Items where IIASA Author is "Kaniovski, Yuri"

Group by: Item Type | No Grouping
Number of items: 43.

Winter, S.G., Kaniovski, Y.M. & Dosi, G. (2003). A baseline model of industry evolution. Journal of Evolutionary Economics 13 (4), 355-383. 10.1007/s00191-003-0163-y.

Winter, S.G., Kaniovski, Y.M. & Dosi, G. (2000). Modeling industrial dynamics with innovative entrants. Structural Change and Economic Dynamics 11 (3), 255-293. 10.1016/S0954-349X(99)00010-7.

Kaniovski, Y.M., Kryazhimskiy, A.V. & Young, H.P. (2000). Adaptive dynamics in games played by heterogeneous populations. Games and Economic Behavior 31 (1), 50-96. 10.1006/game.1999.0736.

Winter, S.G., Kaniovski, Y.M. & Dosi, G. (2000). Modeling Industrial Dynamics with Innovative Entrants. IIASA Research Report (Reprint). IIASA, Laxenburg, Austria: RR-01-003. Reprinted from Structural Change and Economic Dynamics, 11:255-293 [2000].

Kaniovski, Y.M. (2000). A comparison of diffusion approximations and actual limits in birth and death processes of noisy evolution, by myself. Journal of Evolutionary Economics, 545-555.

Kaniovski, Y.M. (1998). Interdependent Search and Industry Dynamics: on Ericson and Pakes (1995). IIASA Interim Report. IIASA, Laxenburg, Austria: IR-98-031

Kaniovski, Y.M. (1998). On Misapplications of Diffusion Approximations in Birth and Death Processes of Noisy Evolution. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-98-050

Winter, S.G., Kaniovski, Y.M. & Dosi, G. (1998). Modeling Industrial Dynamics with Innovative Entrants. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-98-022

Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 & Kaniovski, Y.M. (1998). Limit theorems for stationary distributions of birth-and-death processes. Stochastic Models 15 (1), 103-113.

Kaniovski, Y.M. & Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 (1997). Limit Theorems for Stationary Distributions of Birth-and-Death Processes. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-97-041

Flam, S.D. & Kaniovski, Y.M. (1997). Price Expectations, Cobwebs and Stability. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-97-014

Winter, S.G., Kaniovski, Y.M. & Dosi, G. (1997). A Baseline Model of Industry Evolution. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-97-013

Kaniovski, Y.M., Kryazhimskiy, A.V. & Young, H.P. (1997). Learning Equilibria in Games Played by Heterogeneous Populations. IIASA Interim Report. IIASA, Laxenburg, Austria: IR-97-017

Kaniovski, Y.M. & Young, H.P. (1995). Learning dynamics in games with stochastic perturbations. Games and Economic Behavior 11 (2), 330-363. 10.1006/game.1995.1054.

Hutschenreiter, G., Kaniovski, Y.M. & Kryazhimskiy, A.V. (1995). Endogenous Growth, Absorptive Capacities and International R & D Spillovers. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-092

Kaniovski, Y.M. (1995). Strong Convergence of Stochastic Approximation Without Lyapunov Functions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-019

Kaniovski, Y.M. & Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 (1995). Non-Standard Limit Theorems for Urn Models and Stochastic Approximation Procedures. IIASA Research Report (Reprint). IIASA, Laxenburg, Austria: RR-95-008. Reprinted from Stochastic Models, 11(1):79-102 [1995].

Kaniovski, Y.M. & Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 (1995). Non-standard limit theorems for urn models and stochastic approximation procedures. Stochastic Models 11 (1), 79-102. 10.1080/15326349508807332.

Kaniovski, Y.M., King, A.J. & Wets, R.J.-B. (1995). Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Annals of Operations Research 56 (1), 1373-1385. 10.1007/BF02031707.

Kaniovski, Y.M. & Young, H.P. (1994). Learning Dynamics in Games with Stochastic Perturbations. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-94-030

Dosi, G., Ermoliev, Y.M. & Kaniovski, Y.M. (1994). Generalized Urn Schemes and Technological Dynamics. IIASA Research Report (Reprint). IIASA, Laxenburg, Austria: RR-94-011. Reprinted from Journal of Mathematical Economics, 23:1-19 [1994].

Dosi, G., Ermoliev, Y.M. & Kaniovski, Y.M. (1994). Generalized urn schemes and technological dynamics. Journal of Mathematical Economics 23 (1), 1-19.

Dosi, G. & Kaniovski, Y.M. (1994). On "Badly Behaved" Dynamics. Some Applications of Generalized Urn Schemes to Technological and Economic Change. IIASA Research Report (Reprint). IIASA, Laxenburg, Austria: RR-94-012. Reprinted from Journal of Evolutionary Economics, 4(2):93-123 [1994].

Dosi, G. & Kaniovski, Y.M. (1994). On "badly behaved" dynamics (Some applications of generalized urn schemes to technological and economic change). Journal of Evolutionary Economics 4 (2), 93-123.

