Brodić, N., Cvijetinović, Ž., Milenkovic, M., Kovačević, J., Stančić, N., Mitrović, M., & Mihajlović, D. (2022). Refinement of Individual Tree Detection Results Obtained from Airborne Laser Scanning Data for a Mixed Natural Forest. Remote Sensing 14 (21) e5345. 10.3390/rs14215345.
Preview |
Text
remotesensing-14-05345-v2.pdf - Published Version Available under License Creative Commons Attribution. Download (3MB) | Preview |
Abstract
Numerous semi- and fully-automatic algorithms have been developed for individual tree detection from airborne laser-scanning data, but different rates of falsely detected treetops also accompany their results. In this paper, we proposed an approach that includes a machine learning-based refinement step to reduce the number of falsely detected treetops. The approach involves the local maxima filtering and segmentation of the canopy height model to extract different segment-level features used for the classification of treetop candidates. The study was conducted in a mixed temperate forest, predominantly deciduous, with a complex topography and an area size of 0.6 km × 4 km. The classification model’s training was performed by five machine learning approaches: Random Forest (RF), Extreme Gradient Boosting, Artificial Neural Network, the Support Vector Machine, and Logistic Regression. The final classification model with optimal hyperparameters was adopted based on the best-performing classifier (RF). The overall accuracy (OA) and kappa coefficient (κ) obtained from the ten-fold cross validation for the training data were 90.4% and 0.808, respectively. The prediction of the test data resulted in an OA = 89.0% and a κ = 0.757. This indicates that the proposed method could be an adequate solution for the reduction of falsely detected treetops before tree crown segmentation, especially in deciduous forests.
Item Type: | Article |
---|---|
Uncontrolled Keywords: | individual tree detection; airborne laser scanning; machine learning; Random Forest; Extreme Gradient Boosting; artificial neural network; Support Vector Machine |
Research Programs: | Advancing Systems Analysis (ASA) Advancing Systems Analysis (ASA) > Novel Data Ecosystems for Sustainability (NODES) |
Depositing User: | Luke Kirwan |
Date Deposited: | 07 Nov 2022 09:45 |
Last Modified: | 07 Nov 2022 09:45 |
URI: | https://pure.iiasa.ac.at/18346 |
Actions (login required)
View Item |