Topological properties of observability for a system of parabolic type

Miyamoto S (1988). Topological properties of observability for a system of parabolic type. In: Modelling and Adaptive Control. Eds. Byrnes, C.I. & Kurzhanski, A.B., Lecture Notes in Control and Information Sciences, 105 . pp. 239-253 Germany: Springer Berlin/Heidelberg. ISBN 978-3-540-38904-0 DOI:10.1007/BFb0043188.

Full text not available from this repository.

Abstract

The purpose of the present paper is to demonstrate topological properties of observable regions in a distributed parameter system. A parabolic partial differential equation with constant coefficients is considered. According to Sakawa's definition, observability is defined to be the possibility of the unique determination of the initial value by point measurements, or by spatially averaged measurements. Furthermore, n-mode observability is defined to be the possibility of the unique determination of the coefficients corresponding to the first n eigenvalues, based on the expansion of the solution by eigenfunctions. Then it is proved that n-mode observability is generic, that is, open and dense, whereas observability is shown to be dense in the whole space of measurements. In case of point measurements, it is shown that observability is valid almost everywhere with respect to the Lebesque measure. Moreover genericity of n-mode controllability and the related properties of controllability will be shown for the dual systems with controls.

Item Type: Book Section
Research Programs: System and Decision Sciences - Core (SDS)
Depositing User: Romeo Molina
Date Deposited: 02 May 2016 14:02
Last Modified: 02 May 2016 14:02
URI: http://pure.iiasa.ac.at/13001

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313