Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil fuel emissions

Dalsøren SB, Myhre G, Hodnebrog Ø, Myhre CL, Stohl A, Pisso I, Schwietzke S, Höglund Isaksson L, et al. (2018). Discrepancy between simulated and observed ethane and propane levels explained by underestimated fossil fuel emissions. Nature Geoscience 11 (3): 178-184. DOI:10.1038/s41561-018-0073-0.

Full text not available from this repository.

Abstract

Ethane and propane are the most abundant non-methane hydrocarbons in the atmosphere. However, their emissions, atmospheric distribution, and trends in their atmospheric concentrations are insufficiently understood. Atmospheric model simulations using standard community emission inventories do not reproduce available measurements in the Northern Hemisphere. Here, we show that observations of pre-industrial and present-day ethane and propane can be reproduced in simulations with a detailed atmospheric chemistry transport model, provided that natural geologic emissions are taken into account and anthropogenic fossil fuel emissions are assumed to be two to three times higher than is indicated in current inventories. Accounting for these enhanced ethane and propane emissions results in simulated surface ozone concentrations that are 5–13% higher than previously assumed in some polluted regions in Asia. The improved correspondence with observed ethane and propane in model simulations with greater emissions suggests that the level of fossil (geologic + fossil fuel) methane emissions in current inventories may need re-evaluation.

Item Type: Article
Research Programs: Air Quality & Greenhouse Gases (AIR)
Depositing User: Luke Kirwan
Date Deposited: 26 Feb 2018 16:23
Last Modified: 03 Apr 2018 09:34
URI: http://pure.iiasa.ac.at/15138

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313