Kiwiel, K. (1995). Proximal Minimization Methods with Generalized Bregman Functions. IIASA Working Paper. IIASA, Laxenburg, Austria: WP-95-024
Preview |
Text
WP-95-024.pdf Download (1MB) | Preview |
Abstract
We consider methods for minimizing a convex function $f$ that generate a sequence ${x^k}$ by taking $x^{k+1}$ to be an approximate minimizer of $f(x)+D_h(x,x^k)/c_k$, where $c_k>0$ and $D_h$ is the $D$-function of a Bregman function $h$. Extensions are made to $B$-functions that generalize Bregman functions and cover more applications. Convergence is established under criteria amenable to implementation. Applications are made to nonquadratic multiplier methods for nonlinear programs.
Item Type: | Monograph (IIASA Working Paper) |
---|---|
Research Programs: | Optimization under Uncertainty (OPT) |
Depositing User: | IIASA Import |
Date Deposited: | 15 Jan 2016 02:06 |
Last Modified: | 27 Aug 2021 17:15 |
URI: | https://pure.iiasa.ac.at/4568 |
Actions (login required)
View Item |