control Problems. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-098
Frankowska, H. & Caroff, N. (1994). Conjugate Points and Shocks in Nonlinear Optimal Control. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-94-056
Aubin, J.-P. & Frankowska, H. (1994). Set-valued Solutions to the Cauchy Problem for Hyperbolic Systems of Partial Differential Inclusions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-94-057
Frankowska, H. & Plaskacz, S. (1993). On the Lyapunov Second Method for Data Measurable in Time. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-93-054
Caroff, N. & Frankowska, H. (1993). Optimality and Characteristics of Hamilton-Jacobi-Bellman Equations. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-93-053
Frankowska, H., Plaskacz, S. & Rzezuchowski, T. (1992). Set-Valued Approach to Hamilton-Jacobi-Bellman Equations. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-92-072
Frankowska, H. & Quincampoix, M. (1992). Isaacs' Equations for Value-Functions of Differential Games. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-92-055
Aubin, J.-P. & Frankowska, H. (1992). Set-Valued Analysis, Viability Theory and Partial Differential Inclusions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-92-060
Cannarsa, P. & Frankowska, H. (1991). Value Functions and Optimality Conditions for Semilinear Control Problems. II: Parabolic Case. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-91-032
Frankowska, H. & Quincampoix, M. (1990). Viability Kernels of Differential Inclusions with Constraints: Algorithms and Applications. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-90-064
Aubin, J.-P. & Frankowska, H. (1990). Hyperbolic Systems of Partial Differential Inclusions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-90-043
Aubin, J.-P. & Frankowska, H. (1990). Partial Differential Inclusions Governing Feedback Controls. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-90-028
Cannarsa, P. & Frankowska, H. (1990). Two characterization of optimal trajectories for Meyer Problem. In: Nonlinear Control Systems Design 1989. Eds. Isidori, A., pp. 291-295 Oxford, UK: Pergamon Press. ISBN 978-0-08-037022-4 10.1016/B978-0-08-037022-4.50056-9.
Frankowska, H. (1990). A priori estimates for operational differential inclusions. Journal of Differential Equations 84 (1), 100-128. 10.1016/0022-0396(90)90129-D.
Aubin, J.-P. & Frankowska, H. (1989). Dynamic Regulation of Controlled Systems, Inertia Principle and Heavy Viable Solutions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-89-086
Cannarsa, P. & Frankowska, H. (1989). Some Characterizations of Optimal Trajectories in Control Theory. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-89-083
Aubin, J.-P. & Frankowska, H. (1989). Controllability and Observability of Control Systems under Uncertainty. IIASA Research Report. IIASA, Laxenburg, Austria: RR-89-008
Frankowska, H. (1989). Nonsmooth solutions of Hamilton-Jacobi-Bellman equation. In: Modeling and Control of Systems. Eds. Blaquiére, A., pp. 131-147 Germany: Springer Berlin/Heidelberg. ISBN 978-3-540-46087-9 10.1007/BFb0041191.
Frankowska, H. (1989). Optimal trajectories associated with a solution of the contingent Hamilton-Jacobi equation. Applied Mathematics & Optimization 19 (1), 291-311. 10.1007/BF01448202.
Frankowska, H. (1988). A Priori Estimates for Operational Differential Inclusions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-88-126
Frankowska, H. (1988). A General Multiplier Rule for Infinite Dimensional Optimization Problems with Constraints. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-88-052
Frankowska, H. (1988). Contingent Cones to Reachable Sets of Control Systems. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-88-017
Frankowska, H. (1988). High Order Inverse Function Theorems. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-88-018
Aubin, J.-P. & Frankowska, H. (1987). Observability of Systems under Uncertainty. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-87-091
Frankowska, H. (1987). On the Linearization of Nonlinear Control Systems and Exact Reachability. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-87-086
Frankowska, H. (1987). Optimal Trajectories Associated to a Solution of Contingent Hamilton-Jacobi Equation. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-87-069
Frankowska, H. (1985). Local Invertibility of Set-Valued Maps. IIASA Collaborative Paper. IIASA, Laxenburg, Austria: CP-85-043
Aubin, J.-P., Frankowska, H. & Olech, C. (1985). Controllability of Convex Processes. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-85-041
Aubin, J.-P. & Frankowska, H. (1985). Heavy viable trajectories of controlled systems. In: Dynamics of Macrosystems. pp. 148-167 Berlin/Heidelberg, Germany: Springer. ISBN 978-3-662-00545-3 10.1007/978-3-662-00545-3_13.
Frankowska, H. (1984). Local Controllability and Infinitesimal Generators of Semigroups of Set-Valed Maps. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-84-070
Aubin, J.-P. & Frankowska, H. (1984). On Inverse Function Theorems for Set-Valued Maps. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-84-068
Frankowska, H. (1984). Adjoint Differential Inclusions in Necessary Conditions for the Minimal Trajectories of Differential Inclusions. IIASA Collaborative Paper. IIASA, Laxenburg, Austria: CP-84-037
Aubin, J.-P. & Frankowska, H. (1984). Heavy Viable Trajectories of Controlled Systems. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-84-028
Frankowska, H. (1984). The Maximum Principle for a Differential Inclusion Problem. IIASA Collaborative Paper. IIASA, Laxenburg, Austria: CP-84-012
Frankowska, H. (1984). A Viability Approach to the Skorohod Problem. IIASA Collaborative Paper. IIASA, Laxenburg, Austria: CP-84-013