Differential Terror Queue Games

Wrzaczek, S., Kaplan, E.H., Caulkins, J.P., Seidl, A., & Feichtinger, G. (2017). Differential Terror Queue Games. Dynamic Games and Applications 7 (4) 578-593. 10.1007/s13235-016-0195-1.

Full text not available from this repository.

Abstract

We present models of differential terror queue games, wherein terrorists seek to determine optimal attack rates over time, while simultaneously the government develops optimal counterterror staffing levels. The number of successful and interdicted terror attacks is determined via an underlying dynamic terror queue model. Different information structures and commitment abilities derive from different assumptions regarding what the players in the game can and cannot deduce about the underlying model. We compare and explain the impact of different information structures, i.e., open loop, closed loop, and asymmetric. We characterize the optimal controls for both the terrorists and the government in terms of the associated state and costate variables and deduce the costate equations that must be solved numerically to yield solutions to the game for the different cases. Using recently assembled data describing both terror attack and staffing levels, we compare the differential game models to each other as well as to the optimal control model of Seidl et al. (Eur J Oper Res 248:246–256, 2016). The paper concludes with a discussion of the lessons learned from the entire modeling exercise.

Item Type: Article
Uncontrolled Keywords: counter-terrorism; differential games;queues; intelligence
Research Programs: Advanced Systems Analysis (ASA)
Depositing User: Romeo Molina
Date Deposited: 03 Oct 2016 09:40
Last Modified: 27 Aug 2021 17:27
URI: https://pure.iiasa.ac.at/13857

Actions (login required)

View Item View Item