Arthur, W.B., Ermoliev, Y.M. & Kaniovski, Y.M. (1994). Path-dependent processes and the emergence of macrostructure. In: Increasing Returns and Path Dependence in the Economy. Eds. Arthur, W.B., Ann Arbor: The University of Michigan Press.

Arthur, W.B., Ermoliev, Y.M. & Kaniovski, Y.M. (1994). Strong laws for a class of path-dependent stochastic processes. In: Increasing Returns and Path Dependence in the Economy. Eds. Arthur, W.B., Ann Arbor: The University of Michigan Press.

Dosi, G., Ermoliev, Y.M. & Kaniovski, Y.M. (1994). The method of generalized urn schemes in the analysis of technological and economic dynamics. In: The Economics of Growth and Technical Change. Eds. Silverberg, G. & Soete, L., Cheltenham: Edward Elgar.

Dosi, G. & Kaniovski, Y.M. (1993). The Method of Generalized Urn Scheme in the Analysis of Technological and Economic Systems. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-93-017

Kaniovski, Y.M. & Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550 (1992). Non-standard Limit Theorems for Stochastic Approximation Procedures and Their Applications for Urn Schemes. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-92-025

Dosi, G., Ermoliev, Y.M. & Kaniovski, Y.M. (1991). Generalized Urn Schemes and Technological Dynamics. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-91-009

Glaziev, S.Y. & Kaniovski, Y.M. (1991). Diffusion of Innovations Under Conditions of Uncertainty: A Stochastic Approach. In: Diffusion of Technologies and Social Behavior. Eds. Nakicenovic, N. ORCID: https://orcid.org/0000-0001-7176-4604 & ORCID: https://orcid.org/0000-0002-7814-4990Grubler, A., pp. 231-246 Berlin/Heidelberg, Germany: Springer. ISBN 978-3-662-02702-8 10.1007/978-3-662-02700-4_9.

Glaziev, S.Y. & Kaniovski, Y.M. (1989). Diffusion of Innovations Under Conditions of Uncertainty: A Stochastic Approach. DOI:10.1007/978-3-662-02700-4_9. In: International Conference on Diffusion Technologies and Social Behaviour: Theories, Case Studies and Policy Applications, 14-16 June 1989, IIASA, Laxenburg, Austria.

Arthur, W.B., Ermoliev, Y.M. & Kaniovski, Y.M. (1988). Nonlinear Adaptive Processes of Growth with General Increments: Attainable and Unattainable Components of Terminal Set. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-88-086

Ermoliev, Y., Arthur, W.B. & Kaniovski, Y.M. (1988). Adaptive Growth Processes with Arbitrary Increments: Reachable and Non-reachable Components of the Terminal Set. Kibernetika, Kiev, Ukraine [1988]

Ermoliev, Y., Arthur, W.B. & Kaniovski, Y.M. (1987). Adaptive growth processes modeled by urn schemes. Cybernetics and Systems Analysis 23 (6), 779-789. 10.1007/BF01070240.

Arthur, W.B., Ermoliev, Y.M. & Kaniovski, Y.M. (1987). Limit Theorems for Proportions of Balls in a Generalized Urn Scheme. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-87-111

Arthur, W.B., Ermoliev, Y.M. & Kaniovski, Y.M. (1987). Non-Linear Urn Processes: Asymptotic Behavior and Applications. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-87-085

Ermoliev, Y., Arthur, W.B. & Kaniovski, Y.M. (1987). Limit Theorems for Fractions of Balls in a Generalized Urn Scheme with Balls of N Colors that Can Be Supplemented with Portions of Random Size. Akademii Nauk Ukrainy, Inst. Kibernetika, Kiev [1987]

Ermoliev, Y., Arthur, W.B. & Kaniovski, Y.M. (1987). Path-dependent processes and the emergence of macro-structure. European Journal of Operational Research 30 (3), 294-303. 10.1016/0377-2217(87)90074-9.

Ermoliev, Y., Arthur, W.B. & Kaniovski, Y.M. (1986). Further Results on the Generalized Polya Urn Scheme. Inst. Kibernetika, Akademii Nauk Ukrainy, Kiev, Ukraine [1986]

Ermoliev, Y., Arthur, W.B. & Kaniovski, Y.M. (1984). Strong laws for a class of path-dependent stochastic processes with applications. In: Stochastic Optimization. pp. 287-300 Berlin: Springer. ISBN 978-3-540-39841-7 10.1007/BFb0007105.

Ermoliev, Y. & Kaniovski, Y.M. (1979). Asymptotic properties of some stochastic programming methods with constant step. Zurnal vycislitel'noj matematiki i matematiceskoj fiziki 19 (2), 356-366.

Ermoliev, Y., Kovalenko, I.N. & Kaniovski, Y.M. (1979). Methods in Operations Research and Reliability Theory in Systems of Analysis. Inst. Kibernetika, Akademii Nauk Ukrainy, Kiev, Ukraine [1979]

This list was generated on Thu Jan 23 04:39:11 2025 UTC.