On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse

Pflug, G.C. ORCID: https://orcid.org/0000-0001-8215-3550, Ruszczynski, A., & Schultz, R. (1995). On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-003


Download (537kB) | Preview


Integrals of optimal values of random linear programming problems depending on a finite dimensional parameter are approximated by using empirical distributions instead of the original measure. Uniform convergence of the approximations is proved under fairly broad conditions allowing non-convex or discontinuous dependence on the parameter value and random size of the linear programming problem.

Item Type: Monograph (IIASA Working Paper)
Research Programs: Optimization under Uncertainty (OPT)
Depositing User: IIASA Import
Date Deposited: 15 Jan 2016 02:06
Last Modified: 27 Aug 2021 17:15
URI: http://pure.iiasa.ac.at/4589

Actions (login required)

View Item View Item

International Institute for Applied Systems Analysis (IIASA)
Schlossplatz 1, A-2361 Laxenburg, Austria
Phone: (+43 2236) 807 0 Fax:(+43 2236) 71 313