Co-limitation towards lower latitudes shapes global forest diversity gradients

Liang, J., Gamarra, J.G.P., Picard, N., Zhou, M., Pijanowski, B., Jacobs, D.F., Reich, P.B., Crowther, T.W., Nabuurs, G.-J., de-Miguel, S., Fang, J., Woodall, C.W., Svenning, J.-C., Jucker, T., Bastin, J.-F., Wiser, S.K., Slik, F., Hérault, B., Alberti, G., Keppel, G., et al. (2022). Co-limitation towards lower latitudes shapes global forest diversity gradients. Nature Ecology & Evolution 6 1423-1437. 10.1038/s41559-022-01831-x.

[thumbnail of Liang_NEE_2022_preprint.pdf]
Preview
Text
Liang_NEE_2022_preprint.pdf - Submitted Version
Available under License Creative Commons Attribution Non-commercial.

Download (2MB) | Preview

Abstract

The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers.

Item Type: Article
Research Programs: Advancing Systems Analysis (ASA)
Advancing Systems Analysis (ASA) > Novel Data Ecosystems for Sustainability (NODES)
Biodiversity and Natural Resources (BNR)
Biodiversity and Natural Resources (BNR) > Agriculture, Forestry, and Ecosystem Services (AFE)
Depositing User: Michaela Rossini
Date Deposited: 18 Aug 2022 07:47
Last Modified: 09 Sep 2024 12:44
URI: https://pure.iiasa.ac.at/18160

Actions (login required)

View Item View Item