Number of items: 4.
Article
    Verbrigghe, N., Leblans, N., Sigurdsson, B., Vicca, S., Fang, C., Fuchslueger, L., Soong, J., Weedon, J., Poeplau, C., Ariza-Carricondo, C., Bahn, M., Guenet, B., Gundersen, P., Gunnarsdóttir, G., Kätterer, T., Liu, Z., Maljanen, M., Marañón-Jiménez, S., Meeran, K., Oddsdóttir, E. et al.
  
(2022).
    Soil carbon loss in warmed subarctic grasslands is rapid and restricted to topsoil.
  
    Biogeosciences 19 (14), 3381-3393. 10.5194/bg-19-3381-2022.
    
    
  
  
    Walker, T., Gavazov, K., Guillaume, T., Lambert, T., Mariotte, P., Routh, D., Signarbieux, C., Block, S., Münkemüller, T., Nomoto, H., Crowther, T., Richter, A., Buttler, A. & Alexander, J.
  
(2022).
    Lowland plant arrival in alpine ecosystems facilitates a decrease in soil carbon content under experimental climate warming.
  
    eLife 11, e78555. 10.7554/eLife.78555.
    
    
  
  
    Prommer, J., Walker, T., Wanek, W., Braun, J., Zezula, D., Hu, Y., Hofhansl, F. 
ORCID: https://orcid.org/0000-0003-0073-0946 & Richter, A.
  
(2020).
    Increased microbial growth, biomass and turnover drive soil
organic carbon accumulation at higher plant diversity.
  
    Global Change Biology 26 (2), 669-681. 10.1111/gcb.14777.
    
    
  
  
    Walker, T., Kaiser, C., Strasser, F., Herbold, C., Leblans, N., Woebken, D., Janssens, I., Sigurdsson, B. & Richter, A.
  
(2018).
    Microbial temperature sensitivity and biomass change explain soil carbon loss with warming.
  
    Nature Climate Change 8 (9), 885-889. 10.1038/s41558-018-0259-x.
    
    
  
  
This list was generated on Tue Nov  4 14:51:07 2025 UTC.