Large-Scale Controls of the Surface Water Balance Over Land-Insights From a Systematic Review and Meta-Analysis

Padrón RS, Gudmundsson L, Greve P, & Seneviratne SI (2017). Large-Scale Controls of the Surface Water Balance Over Land-Insights From a Systematic Review and Meta-Analysis. Water Resources Research: 1-36. DOI:10.1002/2017WR021215. (In Press)

Full text not available from this repository.

Abstract

The long-term surface water balance over land is described by the partitioning of precipitation (P) into runoff and evapotranspiration (ET), and is commonly characterized by the ratio ET/P. The ratio between potential evapotranspiration (PET) and P is explicitly considered to be the primary control of ET/P within the Budyko framework, whereas all other controls are often integrated into a single parameter, ω. Although the joint effect of these additional controlling factors of ET/P can be significant, a detailed understanding of them is yet to be achieved. This study therefore introduces a new global dataset for the long-term mean partitioning of P into ET and runoff in 2733 catchments, which is based on in-situ observations and assembled from a systematic examination of peer-reviewed studies. A total of 26 controls of ET/P that are proposed in the literature are assessed using the new dataset. Results reveal that: (i) factors controlling ET/P vary between regions with different climate types; (ii) controls other than PET/P explain at least 35% of the ET/P variance in all regions, and up to ∼90% in arid climates; (iii) among these, climate factors and catchment slope dominate over other landscape characteristics; and (iv) despite the high attention that vegetation-related indices receive as controls of ET/P, they are found to play a minor and often non-significant role. Overall, this study provides a comprehensive picture on factors controlling the partitioning of P, with valuable insights for model development, watershed management, and the assessment of water resources around the globe.

Item Type: Article
Research Programs: Water (WAT)
Depositing User: Romeo Molina
Date Deposited: 31 Oct 2017 07:55
Last Modified: 31 Oct 2017 07:55
URI: http://pure.iiasa.ac.at/14913

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313